JPS6235989B2 - - Google Patents

Info

Publication number
JPS6235989B2
JPS6235989B2 JP1950383A JP1950383A JPS6235989B2 JP S6235989 B2 JPS6235989 B2 JP S6235989B2 JP 1950383 A JP1950383 A JP 1950383A JP 1950383 A JP1950383 A JP 1950383A JP S6235989 B2 JPS6235989 B2 JP S6235989B2
Authority
JP
Japan
Prior art keywords
molded body
slurry
raw material
carbon
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1950383A
Other languages
Japanese (ja)
Other versions
JPS59146967A (en
Inventor
Teru Takahashi
Kazuo Shibahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP1950383A priority Critical patent/JPS59146967A/en
Publication of JPS59146967A publication Critical patent/JPS59146967A/en
Publication of JPS6235989B2 publication Critical patent/JPS6235989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は軜量な珪酞カルシりム成圢䜓の補造方
法に関する。 炭玠含有珪酞カルシりム成圢䜓ずしおは、特公
昭51−6038号公報に掻性炭含有珪酞カルシりムの
成圢䜓の補法が蚘茉されおいる。この補法は、珪
酞原料、石灰原料、及び氎から調補される原料ス
ラリヌに掻性炭を原料固圢分に察し0.5〜重量
ずいう特定量添加しお撹拌䞋に氎熱合成反応せ
しめおゟヌノトラむト結晶ず掻性炭ずを含む氎性
スラリヌずなし、これを成圢・也燥するものであ
り、掻性炭を特定量添加するこずより、䞊蚘合成
反応の反応速床を倧ずなしうるず共に氎の量を著
しく枛少せしめ埗るずいうものである。そしお埗
られた炭玠含有ゟヌノトラむト結晶系珪酞カルシ
りム成圢䜓はこれを含有しない珪酞カルシりム成
圢䜓ずほが同等の物性を有するものである旚蚘茉
されおいる。即ち埓来の掻性炭含有珪酞カルシり
ム成圢䜓に぀いおは、その補法䞊の効果は存圚す
るが成圢䜓自䜓に぀いおはほが特定の効果はない
ものずされおいたのである。 䞀方珪酞カルシりム成圢䜓を補造する際の珪酞
原料ずしおもみがら灰を䜿甚するこずが最近発衚
されおいる。これは、もみがらの燃焌熱を利甚す
る際に副生するもみがら灰を珪酞カルシりム成圢
䜓の補造甚珪酞原料の䞀皮ずしお䜿甚したもので
あり、珪酞カルシりム成圢䜓が補造出来る堎合も
存圚するもののそのもみがら灰の性質により著し
く埗られる成圢䜓の物性が巊右され、著しいずき
には珪酞カルシりム成圢䜓が埗られない。これは
もみがらの燃焌条件やもみがらの性質が䞀定しな
いために生ずるものず考えられおいる。 本発明者らは埓来から珪酞カルシりム成圢䜓に
぀いお長幎研究を続けお来たが、この研究に斌い
おクン炭を珪酞カルシりム成圢䜓の珪酞原料ずし
お䜿甚するずきは、もみがら灰ずは異なり、垞に
安定しおほが䞀定の所望の物性を有する珪酞カル
シりム系成圢䜓曎に詳しくはゟヌノトラむト結
晶ず無定圢炭玠を䞻成分ずする成圢䜓が収埗出
来、しかも埗られる無定圢炭玠含有ゟヌノトラむ
ト系珪酞カルシりム成圢䜓は非垞に軜量にしお充
分なる実甚的匷床を有し䞔぀吞着胜なかんずく吞
湿胜が著しく倧きいものであるこずを芋出し、こ
れに基く発明を完成した。 本発明者らは曎に匕続き研究を続け、䞊蚘クン
炭を珪酞原料ずしお補造した炭玠含有珪酞カルシ
りム成圢䜓を焌成しお炭玠分を揮散せしめるず、
著しく掻性炭にしお䞔぀機械的匷床にも優れた珪
酞カルシりム成圢䜓が収埗出来るこずを芋出し、
茲に本発明を完成するに至぀た。即ち本発明はク
ン炭を䞻成分ずする珪酞原料ず石灰原料ずを固圢
分に察する氎の量が重量倍以䞊ずなるように氎
ず共に混合調補しお埗られる原料スラリヌを加圧
䞋加熱撹拌しながら氎熱合成反応を行なわしめお
ゟヌノトラむト結晶ず無定圢炭玠を䞻成分ずする
氎性スラリヌずなし、次いでこれを成圢・也燥し
お炭玠含有珪酞カルシりム成圢䜓を埗、茲に埗た
成圢䜓を焌成するこずを特城ずする軜量珪酞カル
シりム成圢䜓の補造方法に係る。 本発明の特城はクン炭を甚いた珪酞カルシりム
成圢䜓を焌成するこずにより実甚匷床が充分に維
持された状態でなかんずく炭玠が30重量皋床も
含有された䞊蚘成圢䜓を焌成しおも実甚匷床が充
分に維持された状態で炭玠分が揮散し著しく軜量
の珪酞カルシりム成圢䜓ずなるこずである。 本発明の原料ずしお䜿甚される無定圢炭玠含有
珪酞カルシりム成圢䜓は無定圢炭玠を7.0〜30重
量含有するものであり、特に泚目すべきは、該
成圢䜓䞭の無定圢炭玠が重量以䞊になるず急
激に成圢䜓自䜓の吞湿量が増倧するずいう特城を
有する。 以䞋に本発明をその補法に基いお説明する。 本発明成圢䜓は原則的には珪酞原料ずしおのク
ン炭、必芁に応じ他の通垞の珪酞原料、石灰原料
及び氎から調補された原料スラリヌを撹拌䞋に氎
熱合成反応せしめおゟヌノトラむト結晶ず無定圢
炭玠ずを䞻成分ずする氎性スラリヌを埗、これを
成圢し、也燥しお無定圢炭玠含有珪酞カルシりム
成圢䜓ずなし、これを焌成しお補造される。この
際の也燥ず焌成ずは別途に行な぀おも良く、たた
也燥ず焌成ずを同時に行な぀おも良い。 本発明に斌いお䜿甚されるクン炭ずは、もみが
ら、麊がら、皲わら、麊わら、野草、萜ち葉等を
也溜しお補造されたものであり、、通垞粒埄100ÎŒ
以䞋に粉砕しお䜿甚するのを良ずする。化孊成
分ずしおはSiO230〜80重量以䞋同、炭玠
分20〜50、氎分〜10、その他〜10皋床
のものである。特に奜たしいクン炭ずしおはもみ
がら、麊がらクン炭を挙げるこずが出来る。 本発明に斌いおは珪酞原料ずしおクン炭だけを
䜿甚するこずも出来るが、必芁に応じ、他の通垞
の珪酞原料ず䜵甚するこずも出来る。䜵甚する堎
合でも䞻成分はあくたでクン炭ずする。この際䜿
甚される他の珪酞原料ずしおは埓来この皮珪酞カ
ルシりム成圢䜓補造に䜿甚されお来たものが、い
ずれも有効に䜿甚でき、䟋えば、結晶質珪酞原料
ずしお珪石、珪砂等をたた無定圢珪酞原料ずしお
シリカゲル、シリカフラワヌ、ホワむトカヌボ
ン、珪藻土等を䟋瀺するこずが出来る。 石灰原料ずしおは埓来から䜿甚されお来たもの
がいずれも䜿甚出来、たずえば生石灰、消石灰、
カヌバむド滓等を具䜓䟋ずしお䜿甚出来、たた特
に軜量成圢䜓たずえば密床0.1cm3皋床の成圢
䜓を補造る堎合には沈降容積ml以䞊の石灰乳を
䜿甚するこずが奜たしい。 䞊蚘石灰乳の沈降容積ずは、氎察石灰の固圢分
の比が120倍の石灰乳50mlを、盎埄が1.3cmで容積
が50cm3以䞊のメスシリンダヌ䞭で20分間静眮埌に
石灰の粒子が沈降した容積をmlで瀺したもので
る。 氎の量は原料スラリヌの固圢分に察し倍重
量以䞊であり、䞊蚘軜量䜓を補造する堎合には
15倍以䞊ずするのが奜たしい。珪酞原料クン
炭、たたはこれず他の珪酞原料ず石灰原料の
CaOSiO2モル比は0.90〜1.15皋床である。 この原料スラリヌには、匕き続く氎熱合成反応
に斌いお䞍掻性な添加材を添加しおも良く、この
際の添加材ずしお無機質繊維たずえば石綿、岩綿
等を䟋瀺するこずが出来る。 かくしお調敎された原料スラリヌは次いで撹拌
䞋に氎熱合成反応に䟛される。この反応条件は通
垞Kgcm2以䞊奜たしくは10Kgcm2以䞊の飜和氎
蒞気圧䞋で行なわれる。この反応によりクン炭䞭
の珪酞分ず石灰ずが反応し、ゟヌノトラむト結晶
を䞻成分ずする〜100Ό皋床の二次粒子が生
成するず共に、クン炭埮粒子䞭から珪酞分が陀去
された無定圢炭玠を䞻成分ずする粒状䜓ずが生成
し、これ等が均䞀に氎に分散したスラリヌが埗ら
れる。このゟヌノトラむト結晶及び無定圢炭玠粒
状䜓を䞻成分ずする氎性スラリヌを垃を甚いお
過するず液は透明ずなるがゟヌノトラむト結
晶の二次粒子から成る氎性スラリヌにクン炭粉砕
物を添加したものを同様に過するず液は黒く
着色する。この事実より、本発明に斌いおは䞊蚘
無定圢炭玠粒状䜓はゟヌノトラむト結晶の二次粒
子に包含されお存圚しおいるかたたは該粒子に䜕
等かの力で付着しお存圚しおいるものず考えられ
る。 䞊蚘ゟヌノトラむト結晶及び無定圢炭玠からな
る氎性スラリヌには必芁に応じ各皮の添加材が添
加される。この際の添加材ずしおはこの皮珪酞カ
ルシりム成圢䜓補造に甚いられお来たものが広い
範囲で䜿甚出来、たずえば繊維類、粘土類、セメ
ント類等を䟋瀺出来、曎に詳しくは石綿、岩綿、
ガラス繊維、炭玠繊維等の無機繊維、パルプ、セ
ルロヌス、各皮合成繊維等の有機繊維、カオリ
ン、ベントナむト等の粘土、石膏、ポルトランド
セメント、アルミナセメント、その他各皮セメン
ト等を具䜓䟋ずしお䟋瀺出来る。 本発明に斌いおは該氎性スラリヌを垞法により
成圢し也燥しお無定圢炭玠含有ゟヌノトラむト結
晶成圢䜓を収埗するこずが出来る。 かくしお埗られる無定圢炭玠含有ゟヌノトラむ
ト成圢䜓は、ゟヌノトラむト結晶の二次粒子及び
無定圢炭玠を䞻成分ずしお成るものであり、無定
圢炭玠の成圢䜓䞭の含有量は7.0〜30重量皋床
である。そしおこの成圢䜓は軜量であ぀おも充分
なる実甚的曲げ匷床を有する。特に泚目すべきは
吞着胜が著しく倧きいこずでありなかんずく吞湿
胜が優れおいるこずである。この吞湿胜は含有さ
れおいる無定圢炭玠の量ず密接な関係を有し、本
発明者の研究に䟝るず、該無定圢炭玠の含有量が
7.0重量に達しない堎合は吞湿胜は倧きくはな
らないが7.0重量を超えるず急激に吞湿胜が著
しく増倧する。たた該成圢䜓はこれを粉砕しお埗
た粉末の比衚面積が80〜200m2䜆しBET法
により枬定皋床であり、たた瀺差熱分析昇枩
速床10℃minでは430〜480℃の間に発熱ピヌ
クが芋られる。曎に該成圢䜓はゟヌノトラむト結
晶を䞻䜓ずする珪酞カルシりム結晶の二次粒子ず
無定圢炭玠、たたはこれ等ず他の添加材ずから構
成されおおり、該二次粒子は圧瞮倉圢された状態
で盞互に連結しお構成されおいる。たた成圢䜓の
うち高密床品は優先配向しおいるものである。 本発明に斌いおはかくしお埗られた成圢䜓を焌
成する。この焌成は前蚘也燥ず同時に行な぀おも
良くたた別途に分けお行な぀おも良い。焌成は通
垞雰囲気枩床で300〜700℃、奜たしくは400〜600
℃皋床で行なわれ、これにより実質的に無定圢炭
玠は焌成しお揮散する。しかも無定圢炭玠の燃焌
によ぀お生成する熱を、也燥及び又は焌成甚
の熱に利甚するこずにより省゚ネルギヌが図れる
ものである。 かくしお埗られた本発明成圢䜓は極めお軜量ず
なり、しかも実甚匷床はほずんどそのたた保持さ
れおいる。 以䞋に実斜䟋を瀺しお本発明法を具䜓的に説明
する。䜆し䞋蚘䟋に斌ける郚又はは倫々重量郚
又は重量を瀺し、たた各皮物性は倫々次の様な
方法で枬定したものである。 (ã‚€) 曲げ匷さ JIS  9510の方法に準ずる。 (ロ) 炭玠含有量 JIS  6124の方法に準ずる。 実斜䟋  生石灰CaO95.030.7郚を80℃の枩氎368
郚䞭で消和し、ホモミクサヌにお氎䞭で分散させ
お埗た石灰乳の沈降容積は11.8mlであ぀た。䞊蚘
石灰乳に比衚面積165m2、平均粒子埄Ό
のもみがらクン炭粉末SiO255.1、C32.1、
吞着氎分9.856.8郚を10重量倍の氎でホモミ
クサヌにお分間分散させお埗たスラリヌを加
え、曎に氎を加えお、党䜓の氎量を固圢分の24重
量倍ずなるように混合しお原料スラリヌを埗、こ
れを飜和氎蒞気圧12Kgcm2、枩床191℃でオヌト
クレヌブ䞭で回転数102r.p.mで撹拌翌を回転し
ながら撹拌し時間氎熱合成反応を行぀お、スラ
リヌを埗た。 䞊蚘で埗たスラリヌを100℃で24時間也燥し
お、線回折分析した所、ゟヌノトラむト結晶の
ピヌクが認められた。 たた、このスラリヌを䞊蚘ず同様の方法で也燥
しお走査型電子顕埮鏡で芳察するず倖埄が〜
100Όの球状二次粒子が認められ、同じく䞊蚘
スラリヌを也燥したものを化孊分析した所20.7
の炭玠が分析された。以䞊により、䞊蚘スラリヌ
を也燥したものはゟヌノトラむト結晶ず無定圢炭
玠を䞻成分ずするものであるこずが刀る。 次いで䞊蚘で埗たスラリヌ90郚固圢分に添
加材ずしおガラス繊維郚及びポルトランドセメ
ント郚を加えおプレス成圢し、100℃で24時間
也燥した埌、500℃の雰囲気で時間焌成し、無
定圢炭玠を陀去しお成圢䜓を埗た。 埗られた成圢䜓の物性は第衚の通りであ぀
た。
The present invention relates to a method for producing a lightweight calcium silicate molded body. As a carbon-containing calcium silicate molded body, Japanese Patent Publication No. 1983-6038 describes a method for producing a calcium silicate molded body containing activated carbon. This manufacturing method involves adding activated carbon in a specific amount of 0.5 to 7% by weight based on the solid content of the raw materials to a raw material slurry prepared from silicic acid raw materials, lime raw materials, and water, and causing a hydrothermal synthesis reaction with stirring to form zonotrite crystals and activated carbon. This method is used to form an aqueous slurry, which is formed and dried, and by adding a specific amount of activated carbon, the reaction rate of the above synthesis reaction can be increased and the amount of water can be significantly reduced. be. It is also described that the obtained carbon-containing zonotrite crystalline calcium silicate molded body has almost the same physical properties as a calcium silicate molded body that does not contain the carbon-containing zonotrite. That is, although conventional activated carbon-containing calcium silicate molded bodies have some effects in terms of their manufacturing process, it has been thought that the molded bodies themselves have almost no specific effects. On the other hand, the use of rice hull ash as a silicate raw material in producing calcium silicate molded bodies has recently been announced. This method uses rice husk ash, which is produced as a by-product when utilizing the combustion heat of rice husk, as a type of silicate raw material for producing calcium silicate molded bodies, and although there are cases in which calcium silicate molded bodies can be manufactured, The properties of the rice husk ash significantly affect the physical properties of the molded product obtained, and in extreme cases, a calcium silicate molded product cannot be obtained. This is thought to be caused by the fact that the burning conditions of rice husk and the properties of rice husk are not constant. The present inventors have been conducting research on calcium silicate molded bodies for many years, and in this research, when using charcoal as a silicate raw material for calcium silicate molded bodies, unlike rice husk ash, it was always found that An amorphous carbon-containing zonotritic calcium silicate molded product that can stably obtain a calcium silicate molded product (more specifically, a molded product mainly composed of zonotolite crystals and amorphous carbon) that has almost constant desired physical properties. The inventors discovered that the body is extremely lightweight, has sufficient strength for practical use, and has an extremely high adsorption capacity, especially moisture absorption capacity, and has completed the invention based on this finding. The present inventors further continued their research and found that when a carbon-containing calcium silicate molded body produced from the above-mentioned charcoal as a silicate raw material was fired to volatilize the carbon content,
It was discovered that it was possible to obtain a calcium silicate molded body that was made into activated carbon and had excellent mechanical strength.
We have finally completed the present invention. That is, in the present invention, a raw material slurry obtained by mixing a silicic acid raw material containing charcoal as a main component and a lime raw material with water such that the amount of water relative to the solid content is 5 times or more by weight is prepared by heating and stirring under pressure. Performing a hydrothermal synthesis reaction to obtain an aqueous slurry containing zonotrite crystals and amorphous carbon as main components, then molding and drying this to obtain a carbon-containing calcium silicate molded body, and firing the molded body obtained in a mold. The present invention relates to a method for producing a lightweight calcium silicate molded body, characterized by: The feature of the present invention is that by firing a calcium silicate molded body using Kuhn charcoal, the practical strength is sufficiently maintained.In particular, even when the above molded body containing about 30% by weight of carbon is fired, the practical strength is maintained. The carbon content is volatilized while the carbon content is sufficiently maintained, resulting in an extremely lightweight calcium silicate molded body. The amorphous carbon-containing calcium silicate molded body used as a raw material in the present invention contains 7.0 to 30% by weight of amorphous carbon, and it is particularly noteworthy that the amorphous carbon in the molded body is 7% by weight. If the temperature exceeds this value, the amount of moisture absorbed by the molded body itself increases rapidly. The present invention will be explained below based on its manufacturing method. In principle, the molded article of the present invention is produced by subjecting a raw material slurry prepared from charcoal as a silicic acid raw material, other ordinary silicic acid raw materials, lime raw materials, and water with stirring to a hydrothermal synthesis reaction with zonotrite crystals. It is produced by obtaining an aqueous slurry containing amorphous carbon as a main component, molding this, drying it to form an amorphous carbon-containing calcium silicate molded body, and firing this. Drying and firing at this time may be performed separately, or drying and firing may be performed simultaneously. The charcoal used in the present invention is produced by dry distilling rice husk, wheat husk, rice straw, wheat straw, wild grass, fallen leaves, etc., and usually has a particle size of 100 ÎŒm.
It is best to use it after crushing it to a size smaller than m. The chemical components include 30 to 80% by weight of SiO 2 (hereinafter referred to as the same %), 20 to 50% of carbon, 0 to 10% of water, and about 0 to 10% of others. Particularly preferred examples of charcoal include rice husk charcoal and wheat husk charcoal. In the present invention, charcoal alone can be used as the silicic acid raw material, but if necessary, it can also be used in combination with other ordinary silicic acid raw materials. Even when used together, the main ingredient must be charcoal. As other silicic acid raw materials used at this time, any of those conventionally used for producing this type of calcium silicate molded body can be effectively used. For example, silica stone, silica sand, etc. can be used as crystalline silicic acid raw materials, and amorphous Examples of the silicic acid raw material include silica gel, silica flour, white carbon, and diatomaceous earth. As raw materials for lime, any of the conventionally used materials can be used, such as quicklime, slaked lime,
Carbide slag or the like can be used as a specific example, and especially when producing a lightweight molded product, for example, a molded product with a density of about 0.1 g/cm 3 , it is preferable to use milk of lime having a settling volume of 5 ml or more. The sedimentation volume of the milk of lime refers to the sedimentation volume of lime particles after 50 ml of milk of lime with a water to lime solids ratio of 120 times is left to stand for 20 minutes in a measuring cylinder with a diameter of 1.3 cm and a volume of 50 cm or more. The volume of sedimentation is shown in ml. The amount of water is at least 5 times (weight) the solid content of the raw material slurry, and when producing the above lightweight body,
It is preferable to make it 15 times or more. Silicic acid raw material (Kun charcoal, or this and other silicic acid raw materials) and lime raw material
The CaO/ SiO2 molar ratio is about 0.90 to 1.15. Inactive additives may be added to this raw material slurry in the subsequent hydrothermal synthesis reaction, and inorganic fibers such as asbestos, rock wool, etc. can be exemplified as additives at this time. The raw material slurry thus prepared is then subjected to a hydrothermal synthesis reaction while being stirred. This reaction condition is usually carried out under a saturated steam pressure of 8 Kg/cm 2 or more, preferably 10 Kg/cm 2 or more. Through this reaction, the silicic acid content in the Kuhn charcoal reacts with lime, producing secondary particles of approximately 5 to 100 ÎŒm mainly composed of zonotrite crystals, and amorphous carbon from which the silicic acid content has been removed from the Kuhn charcoal fine particles. A slurry is obtained in which granules containing as a main component are uniformly dispersed in water. When this aqueous slurry mainly composed of zonotrite crystals and amorphous carbon particles is passed through a cloth, the liquid becomes transparent. When exposed to water, the liquid turns black. Based on this fact, in the present invention, it is considered that the above-mentioned amorphous carbon granules exist as being included in the secondary particles of the zonotrite crystal, or are attached to the particles by some force. It will be done. Various additives may be added to the aqueous slurry made of the zonotrite crystals and amorphous carbon as necessary. As additives in this case, a wide range of materials can be used that have been used in the production of this type of calcium silicate molded body, such as fibers, clays, cements, etc., and more specifically, asbestos, rock wool,
Specific examples include inorganic fibers such as glass fibers and carbon fibers, organic fibers such as pulp, cellulose, and various synthetic fibers, clays such as kaolin and bentonite, gypsum, Portland cement, alumina cement, and other various cements. In the present invention, an amorphous carbon-containing zonotrite crystal molded body can be obtained by molding and drying the aqueous slurry by a conventional method. The thus obtained amorphous carbon-containing zonotrite molded body is mainly composed of secondary particles of zonotrite crystals and amorphous carbon, and the content of amorphous carbon in the molded body is about 7.0 to 30% by weight. . This molded article has sufficient practical bending strength even though it is lightweight. What is particularly noteworthy is that the adsorption capacity is extremely large, and above all, the moisture absorption capacity is excellent. This hygroscopic ability has a close relationship with the amount of amorphous carbon contained, and according to the research of the present inventor, the content of amorphous carbon is
If the amount does not reach 7.0% by weight, the hygroscopicity does not increase, but if it exceeds 7.0% by weight, the hygroscopicity rapidly increases significantly. In addition, the specific surface area of the powder obtained by crushing the compact is about 80 to 200 m 2 /g (measured by BET method), and the specific surface area of the powder obtained by pulverizing it is about 430 to 200 m An exothermic peak is seen between 480℃. Furthermore, the molded body is composed of secondary particles of calcium silicate crystals mainly composed of zonotrite crystals and amorphous carbon, or these and other additives, and the secondary particles are compressed and deformed to each other. It is configured by connecting. Moreover, among the molded bodies, high-density products are preferentially oriented. In the present invention, the thus obtained molded body is fired. This firing may be performed simultaneously with the drying, or may be performed separately. Firing is usually at an ambient temperature of 300-700℃, preferably 400-600℃
The heating is carried out at a temperature of approximately 0.degree. C., thereby essentially burning and volatilizing the amorphous carbon. Furthermore, energy can be saved by using the heat generated by combustion of amorphous carbon for drying and/or firing. The thus obtained molded article of the present invention is extremely lightweight, and yet maintains almost its practical strength. The method of the present invention will be specifically explained below with reference to Examples. However, parts and percentages in the following examples indicate parts by weight and percentages by weight, respectively, and various physical properties were measured by the following methods. (a) Bending strength According to the method of JIS A 9510. (b) Carbon content According to the method of JIS R 6124. Example 1 30.7 parts of quicklime (CaO95.0%) was added to 80°C warm water.
The sedimentation volume of the milk of lime, which was slaked in a vacuum chamber and dispersed in water using a homomixer, was 11.8 ml. The above milk of lime has a specific surface area of 165 m 2 /g and an average particle size of 4 ÎŒm.
Rice husk charcoal powder (SiO 2 55.1%, C32.1%,
Add the slurry obtained by dispersing 56.8 parts (adsorbed moisture 9.8%) with 10 times the weight of water in a homomixer for 2 minutes, and then add more water and mix so that the total amount of water is 24 times the weight of the solid content. This was stirred in an autoclave at a saturated water vapor pressure of 12 Kg/cm 2 and a temperature of 191°C with a stirring blade rotating at a rotation speed of 102 rpm, and a hydrothermal synthesis reaction was performed for 5 hours to obtain a slurry. Ta. When the slurry obtained above was dried at 100° C. for 24 hours and subjected to X-ray diffraction analysis, a peak of zonotrite crystals was observed. In addition, when this slurry was dried in the same manner as above and observed with a scanning electron microscope, the outer diameter was 5 to 5.
Spherical secondary particles of 100 ÎŒm were observed, and chemical analysis of the same dried slurry showed a concentration of 20.7%.
of carbon was analyzed. From the above, it can be seen that the dried slurry contains zonotrite crystals and amorphous carbon as main components. Next, 7 parts of glass fiber and 3 parts of Portland cement were added as additives to 90 parts (solid content) of the slurry obtained above, which was then press-molded, dried at 100°C for 24 hours, and then fired in an atmosphere at 500°C for 1 hour. , the amorphous carbon was removed to obtain a molded body. The physical properties of the obtained molded product were as shown in Table 1.

【衚】 たた第衚蚘茉の成圢䜓詊料No.1、を粉砕
しお、線回折分析した所、ゟヌノトラむト結晶
のピヌクが認められた。 実斜䟋  生石灰CaO95.024.6郚を80℃の枩氎295
郚䞭で消和し、ホモミクサヌにお氎䞭で分散させ
お埗た石灰乳の沈降容積は15.3mlであ぀た。䞊蚘
石灰乳に実斜䟋ず同様のもみがらクン炭粉末
45.4郚を10重量倍の氎でホモミクサヌにお分間
分散させお埗たスラリヌを加え、曎に氎を加え
お、党䜓の氎量を固圢分の30重量倍ずなるように
混合しお原料スラリヌを埗、これを飜和氎蒞気圧
12Kgcm2、枩床191℃でオヌトクレヌブ䞭で回転
数102r.p.mで撹拌翌を回転しながら撹拌し時
間氎熱合成反応を行぀お、スラリヌを埗た。 䞊蚘で埗たスラリヌを100℃で24時間也燥しお
線回折分析した所、ゟヌノトラむト結晶のピヌ
クが認められた。 たた、このスラリヌを䞊蚘ず同様の方法で也燥
しお走査型電子顕埮鏡で芳察するず実斜䟋ず同
様の球状二次粒子が認められ、同じく䞊蚘スラリ
ヌを也燥したものを化孊分析した所21.0の炭玠
が分析された。以䞊により、䞊蚘スラリヌを也燥
したものはゟヌノトラむト結晶ず無定圢炭玠を䞻
成分ずするものであるこずが刀る。 次いで䞊蚘で埗たスラリヌ90郚固圢分に添
加材ずしおガラス繊維郚及びポルトランドセメ
ント郚を加えおプレス成圢し、100℃で24時間
也燥した埌、500℃の雰囲気で時間焌成し、無
定圢炭玠を陀去しお成圢䜓を埗た。 埗られた成圢䜓の物性は第衚の通りであ぀
た。
[Table] Furthermore, when the molded body samples No. 1 and 2 listed in Table 1 were crushed and subjected to X-ray diffraction analysis, a peak of zonotrite crystals was observed. Example 2 24.6 parts of quicklime (CaO95.0%) was added to 295% of warm water at 80°C.
The sedimentation volume of the milk of lime, which was slaked in a vacuum chamber and dispersed in water using a homomixer, was 15.3 ml. Add the above lime milk to the same rice husk charcoal powder as in Example 1.
Add the slurry obtained by dispersing 45.4 parts with 10 times the weight of water in a homomixer for 2 minutes, then add more water and mix so that the total amount of water is 30 times the weight of the solid content to obtain a raw material slurry. , this is the saturated water vapor pressure
A hydrothermal synthesis reaction was carried out for 5 hours with stirring at 12 Kg/cm 2 and a temperature of 191° C. in an autoclave with a stirring blade rotating at a rotational speed of 102 rpm to obtain a slurry. When the slurry obtained above was dried at 100° C. for 24 hours and subjected to X-ray diffraction analysis, a peak of zonotrite crystals was observed. Furthermore, when this slurry was dried in the same manner as above and observed under a scanning electron microscope, spherical secondary particles similar to those in Example 1 were observed, and chemical analysis of the same dried slurry revealed that 21.0% Carbon was analyzed. From the above, it can be seen that the dried slurry contains zonotrite crystals and amorphous carbon as main components. Next, 7 parts of glass fiber and 3 parts of Portland cement were added as additives to 90 parts (solid content) of the slurry obtained above, which was then press-molded, dried at 100°C for 24 hours, and then fired in an atmosphere at 500°C for 1 hour. , the amorphous carbon was removed to obtain a molded body. The physical properties of the obtained molded product were as shown in Table 2.

【衚】 たた第衚蚘茉の成圢䜓詊料No.1、を粉砕
しお、線回折分析した所、ゟヌノトラむト結晶
のピヌクが認められた。 実斜䟋  生石灰CaO95.056.6郚を80℃の枩氎679
郚䞭で消和しお埗た石灰乳の沈降容積は4.7mlで
あ぀た。䞊蚘石灰乳に比衚面積180m2、平均
粒子埄Όの麊がらクン炭粉末SiO248.6、
C42.3、吞着氎分6.3118.5郚を加え、曎に
氎を加えお、党䜓の氎量を固圢分の12重量倍ずな
るように混合しお原料スラリヌを埗、これを飜和
氎蒞気圧12Kgcm2、枩床191℃でオヌトクレヌブ
䞭で回転数102r.p.mで撹拌翌を回転しながら撹
拌し時間氎熱合成反応を行な぀お、スラリヌを
埗た。 䞊蚘で埗たスラリヌを100℃で24時間也燥し
お、線回折分析した所、ゟヌノトラむト結晶の
ピヌクが認められた。 たた、このスラリヌを䞊蚘ず同様の方法で也燥
しお走査型電子顕埮鏡で芳察するず実斜䟋ず同
様の球状二次粒子が認められ、同じく䞊蚘スラリ
ヌを也燥したものを化孊分析した所27.9の炭玠
が分析された。以䞊により、䞊蚘スラリヌを也燥
したものはゟヌノトラむト結晶ず無定圢炭玠を䞻
成分ずするものであるこずが刀る。 次いで䞊蚘で埗たスラリヌ90郚固圢分に添
加材ずしおガラス繊維郚及びポルトランドセメ
ント郚を加えおプレス成圢し、100℃で24時間
也燥した埌、500℃の雰囲気で時間焌成し、無
定圢炭玠を陀去しお成圢䜓を埗た。 埗られた成圢䜓の物性は第衚の通りであ぀
た。
[Table] Furthermore, when the molded body samples No. 1 and 2 listed in Table 2 were crushed and subjected to X-ray diffraction analysis, a peak of zonotrite crystals was observed. Example 3 56.6 parts of quicklime (CaO95.0%) was added to 679 parts of warm water at 80°C.
The sedimentation volume of the milk of lime obtained by slaking in the chamber was 4.7 ml. To the above lime milk, barley charcoal powder ( SiO 2 48.6 %,
Add 118.5 parts of carbon (C42.3%, adsorbed moisture 6.3%), add water, and mix so that the total amount of water is 12 times the weight of the solid content to obtain a raw material slurry. cm 2 and a temperature of 191° C., the mixture was stirred in an autoclave with a stirring blade rotating at a rotation speed of 102 rpm, and a hydrothermal synthesis reaction was carried out for 5 hours to obtain a slurry. When the slurry obtained above was dried at 100° C. for 24 hours and subjected to X-ray diffraction analysis, a peak of zonotrite crystals was observed. In addition, when this slurry was dried in the same manner as above and observed with a scanning electron microscope, spherical secondary particles similar to those in Example 1 were observed, and chemical analysis of the same dried slurry revealed that 27.9% Carbon was analyzed. From the above, it can be seen that the dried slurry contains zonotrite crystals and amorphous carbon as main components. Next, 7 parts of glass fiber and 3 parts of Portland cement were added as additives to 90 parts (solid content) of the slurry obtained above, which was then press-molded, dried at 100°C for 24 hours, and then fired in an atmosphere at 500°C for 1 hour. , the amorphous carbon was removed to obtain a molded body. The physical properties of the obtained molded product were as shown in Table 3.

【衚】 たた第衚蚘茉の成圢䜓詊料No.1、を粉砕
しお、線回折分析した所、ゟヌノトラむト結晶
のピヌクが認められた。 実斜䟋  生石灰CaO95.035.9郚を80℃の枩氎430
郚䞭で消和しホモミクサヌにお氎䞭で分散させお
埗た石灰乳の沈降容積は17.5mlであ぀た。䞊蚘石
灰乳に実斜䟋ず同様のもみがらクン炭粉末31.0
郚及び平均粒子埄6.5Όの珪石粉末SiO294.7
20.7郚を加え、曎に氎を加えお、党䜓の氎量
を固圢分の24重量倍ずなるように混合しお原料ス
ラリヌを埗、これを飜和氎蒞気圧12Kgcm2、枩床
191℃でオヌトクレヌブ䞭で回転数138r.p.mで撹
拌翌を回転しながら撹拌し時間氎熱合成反応を
行な぀おスラリヌを埗た。 䞊蚘で埗たスラリヌを100℃で24時間也燥し
お、線回折分析した所、ゟヌノトラむト結晶ず
少量のトベルモラむト結晶のピヌクが認められ
た。 たた、このスラリヌを䞊蚘ず同様の方法で也燥
しお走査型電子顕埮鏡で芳察するず倖埄が〜80
Όの球状二次粒子が認められ、同じく䞊蚘スラ
リヌを也燥したものを化孊分析した所10.7の炭
玠が分析された。以䞊により、䞊蚘スラリヌを也
燥したものはゟヌノトラむト結晶ず無定圢炭玠を
䞻成分ずするものであるこずが刀る。 次いで䞊蚘で埗たスラリヌ90郚固圢分に添
加材ずしおガラス繊維郚及びポルトランドセメ
ント郚を加えおプレス成圢し、500℃の雰囲気
で時間、也燥ず焌成を同時に行い無定圢炭玠を
陀去しお成圢䜓を埗た。 埗られた成圢䜓の物性は第衚の通りであ぀
た。
[Table] Furthermore, when molded body samples No. 1 and 2 listed in Table 3 were crushed and subjected to X-ray diffraction analysis, a peak of zonotrite crystals was observed. Example 4 35.9 parts of quicklime (CaO95.0%) was added to 430 parts of warm water at 80°C.
The sedimentation volume of the milk of lime obtained by slaked in a vacuum chamber and dispersed in water using a homomixer was 17.5 ml. The above lime milk and the same rice husk charcoal powder as in Example 1 31.0
Silica powder (SiO 2 94.7
%) and further water to obtain a raw material slurry, which was mixed so that the total amount of water was 24 times the weight of the solid content.
A slurry was obtained by stirring in an autoclave at 191° C. with a stirring blade rotating at a rotational speed of 138 rpm to perform a hydrothermal synthesis reaction for 5 hours. When the slurry obtained above was dried at 100° C. for 24 hours and subjected to X-ray diffraction analysis, peaks of zonotrite crystals and a small amount of tobermolite crystals were observed. In addition, when this slurry was dried in the same manner as above and observed with a scanning electron microscope, the outer diameter was 5 to 80 mm.
Spherical secondary particles of Όm in size were observed, and chemical analysis of the dried slurry revealed that it contained 10.7% carbon. From the above, it can be seen that the dried slurry contains zonotrite crystals and amorphous carbon as main components. Next, 7 parts of glass fiber and 3 parts of Portland cement were added as additives to 90 parts (solid content) of the slurry obtained above, which was then press-molded, and dried and fired at the same time in an atmosphere of 500°C for 2 hours to produce amorphous carbon. It was removed to obtain a molded body. The physical properties of the obtained molded product were as shown in Table 4.

【衚】 たた第衚蚘茉の成圢䜓詊料No.1、を粉砕
しお、線回折分析した所、ゟヌノトラむト結晶
ず少量のトベルモラむト結晶のピヌクが認められ
た。
[Table] Furthermore, when molded body samples No. 1 and 2 listed in Table 4 were crushed and subjected to X-ray diffraction analysis, peaks of zonotrite crystals and a small amount of tobermolite crystals were observed.

Claims (1)

【特蚱請求の範囲】[Claims]  クン炭を䞻成分ずする珪酞原料ず石灰原料ず
を固圢分に察する氎の量が重量倍以䞊ずなるよ
うに氎ず共に混合調補しお埗られる原料スラリヌ
を加圧䞋加熱撹拌しながら氎熱合成反応を行なわ
しめおゟヌノトラむト結晶ず無定圢炭玠を䞻成分
ずする氎性スラリヌずなし、次いでこれを成圢・
也燥しお炭玠含有珪酞カルシりム成圢䜓を埗、茲
に埗た成圢䜓を焌成するこずを特城ずする軜量珪
酞カルシりム成圢䜓の補造方法。
1 A raw material slurry obtained by mixing a silicic acid raw material mainly composed of charcoal and a lime raw material with water such that the amount of water is 5 times or more by weight relative to the solid content is hydrothermally synthesized while heating and stirring under pressure. The reaction is carried out to form an aqueous slurry mainly composed of zonotrite crystals and amorphous carbon, which is then molded.
1. A method for producing a lightweight calcium silicate molded body, which comprises drying to obtain a carbon-containing calcium silicate molded body, and then firing the molded body.
JP1950383A 1983-02-07 1983-02-07 Lightweight calcium silicate formed body and manufacture Granted JPS59146967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1950383A JPS59146967A (en) 1983-02-07 1983-02-07 Lightweight calcium silicate formed body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1950383A JPS59146967A (en) 1983-02-07 1983-02-07 Lightweight calcium silicate formed body and manufacture

Publications (2)

Publication Number Publication Date
JPS59146967A JPS59146967A (en) 1984-08-23
JPS6235989B2 true JPS6235989B2 (en) 1987-08-05

Family

ID=12001173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1950383A Granted JPS59146967A (en) 1983-02-07 1983-02-07 Lightweight calcium silicate formed body and manufacture

Country Status (1)

Country Link
JP (1) JPS59146967A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880028A (en) * 2012-12-19 2014-06-25 蟜宁法库陶瓷工皋技术研究䞭心 Method for synthesizing xonotlite powder by utilizing rice hull ash or straw ash crop wastes

Also Published As

Publication number Publication date
JPS59146967A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
WO1987001370A1 (en) Silica molding and process for its production
JPS6235989B2 (en)
JPS6351990B2 (en)
US5370852A (en) Primary particles of amorphous silica composite material, secondary particles of amorphous silica composite material, shaped bodies thereof and processes for their preparation
JPS59146970A (en) Lightweight calcium silicate formed body
JPH0542390B2 (en)
JPS6317788B2 (en)
JPH0627022B2 (en) Method for producing calcium silicate-based compact
JP2782198B2 (en) Calcium silicate compact
JPS6213301B2 (en)
JPS6213299B2 (en)
JPS6213298B2 (en)
JPS6319468B2 (en)
JPH0158147B2 (en)
EP0445301A1 (en) Composite primary particle of noncrystalline silica, composite secondary particle of noncrystalline silica, shaped form thereof and production thereof
JP2631304B2 (en) Method for manufacturing calcium silicate compact
JPS61219751A (en) Manufacture of calcium silicate formed body
JPS60112663A (en) Manufacture of calcium silicate formed body
JPH0524101B2 (en)
JPH0158146B2 (en)
JP2681203B2 (en) Calcium silicate compact
JPH0228535B2 (en)
JPS62113745A (en) Manufacture of calcium silicate formed body
JPS6140864A (en) Manufacture of lightweight calcium silicate formed body
JPH0522664B2 (en)