JPS6317788B2 - - Google Patents

Info

Publication number
JPS6317788B2
JPS6317788B2 JP58019504A JP1950483A JPS6317788B2 JP S6317788 B2 JPS6317788 B2 JP S6317788B2 JP 58019504 A JP58019504 A JP 58019504A JP 1950483 A JP1950483 A JP 1950483A JP S6317788 B2 JPS6317788 B2 JP S6317788B2
Authority
JP
Japan
Prior art keywords
weight
amorphous carbon
slurry
zonotrite
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58019504A
Other languages
Japanese (ja)
Other versions
JPS59146968A (en
Inventor
Teru Takahashi
Kazuo Shibahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP1950483A priority Critical patent/JPS59146968A/en
Publication of JPS59146968A publication Critical patent/JPS59146968A/en
Publication of JPS6317788B2 publication Critical patent/JPS6317788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は珪酸カルシウム成形体及びその製法に
関し、更に詳しくは無定形炭素を含有するゾーノ
トライト系珪酸カルシウム成形体及びその製造法
に関す。 炭素含有珪酸カルシウム成形体としては特公昭
51−6038号公報に活性炭含有珪酸カルシウム成形
体の製法が記載されている。この製法は、珪酸原
料、石灰原料、及び水から調製される原料スラリ
ーに活性炭を原料固形分に対し0.5〜7重量%と
いう特定量含有させて撹拌下に水熱合成反応せし
めてゾーノトライト結晶と活性炭とを含む水性ス
ラリーとなし、これを成形・乾燥するものであ
り、活性炭を特定量添加することにより上記合成
反応の反応速度を大となしうると共に水の量を著
しく減少せしめ得るというものである。そして得
られた炭素含有ゾーノトライト系珪酸カルシウム
成形体とほぼ同等の物性を有するものである旨記
載されている。即ち従来の活性炭含有珪酸カルシ
ウム成形体については、その製法上の効果は存在
するが成形体自体についてはほぼ特定の効果はな
いものとされていたのである。 本発明者らは従来から珪酸カルシウム成形体に
ついて長年研究を続けて来たが、この研究に於い
て次のことを見出した。即ち上記活性炭含有原料
スラリーに於いて無定形炭素(活性炭も含む)の
原料スラリー中に於ける含有量が15重量%以上50
重量%以下の間に於いては、得られる成形体は著
しく吸湿能が大きいこと。特にこの吸湿能は無定
形炭素の量と密接な関係を有し無定形炭素の量が
7重量%を境にして臨界的に向上し、特に15重量
%以上で著しく吸湿能が向上することを見出し
た。またこの際無定形炭素が15重量%以上50重量
%以下も含有されているにも拘らず非常に軽量に
して充分なる実用強度を有する成形体が収得出来
ることおよび断熱性能が著しく向上することも見
出した。本発明はかゝる知見に基ずいて完成され
たものであり、即ち本発明は、ゾーノトライト結
晶の二次粒子及び無定形炭素を主成分とする成形
体であつて、該ゾーノトライト結晶の二次粒子は
圧縮変形された状態で相互に連結した状態で存在
し、且つ該無定形炭素は該成形体中に15重量%以
上50重量%以下含まれると共に示差熱分析により
480℃を超えて600℃の間に発熱ピークを有するも
のであることを特徴とする無定形炭素含有ゾーノ
トライト系珪酸カルシウム成形体、及び珪酸原
料、石灰原料、無定形炭素を主成分とする物質及
び水とから固形分に対する水の量が5重量倍以上
となる様に且つ固形分中に無定形炭素を主成分と
する物質が15重量%以上50重量%以下になるよう
に調製された原料スラリーを、加圧下加熱撹拌し
ながら水熱合成反応を行なわしめてゾーノトライ
ト結晶と無定形炭素とを主成分とする水性スラリ
ーとなし、次いでこれを成形・乾燥することを特
徴とする無定形炭素含有ゾーノトライト系珪酸カ
ルシウム成形体の製法に係るものである。 本発明の無定形炭素含有珪酸カルシウム成形体
は無定形炭素を15重量%以上50重量%以下含有す
るものであり、特に注目すべきは該成形体中の無
定形炭素が7重量%を超えると成形体自体の吸湿
能が急激に上昇するが、更に15重量%以上含まれ
ていることにより成形体自体の吸湿能が顕著に向
上しているという特徴を有する。 以下に本発明をその製法に基ずいて下記に説明
する。 本発明成形体は原則的には珪酸原料、石灰原
料、無定形炭素を主成分とする物質及び水から調
製された原料スラリーを撹拌下に水熱合成反応せ
しめてゾーノトライト結晶と無定形炭素とを主成
分とする水性スラリーを得、これを成形し乾燥し
て製造される。 本発明に於いて使用される無定形炭素を主成分
として含有する物質としては代表的には活性炭を
例示することが出来、通常粒径150μm好ましく
は100μm以下のものを使用するが、粗大な粒子
が一部混入していてもよい。 また、珪酸原料としては従来この種珪酸カルシ
ウム成形体製法に使用されて来たものがいずれも
有効に使用出来、たとえば結晶質珪酸原料として
珪石、珪砂等をまた無定形珪酸原料としてシリカ
ゲル、シリカフラワー、ホワイトカーボン、珪藻
土等を例示出来る。 石灰原料としては従来から使用されて来たもの
がいずれも使用出来、たとえば生石灰、消石灰、
カーバイド滓等を具体例として使用出来、また特
に軽量成形体たとえば密度0.1g/cm3程度の成形
体を製造する場合には沈降容積5ml以上の石灰乳
を使用することが好ましい。 上記石灰乳の沈降容積とは、水対石灰の固形分
の比が120倍の石灰乳50mlを、直径が1.3cmで容積
が50cm3以上のメスシリンダー中で20分間静置後に
石灰の粒子が沈降した容積をmlで示したものであ
る。 水の量は原料スラリーの固形分に対し5倍(重
量)以上であり、上記軽量体を製造する場合には
15倍以上とするのが好ましい。珪酸原料と石灰原
料のCaO/SiO2モル比は0.90〜1.15程度である。 この原料スラリーには、引き続く水熱合成反応
に於いて不活性な添加材を添加しても良く、この
際の添加材として無機質繊維たとえば石綿、岩綿
等を例示することが出来る。 かくして調製された原料スラリーは次いで撹拌
下に水熱合成反応に供される。この反応条件は通
常8Kg/cm2以上好ましくは10Kg/cm2以上の飽和水
蒸気圧下で行なわれる。この反応により珪酸分と
石灰とが反応し、ゾーノトライト結晶を主成分と
する5〜100μm程度の二次粒子が生成すると共
に原料スラリー中に共存している無定形炭素を主
成分とする物質がそのまゝ存在しこれ等が均一に
水に分散したスラリーが得られる。このゾーノト
ライト結晶及び無定形炭素を主成分とする水性ス
ラリーを布を用いて過すると液は透明とな
るが、ゾーノトライト結晶の二次粒子から成る水
性スラリーに無定形炭素を添加したものを同様に
過すると液は黒く着色する。この事実より本
発明に於いては上記無定形炭素を主成分とする物
質はゾーノトライト結晶の二次粒子に含有されて
存在しているかまたは該粒子に何等かの力で付着
して存在しているものと考えられる。 上記ゾーノトライト結晶及び無定形炭素から成
る水性スラリーには必要に応じ各種の添加材が添
加される。この際の添加材としてはこの種珪酸カ
ルシウム成形体製造に用いられて来たものが広い
範囲で使用出来、たとえば繊維質、粘土類、セメ
ント類等を例示出来、更に詳しくは石綿、岩綿、
ガラス繊維、炭素繊維等の無機繊維、パルプ、セ
ルロース、各種合成繊維等の有機繊維、カオリ
ン、ベントナイト等の粘土、石膏、ポルトランド
セメント、アルミナセメント、その他各種セメン
ト等を具体例として例示出来る。 本発明に於いては該水性スラリーを常法により
成形し乾燥して無定形炭素含有ゾーノトライト結
晶成形体を収得することが出来る。 かくして得られる本発明の成形体は、ゾーノト
ライト結晶の二次粒子及び無定形炭素を主成分と
して成るものであり、無定形炭素の成形体中の含
有量は15.0重量%以上50重量%以下程度である。
そしてこの成形体は軽量であつても充分なる実用
的曲げ強度を有す。特に注目すべきは、成形体の
吸湿能が著しく優れていることである。吸湿能は
含有されている無定形炭素の量と密接な関係を有
し、本発明者らの研究に依ると、後記第5表及び
第3図に示される通り、該無定形炭素の含有量が
15.0重量%に達しない場合は吸湿能は著しく大き
くはならないが、15.0重量%以上になると急激に
吸湿能が著しく増大する。また本発明の成形体は
これを粉砕して得た粉末の比表面積が90〜400
m2/g(但しBET法により測定)程度でありま
た示差熱分析(昇温速度10℃/min)では480℃
を超えて600℃の間に発熱ピークが見られる。本
発明成形体はゾーノトライト結晶を主体とする珪
酸カルシウム結晶の二次粒子と無定形炭素、また
はこれ等と他の添加材とから構成されており、該
二次粒子は圧縮変形された状態で相互に連結して
構成されている。また成形体のうち高密度品は優
先配向しているものである。 以下に実施例を示して本発明法を具体的に説明
する。但し下記例に於ける各種物性は夫々次の様
な方法で測定したものである。 (イ) 曲げ強さ JIS A 9510の方法に準ずる。 (ロ) 優先配向度(P) P=I(320)・I′(001)/I(001)・I′(3
20) 但しI(320)とI(001)は無配向粉末試料の
回折強度でI′(320)とI′(001)は優先配向度を
測定しようとする試料の回折強度である。 (ハ) 炭素含有量 JIS R 6124の方法に準ずる。 (ニ) 比表面積 成形体を粉砕してBET法に依り測定する。 (ホ) 示差熱分析及び熱重量分析 成形体を粉砕して得た約10mgの試料を用い、
昇温速度10℃/minの条件で測定する。 (ヘ) 吸湿量(相対湿度90%のときの) JIS Z 0701の方法で調整された相対湿度90
%のデジケーター中に試料を入れ、同雰囲気中
での平衡吸湿量(%)を次式により求める。 吸湿量(%)=W1−Wo/Wo×100 Wo:試料の乾燥重量(g) W1:吸湿した試料の重量(g) 但し下記例に於いて部又は%となるのは特に
説明しないかぎり、重量部又は重量%を示す。 実施例 1 生石灰(CaO95.0%)32.9部を80℃の温水394
部中で消和して得た石灰乳の沈降容積は4.8mlで
あつた。上記石灰乳に平均粒子径0.24μmのフエ
ロシリコンダスト(SiO290.2%)37.2部を10重量
部の水でホモミキサーにて2分間分散させて得た
スラリーと活性炭(武田薬品製、商品名白鷺A)
17.5部を加え、更に水を加えて、全体の水量を固
形分の24重量倍となるように混合して原料スラリ
ーを得、これを飽和水蒸気圧12Kg/cm2、温度191
℃でオートクレーブで回転数102r.p.mで撹拌翼を
回転しながら撹拌し5時間水熱合成反応を行つて
スラリーを得た。上記で得たスラリーを100℃で
24時間乾燥して、X線回折分析した所、ゾーノト
ライト結晶のピークが認められた。 また、このスラリーをスライドグラス上で乾燥
して光学顕微鏡で観察すると外径が5〜100μm
の球状2次粒子と不定形の粒子が認められ、同ス
ラリーを電子顕微鏡で観察すると該2次粒子が上
記と同様の不定形の粒子と一体となつているのが
認められた。この電子顕微鏡写真(倍率7500倍)
を第1図に示す。 また上記スラリーを乾燥したものを化学分析し
た所、18.7%の炭素が分析された。以上により上
記で観察された不定形の粒子が無定形炭素を主成
分とするものであることが判る。 次いで上記で得たスラリー90部(固形分)に添
加材としてガラス繊維7部及びポルトランドセメ
ント3部を加えてプレス成形し100℃で24時間乾
燥して成形体を得た。 得られた成形体の特性は第1表の通りであつ
た。
The present invention relates to a calcium silicate molded body and a method for producing the same, and more particularly to a zonotrite-based calcium silicate molded body containing amorphous carbon and a method for manufacturing the same. As a carbon-containing calcium silicate molded body, Tokkosho
No. 51-6038 describes a method for producing an activated carbon-containing calcium silicate molded body. In this manufacturing method, activated carbon is added to a slurry prepared from silicic acid raw materials, lime raw materials, and water in a specific amount of 0.5 to 7% by weight based on the solid content of the raw materials, and a hydrothermal synthesis reaction is carried out under stirring to form zonotrite crystals and activated carbon. This is formed into an aqueous slurry containing the above, and this is formed and dried. By adding a specific amount of activated carbon, the reaction rate of the above synthesis reaction can be increased and the amount of water can be significantly reduced. . It is also described that it has almost the same physical properties as the obtained carbon-containing zonotrite-based calcium silicate molded body. That is, although conventional activated carbon-containing calcium silicate molded bodies have some effects in terms of their manufacturing process, it has been thought that the molded bodies themselves have almost no specific effects. The present inventors have been conducting research on calcium silicate molded bodies for many years, and have discovered the following in this research. That is, in the activated carbon-containing raw material slurry, the content of amorphous carbon (including activated carbon) in the raw material slurry is 15% by weight or more.
When the amount is less than % by weight, the resulting molded product has a significantly high moisture absorption capacity. In particular, this hygroscopic ability has a close relationship with the amount of amorphous carbon, and it critically improves when the amount of amorphous carbon reaches 7% by weight, and in particular, the hygroscopic ability improves markedly when the amount of amorphous carbon exceeds 15% by weight. I found it. In addition, even though the amorphous carbon content is 15% by weight or more and 50% by weight or less, it is possible to obtain a molded product that is extremely lightweight and has sufficient practical strength, and the heat insulation performance is significantly improved. I found it. The present invention has been completed based on such knowledge. Namely, the present invention provides a molded article containing secondary particles of zonotrite crystals and amorphous carbon as main components, The particles exist in a compressed and deformed state and are interconnected, and the amorphous carbon is contained in the molded body in an amount of 15% by weight or more and 50% by weight or less, and as determined by differential thermal analysis.
An amorphous carbon-containing zonotrite-based calcium silicate molded body characterized by having an exothermic peak between 480°C and 600°C, and a substance whose main components are a silicic acid raw material, a lime raw material, and an amorphous carbon; A raw material slurry prepared such that the amount of water is 5 times or more by weight relative to the solid content, and the solid content contains 15% by weight or more and 50% by weight or less of a substance whose main component is amorphous carbon. An amorphous carbon-containing zonotrite system characterized by carrying out a hydrothermal synthesis reaction under pressure with heating and stirring to form an aqueous slurry mainly composed of zonotrite crystals and amorphous carbon, which is then molded and dried. The present invention relates to a method for producing a calcium silicate molded body. The amorphous carbon-containing calcium silicate molded article of the present invention contains amorphous carbon in an amount of 15% by weight or more and 50% by weight or less, and it is particularly noteworthy that if the amorphous carbon content in the molded article exceeds 7% by weight, The hygroscopicity of the molded body itself increases rapidly, and by containing 15% by weight or more, the hygroscopicity of the molded body itself is significantly improved. The present invention will be explained below based on its manufacturing method. In principle, the molded article of the present invention is produced by subjecting a raw material slurry prepared from a silicic acid raw material, a lime raw material, a substance mainly composed of amorphous carbon, and water to a hydrothermal synthesis reaction under stirring to form zonotrite crystals and amorphous carbon. It is manufactured by obtaining an aqueous slurry as the main component, molding it, and drying it. Activated carbon is a typical example of the substance containing amorphous carbon as a main component used in the present invention, and particles with a particle size of 150 μm or less, preferably 100 μm or less are usually used, but coarse particles may be partially mixed in. In addition, as the silicic acid raw material, any of those conventionally used in this type of calcium silicate molded body manufacturing method can be effectively used, such as silica stone, silica sand, etc. as the crystalline silicic acid raw material, and silica gel, silica flour, etc. as the amorphous silicic acid raw material. , white carbon, diatomaceous earth, etc. As raw materials for lime, any of the conventionally used materials can be used, such as quicklime, slaked lime,
Carbide slag or the like can be used as a specific example, and especially when producing a lightweight molded product, for example, a molded product with a density of about 0.1 g/cm 3 , it is preferable to use milk of lime with a settling volume of 5 ml or more. The sedimentation volume of the milk of lime refers to the sedimentation volume of lime particles after 50 ml of milk of lime with a water to lime solids ratio of 120 times is left to stand for 20 minutes in a measuring cylinder with a diameter of 1.3 cm and a volume of 50 cm or more. The sedimented volume is shown in ml. The amount of water is at least 5 times (weight) the solid content of the raw material slurry, and when producing the above lightweight body,
It is preferable to make it 15 times or more. The CaO/SiO 2 molar ratio of the silicic acid raw material and the lime raw material is about 0.90 to 1.15. Inactive additives may be added to this raw material slurry in the subsequent hydrothermal synthesis reaction, and inorganic fibers such as asbestos, rock wool, etc. can be exemplified as additives at this time. The raw material slurry thus prepared is then subjected to a hydrothermal synthesis reaction while being stirred. This reaction condition is usually carried out under a saturated steam pressure of 8 Kg/cm 2 or more, preferably 10 Kg/cm 2 or more. As a result of this reaction, silicic acid and lime react, and secondary particles of approximately 5 to 100 μm in size, which are mainly composed of zonotrite crystals, are produced, and at the same time, a substance mainly composed of amorphous carbon coexisting in the raw material slurry is produced. A slurry is obtained in which these substances are uniformly dispersed in water. When this aqueous slurry mainly composed of zonotrite crystals and amorphous carbon is passed through a cloth, the liquid becomes transparent. The liquid will then turn black. Based on this fact, in the present invention, the substance mainly composed of amorphous carbon is contained in the secondary particles of the zonotrite crystal, or is attached to the particles by some force. considered to be a thing. Various additives may be added to the aqueous slurry containing the zonotrite crystals and amorphous carbon as necessary. As additives in this case, a wide range of materials can be used that have been used in the production of this type of calcium silicate molded body, such as fibers, clays, cements, etc., and more specifically, asbestos, rock wool,
Specific examples include inorganic fibers such as glass fibers and carbon fibers, organic fibers such as pulp, cellulose, and various synthetic fibers, clays such as kaolin and bentonite, gypsum, Portland cement, alumina cement, and other various cements. In the present invention, an amorphous carbon-containing zonotrite crystal molded body can be obtained by molding and drying the aqueous slurry by a conventional method. The molded product of the present invention obtained in this manner is mainly composed of secondary particles of zonotrite crystals and amorphous carbon, and the content of amorphous carbon in the molded product is approximately 15.0% by weight or more and 50% by weight or less. be.
This molded article has sufficient practical bending strength even though it is lightweight. What is particularly noteworthy is that the molded article has an extremely excellent moisture absorption ability. Hygroscopic ability has a close relationship with the amount of amorphous carbon contained, and according to the research of the present inventors, as shown in Table 5 and Figure 3 below, the content of amorphous carbon but
If the amount does not reach 15.0% by weight, the hygroscopicity does not increase significantly, but if it exceeds 15.0% by weight, the hygroscopicity rapidly increases significantly. In addition, the molded product of the present invention has a specific surface area of powder obtained by crushing it from 90 to 400.
m 2 /g (measured using the BET method) and 480°C in differential thermal analysis (heating rate 10°C/min).
An exothermic peak is seen between 600℃ and 600℃. The molded article of the present invention is composed of secondary particles of calcium silicate crystals mainly composed of zonotrite crystals, amorphous carbon, or these and other additives, and the secondary particles are mutually compressed and deformed. It is configured by connecting. Moreover, among the molded bodies, high-density products are preferentially oriented. The method of the present invention will be specifically explained below with reference to Examples. However, various physical properties in the following examples were measured by the following methods. (a) Bending strength According to the method of JIS A 9510. (b) Preferred orientation degree (P) P=I(320)・I′(001)/I(001)・I′(3
20) However, I(320) and I(001) are the diffraction intensities of the non-oriented powder sample, and I'(320) and I'(001) are the diffraction intensities of the sample whose preferential orientation degree is to be measured. (c) Carbon content According to the method of JIS R 6124. (d) Specific surface area The compact is crushed and measured using the BET method. (E) Differential thermal analysis and thermogravimetric analysis Using a sample of approximately 10 mg obtained by crushing the compact,
Measurement is performed at a heating rate of 10°C/min. (F) Moisture absorption amount (at relative humidity of 90%) Relative humidity 90 adjusted using the method of JIS Z 0701
% decicator, and find the equilibrium moisture absorption amount (%) in the same atmosphere using the following formula. Moisture absorption amount (%) = W 1 -Wo/Wo x 100 Wo: Dry weight of sample (g) W 1 : Weight of sample that absorbed moisture (g) However, in the examples below, parts or % are not particularly explained. Parts or percentages by weight are given. Example 1 32.9 parts of quicklime (CaO95.0%) was added to 80°C warm water 394
The sedimentation volume of the milk of lime obtained by slaking in the chamber was 4.8 ml. A slurry obtained by dispersing 37.2 parts of ferrosilicon dust (SiO 2 90.2%) with an average particle size of 0.24 μm in the above milk of lime with 10 parts by weight of water using a homomixer for 2 minutes and activated carbon (manufactured by Takeda Pharmaceutical Co., Ltd., trade name) Shirasagi A)
Add 17.5 parts and further add water so that the total amount of water becomes 24 times the weight of the solid content to obtain a raw material slurry.
A hydrothermal synthesis reaction was carried out for 5 hours by stirring in an autoclave at 102 rpm with a stirring blade rotating at a rotation speed of 102 rpm to obtain a slurry. The slurry obtained above was heated to 100℃.
After drying for 24 hours, X-ray diffraction analysis revealed a peak of zonotrite crystals. Also, when this slurry is dried on a slide glass and observed under an optical microscope, the outer diameter is 5 to 100 μm.
Spherical secondary particles and irregularly shaped particles were observed, and when the slurry was observed under an electron microscope, it was found that the secondary particles were integrated with the same irregularly shaped particles as above. This electron micrograph (7500x magnification)
is shown in Figure 1. Chemical analysis of the dried slurry revealed that it contained 18.7% carbon. From the above, it can be seen that the amorphous particles observed above are mainly composed of amorphous carbon. Next, 7 parts of glass fiber and 3 parts of Portland cement were added as additives to 90 parts (solid content) of the slurry obtained above, and the mixture was press-molded and dried at 100° C. for 24 hours to obtain a molded product. The properties of the obtained molded product were as shown in Table 1.

【表】 また第1表記載の成形体試料No.1の破断面を走
査型電子顕微鏡で観察すると外径が5〜100μm
の球状2次粒子と不定形の形を呈す無定形炭素を
主成分とする混合物が相互に連結して成形体が構
成されているのが認められた。この走査型電子顕
微鏡写真(倍率600倍)を第2図に示す。 さらに同様の材料構成で円筒状に成形し、100
℃、24時間の乾燥によつて得た成形体(密度
0.102g/cm3)の熱伝導率をJIS A 9510による
方法で測定した結果、熱伝導率0.0480Kcal/m.h.
deg(平均温度167℃)であつた。 実施例 2 生石灰(CaO95.0%)49.3部を80℃の温水591
部中で消和して得た石灰乳の沈降容積は4.8mlで
あつた。上記石灰乳に平均粒子径0.24μmのフエ
ロシリコンダスト(SiO290.2%)55.7部を10重量
倍の水でホモミキサーにて2分間分散させて得た
スラリーと活性炭(武田薬品製、商品名白鷺C)
70部を加え、更に水を加えて、全体の水量を固形
分の12重量倍となるように混合して原料スラリー
を得、これを飽和水蒸気圧12Kg/cm2、温度191℃
でオートクレーブ中で回転数102r.p.mで撹拌翼を
回転しながら撹拌し5時間水熱反応を行つてスラ
リーを得た。 上記で得たスラリーを100℃で24時間乾燥して、
X線回折分析した所、ゾーノトライト結晶のピー
クが認められた。 また、このスラリーをスライドグラス上で乾燥
して光学顕微鏡で観察すると外径が5〜100μm
の球状2次粒子と不定形の粒子が認められ、同ス
ラリーを電子顕微鏡で観察すると該2次粒子が上
記と同様の不定形の粒子と一体となつているのが
認められた。 また上記スラリーを乾燥したものを化学分析し
た所、38.1%の炭素が分析された。以上により上
記で観察された不定形の粒子が無定形炭素を主成
分とするものであることが判る。 次いで上記で得たスラリー90部(固形分)に添
加材としてガラス繊維7部及びポルトランドセメ
ント3部を加えてプレス成形し、100℃で24時間
乾燥して成形体を得た。 得られた成形体の特性は第2表の通りであつ
た。
[Table] Furthermore, when the fracture surface of molded body sample No. 1 listed in Table 1 was observed with a scanning electron microscope, the outer diameter was 5 to 100 μm.
It was observed that a mixture mainly composed of spherical secondary particles and amorphous carbon having an irregular shape were interconnected to form a molded body. This scanning electron micrograph (600x magnification) is shown in Figure 2. Furthermore, the same material composition is molded into a cylindrical shape, and 100
The molded body obtained by drying at ℃ for 24 hours (density
As a result of measuring the thermal conductivity of 0.102g/cm 3 ) using the method according to JIS A 9510, the thermal conductivity was 0.0480Kcal/mh.
deg (average temperature 167°C). Example 2 Add 49.3 parts of quicklime (CaO95.0%) to 591 parts of warm water at 80°C.
The sedimentation volume of the milk of lime obtained by slaking in the chamber was 4.8 ml. Slurry obtained by dispersing 55.7 parts of ferrosilicon dust (SiO 2 90.2%) with an average particle size of 0.24 μm in the above milk of lime with 10 times the weight of water in a homomixer for 2 minutes and activated carbon (manufactured by Takeda Pharmaceutical Co., Ltd., trade name) Shirasagi C)
Add 70 parts and further add water so that the total amount of water becomes 12 times the weight of the solid content to obtain a raw material slurry, which is heated at a saturated steam pressure of 12 Kg/cm 2 and a temperature of 191°C
The mixture was stirred in an autoclave with a stirring blade rotating at a rotational speed of 102 rpm, and a hydrothermal reaction was carried out for 5 hours to obtain a slurry. The slurry obtained above was dried at 100°C for 24 hours,
When analyzed by X-ray diffraction, a peak of zonotrite crystal was observed. Also, when this slurry is dried on a slide glass and observed under an optical microscope, the outer diameter is 5 to 100 μm.
Spherical secondary particles and irregularly shaped particles were observed, and when the slurry was observed under an electron microscope, it was found that the secondary particles were integrated with the same irregularly shaped particles as above. Chemical analysis of the dried slurry revealed that it contained 38.1% carbon. From the above, it can be seen that the amorphous particles observed above are mainly composed of amorphous carbon. Next, 7 parts of glass fiber and 3 parts of Portland cement were added as additives to 90 parts (solid content) of the slurry obtained above, which was then press-molded and dried at 100°C for 24 hours to obtain a molded body. The properties of the obtained molded body were as shown in Table 2.

【表】【table】

【表】 また第2表記載の成形体試料No.1の破断面を走
査型電子顕微鏡で観察すると、外径が5〜100μ
mの球状2次粒子と不定形の形を呈す無定形炭素
を主成分とする混合物が相互に連結して成形体が
構成されているのが認められた。 実施例 3 生石灰(CaO95.0%)35.8部を80℃の温水430
部中で消和し、ホモミキサーにて水中で分散させ
て得た石灰乳の沈降容積は13.7mlであつた。上記
石灰乳に平均粒子径7.3μmの珪石粉末(SiO297.7
%)34.2部と実施例1と同様の活性炭17.5部を加
え、更に水を加えて、全体の水量を固形分の24重
量倍となるように混合して原料スラリーを得、こ
れを飽和水蒸気圧12Kg/cm2、温度191℃のオート
クレーブ中で回転数138r.p.mで撹拌翼を回転しな
がら撹拌し5時間水熱合成反応を行つてスラリー
を得た。 上記で得たスラリーを100℃で24時間乾燥して、
X線回折分析した所、ゾーノトライト結晶と少量
のトベルモライト結晶のピークが認められた。 また、このスラリーをスライドグラス上で乾燥
して光学顕微鏡で観察すると、外径が5〜80μm
の球状2次粒子と不定形の粒子が認められ、同ス
ラリーを電子顕微鏡で観察すると、該2次粒子が
上記と同様の不定形の粒子と一体となつているの
が認められた。 また上記スラリーを乾燥したものを化学分析し
た所、18.2%の炭素が分析された。以上により上
記で観察された不定形の粒子が無定形炭素を主成
分とするものであることが判る。 次いで上記で得たスラリー90部(固形分)に添
加材としてガラス繊維7部及びポルトランドセメ
ント3部を加えて、プレス成形し、100℃で24時
間乾燥して成形体を得た。 得られた成形体の特性は第3表の通りであつ
た。
[Table] Furthermore, when the fracture surface of molded body sample No. 1 listed in Table 2 was observed with a scanning electron microscope, the outer diameter was 5 to 100 μm.
It was observed that a mixture whose main components were spherical secondary particles of m and amorphous carbon exhibiting an irregular shape were interconnected to form a molded body. Example 3 35.8 parts of quicklime (CaO95.0%) was added to 430 ml of warm water at 80°C.
The sedimentation volume of the milk of lime obtained by slaked in a vacuum chamber and dispersed in water using a homomixer was 13.7 ml. Silica stone powder (SiO 2 97.7
%) and 17.5 parts of the same activated carbon as in Example 1 were added, and water was further added so that the total amount of water was 24 times the weight of the solid content to obtain a raw material slurry. A slurry was obtained by stirring in an autoclave at 12 Kg/cm 2 and at a temperature of 191° C. with a stirring blade rotating at a rotational speed of 138 rpm for 5 hours. The slurry obtained above was dried at 100°C for 24 hours,
X-ray diffraction analysis revealed peaks of zonotrite crystals and a small amount of tobermolite crystals. Also, when this slurry was dried on a slide glass and observed under an optical microscope, the outer diameter was 5 to 80 μm.
Spherical secondary particles and irregularly shaped particles were observed, and when the slurry was observed under an electron microscope, it was found that the secondary particles were integrated with the same irregularly shaped particles as above. Chemical analysis of the dried slurry revealed that it contained 18.2% carbon. From the above, it can be seen that the amorphous particles observed above are mainly composed of amorphous carbon. Next, 7 parts of glass fiber and 3 parts of Portland cement were added as additives to 90 parts (solid content) of the slurry obtained above, which was then press-molded and dried at 100°C for 24 hours to obtain a molded body. The properties of the obtained molded body were as shown in Table 3.

【表】 また第3表記載の成形体試料No.1、2の破断面
を走査型電子顕微鏡で観察すると、外径が5〜
80μmの球状2次粒子と不定形の形を呈す無定形
炭素を主成分とする混合物が相互に連結して成形
体が構成されているのが認められた。 参考例 1 生石灰(CaO95.0%)29.7部を80℃の温水357
部中で消和し、ホモミキサーにて水中で分散させ
て得た石灰乳の沈降容積は10.6mlであつた。上記
石灰乳に実施例1と同様のフエロシリコンダスト
33.3部を10重量倍の水でホモミキサーにて2分間
分散させて得たスラリーと実施例1と同様の活性
炭7.0部を加え、更に水を加えて全体の水量を固
形分の30重量倍となるように混合して原料スラリ
ーを得、これを飽和水蒸気圧12Kg/cm2、温度191
℃でオートクレーブ中で回転数102r.p.mで撹拌翼
を回転しながら撹拌し5時間水熱合成反応を行つ
てスラリーを得た。 上記で得たスラリーを100℃で24時間乾燥して、
X線回折分析した所、ゾーノトライト結晶のピー
クが認められた。 また、このスラリーをスライドグラス上で乾燥
して光学顕微鏡で観察すると外径が5〜100μm
の球状2次粒子と不定形の粒子が認められ、同ス
ラリーを電子顕微鏡で観察すると該2次粒子が上
記と同様の不定形の粒子と一体となつているのが
認められた。 また上記スラリーを乾燥したものを化学分析し
た所、9.1%の炭素が分析された。以上により上
記で観察された不定形の粒子が無定形炭素を主成
分とするものであることが判る。 次いで上記で得たスラリー90部(固形分)に添
加材としてガラス繊維7部及びポルトランドセメ
ント3部を加えてプレス成形し、100℃で24時間
乾燥して成形体を得た。 得られた成形体の特性は第4表の通りであつ
た。
[Table] Furthermore, when the fracture surfaces of molded body samples No. 1 and 2 listed in Table 3 were observed with a scanning electron microscope, the outer diameters were 5 to 5.
It was observed that a mixture consisting mainly of spherical secondary particles of 80 μm and amorphous carbon exhibiting an irregular shape was interconnected to form a molded body. Reference example 1 Add 29.7 parts of quicklime (CaO95.0%) to 357 parts of warm water at 80°C.
The sedimentation volume of the milk of lime, which was slaked in a vacuum chamber and dispersed in water using a homomixer, was 10.6 ml. Add ferrosilicon dust to the lime milk as in Example 1.
A slurry obtained by dispersing 33.3 parts with 10 times the weight of water in a homomixer for 2 minutes and 7.0 parts of the same activated carbon as in Example 1 were added, and further water was added to make the total water amount 30 times the weight of the solid content. Mix to obtain a raw material slurry, which is heated to a saturated water vapor pressure of 12 Kg/cm 2 and a temperature of 191
A hydrothermal synthesis reaction was carried out for 5 hours by stirring in an autoclave at 102 rpm with a stirring blade rotating at a rotation speed of 102 rpm to obtain a slurry. The slurry obtained above was dried at 100°C for 24 hours,
When analyzed by X-ray diffraction, a peak of zonotrite crystal was observed. Also, when this slurry is dried on a slide glass and observed under an optical microscope, the outer diameter is 5 to 100 μm.
Spherical secondary particles and irregularly shaped particles were observed, and when the slurry was observed under an electron microscope, it was found that the secondary particles were integrated with the same irregularly shaped particles as above. Chemical analysis of the dried slurry revealed that it contained 9.1% carbon. From the above, it can be seen that the amorphous particles observed above are mainly composed of amorphous carbon. Next, 7 parts of glass fiber and 3 parts of Portland cement were added as additives to 90 parts (solid content) of the slurry obtained above, which was then press-molded and dried at 100°C for 24 hours to obtain a molded body. The properties of the obtained molded body were as shown in Table 4.

【表】 また第4表記載の成形体試料No.1、2の破断面
を走査型電子顕微鏡で観察すると、外径が5〜
100μmの球状2次粒子と不定形の形を呈す無定
形炭素を主成分とする混合物が相互に連結して成
形体が構成されているのが認められた。 実施例 4 生石灰(CaO95.0%)を80℃の温水中で消和し
て得た石灰乳に珪石粉末(SiO298.2%、平均粒子
経4.8μm)をCaO/SiO2モル比が1.00となるよう
に加えて調合して得た原料スラリーに実施例1で
用いた活性炭を上記調合原料に所定の添加量とな
るように加えた。更に水を添加して全体の水量が
固形分の25重量倍となるように混合して、これら
を飽和水蒸気圧20Kg/cm2、温度214℃でオートク
レーブ中で回転数138r.p.mで撹拌翼を回転しなが
ら撹拌し、1時間水熱合成反応を行つて、珪酸カ
ルシウム結晶のスラリーを得た。上記で得た各々
の結晶スラリーを100℃で24時間乾燥して、X線
回折分析したところ、全てゾーノトライト結晶の
ピークが認められた。 次いで、上記で得た各スラリーをプレス成形
し、100℃で24時間乾燥して、成形体No.1〜No.9
を得た。尚、No.1〜No.7は比較のために示すもの
である。 得られた成形体の特性は第5表の通りであつ
た。
[Table] Furthermore, when the fracture surfaces of molded body samples No. 1 and 2 listed in Table 4 were observed with a scanning electron microscope, the outer diameters were 5 to 5.
It was observed that a mixture whose main components were spherical secondary particles of 100 μm and amorphous carbon exhibiting an irregular shape were interconnected to form a molded body. Example 4 Silica stone powder (SiO 2 98.2%, average particle diameter 4.8 μm) was added to lime milk obtained by slaked quicklime (CaO 95.0%) in 80°C hot water so that the CaO/SiO 2 molar ratio was 1.00. The activated carbon used in Example 1 was added to the raw material slurry obtained by adding and blending the raw material so as to have a predetermined amount. Furthermore, water was added and mixed so that the total amount of water was 25 times the weight of the solid content, and these were mixed in an autoclave at a saturated steam pressure of 20 Kg/cm 2 and a temperature of 214°C using a stirring blade at a rotation speed of 138 r.pm. The mixture was stirred while rotating and a hydrothermal synthesis reaction was carried out for 1 hour to obtain a slurry of calcium silicate crystals. When each of the crystal slurries obtained above was dried at 100° C. for 24 hours and subjected to X-ray diffraction analysis, a peak of zonotrite crystals was observed in all of them. Next, each slurry obtained above was press-molded and dried at 100°C for 24 hours to obtain molded bodies No. 1 to No. 9.
I got it. Note that No. 1 to No. 7 are shown for comparison. The properties of the obtained molded body were as shown in Table 5.

【表】 また、第5表の結果を第3図のグラフに示し
た。第5表及び第3図から、成形体中の炭素含有
量が、7.0重量%までは吸湿能に影響を与えず、
7.0重量%を超えると臨界的に向上し、特に15.0
重量%以上で著しく吸湿能が向上することが明ら
かである。
[Table] In addition, the results in Table 5 are shown in the graph of Figure 3. From Table 5 and Figure 3, it can be seen that the carbon content in the compact does not affect the moisture absorption capacity up to 7.0% by weight.
When it exceeds 7.0% by weight, there is a critical improvement, especially at 15.0%.
It is clear that the hygroscopicity is significantly improved when the amount is greater than % by weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得たスラリーの7500倍の電
子顕微鏡写真であり、第2図は同じく実施例1で
得た成形体試料No.1の600倍走査型電子顕微鏡写
真である。第3図は実施例5で得られた各成形体
の炭素含有量と吸湿量の関係を示すグラフであ
る。
FIG. 1 is a 7500x electron micrograph of the slurry obtained in Example 1, and FIG. 2 is a 600x scanning electron micrograph of compact sample No. 1 also obtained in Example 1. FIG. 3 is a graph showing the relationship between the carbon content and moisture absorption amount of each molded body obtained in Example 5.

Claims (1)

【特許請求の範囲】 1 ゾーノトライト結晶の二次粒子及び無定形炭
素を主成分とする成形体であつて、該ゾーノトラ
イト結晶の二次粒子は圧縮変形された状態で相互
に連結した状態で存在し、且つ該無定形炭素は該
成形体中に15重量%以上50重量%以下含まれると
共に示差熱分析により480℃を超えて600℃の間に
発熱ピークを有するものであることを特徴とする
無定形炭素含有ゾーノトライト系珪酸カルシウム
成形体。 2 珪酸原料、石灰原料、無定形炭素を主成分と
する物質及び水とから固形分に対する水の量が5
重量倍以上となる様に且つ固形分中に無定形炭素
を主成分とする物質が15重量%以上50重量%以下
になるように、調整された原料スラリーを、加圧
下加熱撹拌しながら水熱合成反応を行なわしめて
ゾーノトライト結晶と無定形炭素とを主成分とす
る水性スラリーとなし、次いでこれを成形・乾燥
することを特徴とする無定形炭素含有ゾーノトラ
イト系珪酸カルシウム成形体の製造法。
[Scope of Claims] 1. A molded article mainly composed of secondary particles of zonotrite crystals and amorphous carbon, wherein the secondary particles of zonotrite crystals exist in a compressed and deformed state and are interconnected. , and the amorphous carbon is contained in the molded article in an amount of 15% by weight or more and 50% by weight or less, and has an exothermic peak between 480°C and 600°C according to differential thermal analysis. Zonotrite calcium silicate molded body containing regular carbon. 2 From the silicic acid raw material, the lime raw material, the substance whose main component is amorphous carbon, and water, the amount of water relative to the solid content is 5.
The raw material slurry, which has been adjusted so that the weight is more than double and the solid content contains 15% by weight or more and 50% by weight or less, is hydrothermally heated under pressure with stirring. A method for producing an amorphous carbon-containing zonotrite-based calcium silicate molded body, which comprises performing a synthesis reaction to obtain an aqueous slurry containing zonotrite crystals and amorphous carbon as main components, and then molding and drying this slurry.
JP1950483A 1983-02-07 1983-02-07 Amorphous carbon containing xonotlite calcium silicate formed body and manufacture Granted JPS59146968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1950483A JPS59146968A (en) 1983-02-07 1983-02-07 Amorphous carbon containing xonotlite calcium silicate formed body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1950483A JPS59146968A (en) 1983-02-07 1983-02-07 Amorphous carbon containing xonotlite calcium silicate formed body and manufacture

Publications (2)

Publication Number Publication Date
JPS59146968A JPS59146968A (en) 1984-08-23
JPS6317788B2 true JPS6317788B2 (en) 1988-04-15

Family

ID=12001199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1950483A Granted JPS59146968A (en) 1983-02-07 1983-02-07 Amorphous carbon containing xonotlite calcium silicate formed body and manufacture

Country Status (1)

Country Link
JP (1) JPS59146968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390891U (en) * 1989-12-29 1991-09-17
JPH0547117Y2 (en) * 1989-12-29 1993-12-10

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516038A (en) * 1974-07-02 1976-01-19 Furukawa Electric Co Ltd Hikaridensorono seizohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516038A (en) * 1974-07-02 1976-01-19 Furukawa Electric Co Ltd Hikaridensorono seizohoho

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390891U (en) * 1989-12-29 1991-09-17
JPH0547117Y2 (en) * 1989-12-29 1993-12-10

Also Published As

Publication number Publication date
JPS59146968A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
JPS6317788B2 (en)
US5370852A (en) Primary particles of amorphous silica composite material, secondary particles of amorphous silica composite material, shaped bodies thereof and processes for their preparation
JPH0640715A (en) Production of spherical secondary particles of calcium silicate
JPS6351990B2 (en)
JPH0672753A (en) Production of calcium silicate molding
JP2782198B2 (en) Calcium silicate compact
JPS6235989B2 (en)
JPS6213299B2 (en)
JPH0542390B2 (en)
JPS6213301B2 (en)
JPS61219751A (en) Manufacture of calcium silicate formed body
JPS6319468B2 (en)
EP0445301A1 (en) Composite primary particle of noncrystalline silica, composite secondary particle of noncrystalline silica, shaped form thereof and production thereof
JPS59146970A (en) Lightweight calcium silicate formed body
JP2631304B2 (en) Method for manufacturing calcium silicate compact
JPH0122216B2 (en)
JPS60112663A (en) Manufacture of calcium silicate formed body
JPH0158147B2 (en)
JPS60221357A (en) Manufacture of inorganic composite formed body
JPS62113745A (en) Manufacture of calcium silicate formed body
JP2681203B2 (en) Calcium silicate compact
JPH0616463A (en) Calciumsilicate molded body and its manufacture
CA1123172A (en) Amorphous silica, products thereof and methods of preparing the same
JPS60180977A (en) Silica-inactive substance composite formed body
JPH0422851B2 (en)