JPH0616464A - Calciumsilicate molded body - Google Patents

Calciumsilicate molded body

Info

Publication number
JPH0616464A
JPH0616464A JP4757193A JP4757193A JPH0616464A JP H0616464 A JPH0616464 A JP H0616464A JP 4757193 A JP4757193 A JP 4757193A JP 4757193 A JP4757193 A JP 4757193A JP H0616464 A JPH0616464 A JP H0616464A
Authority
JP
Japan
Prior art keywords
secondary particles
crystals
molded
spherical
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4757193A
Other languages
Japanese (ja)
Other versions
JPH0747503B2 (en
Inventor
Teru Takahashi
輝 高橋
Kazuo Shibahara
数雄 柴原
Toyohiko Sakota
豊彦 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INSULATION KK
Original Assignee
NIPPON INSULATION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INSULATION KK filed Critical NIPPON INSULATION KK
Priority to JP5047571A priority Critical patent/JPH0747503B2/en
Publication of JPH0616464A publication Critical patent/JPH0616464A/en
Publication of JPH0747503B2 publication Critical patent/JPH0747503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a calciumsilicate molded body which has a light weight and also a practical flexural strength. CONSTITUTION:This calciumsilicate molded body is constituted of a structure wherein nearly spherical secondary particles formed by three-dimensionally Tobermorite crystals or a small quantity of other calciumsilicate crystals with them, are mutually connected, and the spherical secondary particles have 10-120mum of the outer diameter before the molding and whose hollow rate and the free sedimentation molded body density are <=30% and <=0.12g/cm<3>, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

本発明は珪酸カルシウム成形体に関する。珪酸カルシウ
ム成形体は工業的には耐火物、耐火断熱材、吸着材、建
材等の多方面に応用されており、これ等は珪酸カルシウ
ム成形体の特徴とする比強度が高いこと、耐火性の高い
こと、断熱性のあること、軽量であること、高誘電体で
あること等から各方面への発展が期待される無機材料で
ある。その特徴的な性質の基因する主な点は珪酸カルシ
ウム結晶によって構成される成形体の構造にあると考え
られる。本発明者らは、従来から上記の観点から珪酸カ
ルシウムにつき研究を続けてきたが、この研究において
珪酸カルシウム結晶を極めて特異な二次凝集構造とする
時には、これが軽量にして且つ強度の大きい成形体を与
えることを見い出し、この知見に基づく発明を完成した
(特許第818975号)。この特許に係る珪酸カルシ
ウム二次凝集粒子は、珪酸カルシウム結晶が三次元的に
絡合して形成されたほぼ球状の二次粒子であって、その
外径が10〜150μmであり、その表面には珪酸カル
シウムの結晶に基づく多数のひげが突出している構造を
有するものであり、これから得られる珪酸カルシウム成
形体は低密度にして高強度のものであった。更にはまた
本発明者らはこの特許に基づく各種の改良された新しい
発明を完成し、そのうちの一つに特公昭56−4010
9号の発明がある。この発明はトベルモライト結晶の成
形体に係るものである。本発明者等は珪酸カルシウム二
次粒子の構造と珪酸カルシウム成形体との関係について
更に研究を続けた結果、トベルモライト結晶から成る特
異な構造を有する球状二次粒子の開発に成功すると共に
これから製造されるトベルモライト成形体が極めて優れ
た物性を有することを見出し、ここに本発明を完成する
に至った。即ち本発明は、トベルモライト結晶またはこ
れと少量のその他の珪酸カルシウム結晶が三次元的に絡
合して成るほぼ球状の二次粒子が、相互に連結して構成
された成形体であって、該球状二次粒子は成形前にはそ
の外径が10〜120μm、その中空率が30%以下で
且つその自然沈降成形体密度が0.12g/cm以下
であったことを特徴とする珪酸カルシウム成形体に係る
ものである。本明細書に於いて球状なる語には球状ばか
りでなくだ円形球状も包含し、またこれ等球状やだ円形
球状にはその表面の少なくとも一部が凹凸状になってい
るものも包含する。本発明者等の研究に依れば、上記本
発明成形体を構成するトベルモライト球状二次粒子はそ
の成形前にはその内部は粗乃至中空であって、その自然
沈降成形体密度も比較的小さく、かなり軽量でありこれ
から製造される成形体は従来の特公昭56−40109
号の成形体に比し次の点で優れたものであることが明ら
かとなった。 (イ)0.1g/cm程度の軽量な成形体であってし
かも3kg/cm以上の実用的曲げ強度を有するこ
と。 (ロ)優先配向度が成形体密度0.3g/cm以上で
特に大きいこと。 本発明は上記新事実に基づいて完成されている。本発明
成形体はトベルモライト結晶単独またはこれと少量の他
の珪酸カルシウム結晶例えばゾーノトライト結晶との混
合物からなる球状二次粒子が相互に圧縮変形された状態
で連結して構成されたものである。本発明成形体を構成
する上記特定の球状二次粒子は、その成形前には外径が
10〜120μmであり、且つその内部は粗乃至30%
以下の中空率を有する二次凝集構造を有するものであ
る。このことは例えば本発明実施例1に示される成形前
の上記二次粒子の顕微鏡観察の結果から明らかである。
即ち上記二次粒子はその光学顕微鏡写真(図1、倍率1
00倍)から球状体であり、外径が約10〜120μ
m、その平均粒子径が38μmにあることが判る。該二
次粒子が水に分散したスラリーに界面活性剤を添加混合
し、48時間静置、自然沈降せしめ次いでこれを100
℃で48時間乾燥して得られた自然沈降成形体の一部を
切り出し、これをカナダバルサムで固定し、次いでこれ
を研磨した後キシレンで上記カナダバルサムを除去して
研磨試料を得る。この試料を走査型電子顕微鏡で観察す
ると図3に示す通りトベルモライト結晶が粗に集合して
球状二次粒子を形成していることが判明する。またこの
二次粒子を分散して電子顕微鏡で観察すると図2から明
らかな通り長さ0.1〜10μm、巾0.1〜2μmの
板状結晶と長さ0.1〜10μm、巾0.05〜0.5
μmの針状結晶が認められる。 <二次粒子の外径の測定方法>反射光で撮影した100
倍のトベルモライト結晶を主体とする球状2次粒子の光
学顕微鏡写真より、定方向径を測定し、粒子径の範囲及
び平均粒子径(メジアン径)を求めた。本発明の上記球
状二次粒子は、その粒子一個の破壊荷重が100mg以
下であるという特徴を有する。上記破壊荷重とは、珪酸
カルシウム結晶の球状二次粒子に荷重を加えていったと
き該二次粒子の球殻の少なくとも一部にひび割れが生ず
るときの荷重を云い、たとえば破壊荷重が10〜100
mgであるということは、該二次粒子に荷重を加えてい
ったとき、該二次粒子が10〜100mgの間の一定の
荷重が加えられたときに該二次粒子の球殻の少なくとも
一部にひび割れが生ずるということを表わし、また破壊
荷重が1000mgというときは1000mgの荷重が
加えられたときに該二次粒子の球殻の少くとも一部にひ
び割れが生ずるということを表わす。 <破壊荷重の測定方法>該二次粒子三個を正三角形状に
スライドグラス上にのせ、その上にカバーグラスを載置
しカバーグラス上に荷重を加えながら600倍の光学顕
微鏡にて観察し、該二次粒子の球殻の一部にひび割れが
生じるか否かを観察して測定し、ひび割れが生じたとき
の荷重で表わす。その他上記球状二次粒子の大きな特徴
としては (イ)内部が粗乃至中空であって、その中空率が30%
以下であるということであり、この中空率とは次の方法
で測定されたものである。自然沈降成形体の一部を切り
出し、これをカナダバルサム(米山薬品工業製)で固定
し、次いでこれを研磨した後キシレンで上記カナダバル
サムを除去して研磨試料を得た。この試料を走査型電子
顕微鏡にて写真撮影し、球状二次粒子の断面より半径
(r)及び中空部の半径(r′)を測定し次式より中空
率を求めた。
The present invention relates to a calcium silicate compact. Calcium silicate compacts are industrially applied to various fields such as refractories, fireproof heat insulating materials, adsorbents, building materials, etc. These have high specific strength, which is characteristic of calcium silicate compacts, and fire resistance. It is an inorganic material that is expected to develop in various fields due to its high price, heat insulating property, light weight, high dielectric property and the like. It is considered that the main point of the characteristic property is the structure of the formed body composed of calcium silicate crystals. The inventors of the present invention have been researching calcium silicate from the above viewpoints, and when the calcium silicate crystals have an extremely unique secondary agglomeration structure in this research, they are lightweight and have high strength. The present invention was completed based on this finding (Patent No. 818975). The calcium silicate secondary agglomerated particles according to this patent are almost spherical secondary particles formed by three-dimensionally entangled calcium silicate crystals, the outer diameter of which is 10 to 150 μm, and the surface thereof is Had a structure in which a large number of whiskers based on calcium silicate crystals were projected, and a calcium silicate compact obtained from this had a low density and high strength. Furthermore, the present inventors have completed various improved new inventions based on this patent, one of which is Japanese Patent Publication No. 56-4010.
There is an invention of No. 9. The present invention relates to a tobermorite crystal compact. The present inventors further researched the relationship between the structure of the calcium silicate secondary particles and the calcium silicate compact, and as a result, succeeded in developing spherical secondary particles having a peculiar structure composed of tobermorite crystals and It was found that the produced tobermorite molded product had extremely excellent physical properties, and the present invention was completed here. That is, the present invention provides a molded article formed by interconnecting tobermorite crystals or secondary spherical particles having a small amount of other calcium silicate crystals entangled three-dimensionally with each other. Before molding, the spherical secondary particles have an outer diameter of 10 to 120 μm, a hollow ratio of 30% or less, and a spontaneous sedimentation molded body density of 0.12 g / cm 3 or less. The present invention relates to a calcium silicate compact. In the present specification, the term "spherical" includes not only a spherical shape but also an elliptical spherical shape, and these spherical and elliptical spherical shapes also include those in which at least a part of the surface thereof is uneven. According to the study by the present inventors, the inside of the tobermorite spherical secondary particles constituting the above-mentioned formed body of the present invention is rough or hollow before forming, and the density of the spontaneous sedimentation formed body is also compared. The compacts that are relatively small and fairly lightweight are manufactured by the conventional Japanese Patent Publication No. 56-40109.
It was clarified that it was superior to the molded article of No. 1 in the following points. (A) A lightweight molded product of about 0.1 g / cm 3 and having a practical bending strength of 3 kg / cm 2 or more. (B) The degree of preferential orientation is particularly large at a compact density of 0.3 g / cm 3 or more. The present invention has been completed based on the above new facts. The molded article of the present invention is composed of spherical secondary particles composed of a tobermorite crystal alone or a mixture thereof with a small amount of another calcium silicate crystal, for example, zonotolite crystal, connected in a mutually compressed and deformed state. . The specific spherical secondary particles constituting the molded body of the present invention have an outer diameter of 10 to 120 μm before molding, and the inside thereof is coarse to 30%.
It has a secondary aggregation structure having the following hollow ratio. This is clear from, for example, the result of microscopic observation of the secondary particles before molding shown in Example 1 of the present invention.
That is, the above-mentioned secondary particles are an optical micrograph (Fig. 1, magnification 1
00 times) to a spherical body with an outer diameter of about 10 to 120 μ
It can be seen that the average particle size is 38 μm. A surfactant was added to and mixed with the slurry in which the secondary particles were dispersed in water, and the mixture was allowed to stand for 48 hours and spontaneously sedimented.
A part of the spontaneously settled molded product obtained by drying at 48 ° C. for 48 hours is cut out, fixed with Canadian balsam, polished, and then the above Canadian balsam is removed with xylene to obtain a polished sample. Observation of this sample with a scanning electron microscope reveals that the tobermorite crystals are coarsely aggregated to form spherical secondary particles, as shown in FIG. Further, when these secondary particles are dispersed and observed with an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a length of 0.1 to 10 μm and a width of 0. 05-0.5
Needle-like crystals of μm are observed. <Method of measuring outer diameter of secondary particles> 100 photographed by reflected light
The directional diameter was measured from the optical micrograph of the spherical secondary particles mainly composed of doubled tobermorite crystals, and the range of the particle diameter and the average particle diameter (median diameter) were obtained. The spherical secondary particles of the present invention are characterized in that the breaking load of each particle is 100 mg or less. The above-mentioned breaking load means a load when a crack is generated in at least a part of the spherical shell of the secondary particles of the calcium silicate crystal when the load is applied to the spherical secondary particles, and the breaking load is, for example, 10 to 100.
The term “mg” means that when a load is applied to the secondary particles, at least one of spherical shells of the secondary particles is applied when the secondary particles are subjected to a constant load of 10 to 100 mg. When the breaking load is 1000 mg, it means that at least a part of the spherical shell of the secondary particles is cracked when a load of 1000 mg is applied. <Measurement Method of Breaking Load> The three secondary particles are placed on a slide glass in an equilateral triangle shape, a cover glass is placed on the slide glass, and the load is applied on the cover glass to observe with a 600 × optical microscope. It is measured by observing whether or not a crack occurs in a part of the spherical shell of the secondary particle, and is expressed by a load when the crack occurs. Other major characteristics of the spherical secondary particles are: (a) The inside is coarse or hollow, and the hollow ratio is 30%.
The following means that the hollow ratio is measured by the following method. A part of the spontaneous sedimentation molded body was cut out, fixed with Canadian balsam (manufactured by Yoneyama Pharmaceutical Co., Ltd.), and then polished, and then the Canadian balsam was removed with xylene to obtain a polished sample. This sample was photographed with a scanning electron microscope, the radius (r) and the radius (r ') of the hollow portion were measured from the cross section of the spherical secondary particles, and the hollow ratio was obtained from the following formula.

【化1】 中空率が30%以下ということは、球状二次粒子の内部
が中空であってもその中空部は特に大きくはないことを
示している。しかも小さな中空部が随所に存在して所謂
内部が粗になっている場合も包含される。図3に示され
た球状二次粒子の内部は粗であり、中空率は0%であ
り、図4に示された球状二次粒子の中空率は0〜25%
である。たとえば特開昭53−146997号の実施例
に記載のワラストナイト族珪酸カルシウム結晶からなる
球状二次粒子の中空率は60%以上であり、本発明の球
状二次粒子と根本的に異なる構造を有している。 (ロ)自然沈降成形体密度が0.12g/cm以下好
ましくは0.10g/cm以下である特徴を有する。
この自然沈降成形体密度は次の方法により測定した。3
00ccトールビーカーにスラリー200ccと非イオ
ン、アニオン界面活性剤(グランアップNF−50、三
洋化成製、濃度20%)0.4ccを投入混合後、48
時間放置して自然沈降させ次いでこれを100℃で48
時間乾燥させて自然沈降成形体を得た。これの体積及び
重さを測定し密度を求めた。この自然沈降成形体の密度
が小さいということは球状二次粒子自体がかなり軽量で
あり、該二次粒子からは、密度0.1g/cm程度で
実用的強度を有する成形体を製造できることを示してい
る。たとえば特公昭56−40109号に記載のトベル
モライト結晶の球状二次粒子は自然沈降成形体密度が大
きく、このため上記公知のトベルモライト結晶の二次粒
子からは密度0.1g/cm程度の成形体を製造する
ことはできない。更に本発明の好ましい球状二次粒子は
その平均見掛密度は成形前に0.14〜0.21g/c
就中主に0.16〜0.20g/cmの範囲にあ
る。即ち該二次粒子はそれ自体軽量なものである。上記
平均見掛密度は次の様な方法で測定したものである。 <平均見掛密度の測定方法>トベルモライト結晶のスラ
リーをアセトンによりスラリー中の水と置換させ、90
℃で24時間乾燥させ、球状二次粒子を破損することな
く粉体となす。この粉体Wgを測定し、ビーカー中に入
れる。次にビュレットを使用し水を該球状二次粒子に含
浸させ、ちょうど水が球状二次粒子に含浸した時(球状
二次粒子の粘性が急に増加するとき)の水の量を読みと
りVmlとする。この測定から球状二次粒子の平均見掛
密度(ρ)を次式により算出したものである。
[Chemical 1] The hollow ratio of 30% or less indicates that the hollow part is not particularly large even if the inside of the spherical secondary particles is hollow. Moreover, the case where small hollow portions are present everywhere and the so-called inside is rough is also included. The inside of the spherical secondary particles shown in FIG. 3 is coarse and the hollow ratio is 0%, and the hollow ratio of the spherical secondary particles shown in FIG. 4 is 0 to 25%.
Is. For example, the hollow secondary particles composed of wollastonite group calcium silicate crystals described in the examples of JP-A-53-146997 have a hollowness of 60% or more, which is a structure fundamentally different from that of the spherical secondary particles of the present invention. have. (B) It has a characteristic that the density of the spontaneous sedimentation molding is 0.12 g / cm 3 or less, preferably 0.10 g / cm 3 or less.
The density of the spontaneous sedimentation molded product was measured by the following method. Three
To a 00 cc tall beaker, 200 cc of the slurry and 0.4 cc of a nonionic and anionic surfactant (Granup NF-50, Sanyo Kasei Co., concentration 20%) were added and mixed, and then 48
Allow it to stand for a period of time to allow it to settle at 100 ° C for 48 hours.
It was dried for a period of time to obtain a naturally precipitated molded body. The volume and weight of this were measured to determine the density. The fact that the density of this spontaneously-precipitated compact is small means that the spherical secondary particles themselves are considerably light weight, and from this secondary particle, a compact having a density of about 0.1 g / cm 3 and having practical strength can be produced. Shows. For example, the spherical secondary particles of the tobermorite crystals described in JP-B-56-40109 have a high spontaneous sedimentation compact density, and therefore the density of 0.1 g / cm 3 from the known secondary particles of the tobermorite crystals. It is not possible to produce molded bodies of a certain degree. Further, the preferred spherical secondary particles of the present invention have an average apparent density of 0.14 to 0.21 g / c before molding.
m 3 Especially, it is mainly in the range of 0.16 to 0.20 g / cm 3 . That is, the secondary particles are themselves lightweight. The average apparent density is measured by the following method. <Measurement Method of Average Apparent Density> The slurry of the tobermorite crystal was replaced with water in the slurry by acetone to obtain 90
Dry at 24 ° C. for 24 hours to make spherical secondary particles into powder without damage. This powder Wg is measured and placed in a beaker. Next, use a buret to impregnate the spherical secondary particles with water, and read the amount of water just when the spherical secondary particles were impregnated with water (when the viscosity of the spherical secondary particles suddenly increased) as Vml. To do. From this measurement, the average apparent density (ρ) of the spherical secondary particles was calculated by the following formula.

【化2】 但しρtはトベルモライトの真比重であって2.576
である。本発明の成形体はこの様な球状二次粒子が成形
時の圧力により圧縮された形状で相互に連結して構成さ
れている。本発明の成形体はその成形時の圧力が大きく
なるに従い、換言すればその成形体の密度が大きくなる
に従い該球状二次粒子の形状が圧縮方向に偏平化する。
しかし乍ら成形体の密度が0.3g/cm以下の場合
は本発明成形体の一部を切り出し、これをカナダバルサ
ムで固定し、次いで研磨後キシレンで上記カナダバルサ
ムを除去して得た研磨面を走査型電子顕微鏡で見ると球
状二次粒子の存在が確認出来る。たとえば本発明実施例
2に示される密度0.201g/cmの成形体の研磨
面の走査型電子顕微鏡写真を示す図5(倍率600倍)
では明確に球状二次粒子の存在が判明する。しかし乍ら
成形体の密度が0.3g/cmを越えて大きくなるに
従い球状二次粒子の存在が電子顕微鏡では直接明確には
判明し難くなり、該密度が増加するに従い、その偏平化
は更に激しくなる。この事実はトベルモライト結晶が優
先配向していることを示し、特に成形体の密度が0.3
0g/cm以上になると該結晶の優先配向が特に大き
くなることを示している。該優先配向性は、配向度を
P、密度をxとして次式により示される一定の関係を満
足する。 P≧ax−b (但し0.3≦xである。またa及びbはいずれも添加
量によって変化し、添加材なしのときはaは20及びb
は3を示す) 尚上記優先配向度は次の方法で測定される。成形体の一
部を採取して微粉砕し無配向粉末試料を作り、一方上記
成形体からプレス方向に直角な面をもつ別の試料を作る
(配向試料)、次いで2つの試料のトベルモライト結晶
の(002)及び(220)面のX線回折強度をそれぞ
れ測定する。優先配向度(P)は
[Chemical 2] However, ρt is the true specific gravity of Tobermorite, which is 2.576.
Is. The molded body of the present invention is constituted by connecting such spherical secondary particles to each other in a shape compressed by the pressure during molding. In the molded article of the present invention, the shape of the spherical secondary particles becomes flat in the compression direction as the pressure at the time of molding increases, in other words, as the density of the molded article increases.
However, when the density of the molded product was 0.3 g / cm 3 or less, a part of the molded product of the present invention was cut out, fixed with Canadian balsam, and after polishing, the Canadian balsam was removed with xylene to obtain the molded product. The presence of spherical secondary particles can be confirmed by observing the polished surface with a scanning electron microscope. For example, FIG. 5 (magnification: 600 times) showing a scanning electron micrograph of a polished surface of a molded body having a density of 0.201 g / cm 3 shown in Example 2 of the present invention.
Clearly shows the existence of spherical secondary particles. However, as the density of the molded body increases beyond 0.3 g / cm 3 , the existence of spherical secondary particles becomes difficult to be clearly identified by an electron microscope, and as the density increases, the flattening of the flattened It gets even more intense. This fact indicates that the tobermorite crystals are preferentially oriented, especially when the density of the compact is 0.3.
It is shown that the preferred orientation of the crystal becomes particularly large at 0 g / cm 3 or more. The preferential orientation satisfies a certain relationship represented by the following equation, where the degree of orientation is P and the density is x. P ≧ ax−b (however, 0.3 ≦ x. Both a and b change depending on the addition amount, and when there is no additive, a is 20 and b.
Indicates 3.) The degree of preferential orientation is measured by the following method. A part of the compact is sampled and finely pulverized to make a non-oriented powder sample, while another sample having a plane perpendicular to the press direction is made from the compact (oriented sample), and then two samples of tobermorite The X-ray diffraction intensities of the (002) and (220) planes of the crystal are measured, respectively. The preferred orientation degree (P) is

【化3】 なる式によって与えられる。ここでI(002)とI
(220)は無配向粉末試料の回折強度でI′(00
2)とI′(220)は配向試料の回折強度である。本
発明成形体は上記した優先配向度が非常に大きい点にお
いて特徴付けられる。該配向性とは前述した通り成形体
中に存在するトベルモライト結晶が成形時の圧力によっ
て一定方向に配列する度合であり、球状二次粒子が相互
に連結して構成される成形体にのみ認められる特有のも
のであるが、特に成形時の圧力により圧縮変形を受ける
二次粒子の単位面積当りの個数及び各二次粒子の表面部
分の結晶の充填密度の大きさによりその優先配向性は異
なる。本発明成形体は従来公知のトベルモライト球状二
次粒子からなる成形体に比し0.3g/cm以上で特
に該優先配向性が著しく大きいという特徴を有するもの
であるが、これは本発明成形体は、密度が小さく(即ち
上記単位面積当りの個数が多く)且つ内部の中空率が3
0%以下の中空又は粗となっている球状二次粒子から構
成されているが故に、同一密度で著しく優先配向度が大
きいのである。以上の通り本発明成形体は、トベルモラ
イト結晶から成り、しかもこれら結晶が上記した特異な
球状二次粒子を形成し、これら二次粒子が相互に連結し
て構成されているため、前記した従来のトベルモライト
成形体に比し極めて低密度にして且つ充分成る実用強度
を有する。以下本発明成形体をその製造方法により説明
する。本発明成形体は例えば上記成形前の球状二次粒子
即ちトベルモライト結晶が三次元的に絡合して形成され
た球状二次粒子であって、その外径が約10〜約120
μmで平均見掛密度が0.14〜1.21g/cm
内部が粗乃至中空の球状二次粒子が水に分散した水性ス
ラリーを成形し乾燥することにより製造出来る。上記の
ように水性スラリーから製造されることにより、所望の
特徴が発揮される。即ち上記スラリーを成形すれば二次
粒子間に存在する水は容易に粒子間より抜け、スラリー
全体に均一に成形圧力が作用する。粒子内中空乃至粗の
部分に存在する水は上記圧力に抗し、粒子形状を破壊す
ることなく保持しつつ、相互に圧縮連結される。この粒
子間水の減少に引き続き粒子内部の水が徐々に排出され
る。従って脱水成形後得られる成形体を乾燥すれば上記
粒子内部の水が完全に排出されかくして所望の低密度に
して且つ高強度の成形体を収得できる。上記方法におい
て用いられる水性スラリーの水対固形分の比は特に制限
はないが3倍(重量)以上、好ましくは5〜30倍(重
量)程度とするのがよい。また、この水性スラリーには
必要に応じて各種の添加材を含有せしめることができ
る。これにより各種の添加材を複合してなる本発明のト
ベルモライト成形体を収得できる。ここで添加材として
は、例えば石綿、岩綿、ガラス繊維、セラミックファイ
バー、炭素繊維、金属繊維等の無機繊維、パルプ、木
綿、麻、羊毛、木質繊維等の動植物繊維、レーヨン、ポ
リアクリロニトリル、ポリプロピレン、ポリアミド、ポ
リエステル等の有機合成繊維等の補強材を例示出来、こ
れ等繊維物質により成形体の機械的強度、硬度、その他
の特性を一段と改善すると共に、成形性をより向上させ
ることが出来る。特に繊維物質は成形体の機械的強度を
高めるのに役立つ。また耐熱性向上のため各種の粘土類
が使用出来、更にはまた成形後の乾燥時の収縮を小さく
または無くするため、或いは成形体の表面強度を増大さ
せるためセメント類、石膏、コロイダルシリカ、アルミ
ナゾル、リン酸系ないし水ガラス系結合剤等を添加する
ことも出来る。また金網、金属筋等を介在せしめること
も可能である。本発明に於いて水性スラリーを成形して
成形体とする際の成形手段としては、自然沈降法、鋳型
注入法、プレス脱水成形法、遠心成形法等を挙げること
が出来る。また、上記の如くして製造されるトベルモラ
イト成形体を焼成してこれを構成するトベルモライト結
晶をβ−ワラストナイト結晶に転移させてβ−ワラスト
ナイト成形体と出来る。上記焼成はトベルモライトがβ
−ワラストナイトに転移する温度以上の温度条件に容易
に行われる。通常800℃以上例えば、850℃で3時
間程度加熱すればよい。また上記β−ワラストナイト結
晶から成る成形体は、加熱を必須とするため、これに添
加される添加材としては、上記した無機繊維、粘土結合
剤等加熱によっても実質的に変化を受けない無機質のも
のとする必要がある。かくして成形体を構成する結晶が
β−ワラストナイト結晶に転移し、必要に応じて各種無
機質の添加材が複合された成形体が収得される。上記本
発明成形体を製造するための球状二次粒子の水性スラリ
ーは、たとえば次の様な方法により容易に製造出来る。
即ち沈降容積5ml以上の石灰乳と結晶質を主として含
む珪酸とを固形分に対する水の量が15倍(重量)以上
となる様に混合して原料スラリーとなし、これを加圧下
加熱撹拌しながら水熱合成反応せしめて、トベルモライ
ト結晶から成る球状二次粒子の水性スラリーを収得出来
る。この際の沈降容積5ml以上とは水対石灰の固形分
の比を120倍に調製した石灰乳50mlを直径1.3
cmで容積が50ml以上の円柱状容器に入れ、20分
間静置した後に石灰が沈降した容量をmlで示すもので
ある。この様に沈降容積が大きいということは石灰が良
く水に分散して安定な状態にあること即ち極端に細かい
粒子より成り、従って高い反応性を示すことを意味す
る。本発明の成形体は上記のように反応性の高い石灰を
用いて前記の如き特性を有する球状二次粒子を製造しこ
れから製造されるため、低密度にして且つ充分なる実用
強度を有するのである。上記製造法に於いて石灰乳とし
て沈降容積5ml以上の極めて分散安定性の優れたもの
を用いることを必須とする。沈降容積が5mlに達しな
い石灰乳を使用すると上記特異な球状二次粒子を得るこ
とは出来ない。使用される沈降容積5ml以上の石灰乳
を製造する方法自体は二義的なものであり、特に制限さ
れない。この石灰乳の沈降容積は、原料とする石灰石自
体、石灰製造時の焼成温度、石灰を水に消和するときの
水の量、そのときの温度、そのときの撹拌条件等に左右
され、就中消和時の温度並びに撹拌条件により大きく影
響を受けるが、いずれにせよ通常の石灰乳の製造方法で
は目的とする沈降容積5ml以上の石灰乳を得ることは
出来ない。而して沈降容積5ml以上の石灰乳は例えば
代表的には、水対石灰分(固形分)比を5倍(重量)以
上として好ましくは60℃以上の温度で高速乃至強力撹
拌すればよい。例えばホモミクサーの如き激しい撹拌に
よって上記所望の石灰乳を収得できる。撹拌速度並びに
撹拌強さは撹拌時の温度並びに時間を長くすれば一般に
下げることが出来る。また撹拌機としては各種のものが
使用され邪魔板を有しているものでも又はこれの無いも
のでも使用出来る。石灰乳を製造するために使用される
石灰原料としては各種の石灰が使用でき、例えば生石
灰、消石灰が最も沈降容積を大きくし易く適当である。
また本発明に於いて球状二次粒子の水性スラリーを製造
するために使用される珪酸原料としては、結晶質の珪酸
原料が使用される。例えば珪岩、石英、砂岩質珪岩、膠
結性珪岩、再晶性珪岩、複合珪岩、珪砂、珪石等を例示
出来る。これらの珪酸原料は一般に平均粒子径が30μ
m好ましくは1〜20μm以下であるのがよい。なお上
記珪酸原料は、結晶質の珪酸原料を主成分とするかぎ
り、これに更に無定形珪酸を含有していてもよく、また
無定形珪酸を50%(重量)以下の量で結晶質珪酸に混
合して使用することも出来る。なお該珪酸原料としてA
含量がかなり高いものも使用でき、通常5%以
下程度のものなら充分に使用できる。石灰と珪酸との配
合モル比は、トベルモライトまたはこれとその他の珪酸
カルシウム結晶とが生成するに望ましいモル比であり
0.70〜0.95である。上記石灰乳と珪酸原料とを
混合して水対固形分比を15倍(重量)以上として原料
スラリーを調製し、これを次いで加圧下加熱撹拌しなが
ら水熱合成反応させる。この際の圧力、温度及び撹拌速
度等の反応条件は該反応に用いる反応容器、撹拌機、或
いは反応生成物の種類等により適宜に決定される。水熱
反応に於ける温度及び圧力としては通常5kg/cm
以上である。時間は温度、圧力を高めることにより短縮
できるが、経済的には反応時間は短い方がよいが操業時
の安全性を加味すると10時間以内が望ましい。好まし
い条件を例示すると、例えば飽和水蒸気圧として12k
g/cmで3時間、同8kg/cmで6時間程度で
ある。この水熱合成反応時に於ける撹拌は、使用原料や
反応容器や反応条件に従って適宜に決定する。例えば直
径150mm、容量3lの反応容器で摺形撹拌翼を使用
する場合、石灰乳の沈降容積が30ml、平均粒子径が
5μm程度の珪石粉を水比24倍で使用して原料スラリ
ーとして使用するとき、撹拌速度は100r.p.m程
度である。撹拌操作としては反応容器自身を回転した
り、振動したり、気体や液体を圧入したりする各種の撹
拌操作を例示出来る。上記水熱反応はバッチ式反応でも
連続反応でも良く、連続反応を行う場合には連続的に原
料スラリーを反応容器に圧入し反応が終了した合成スラ
リー(珪酸カルシウム結晶スラリー)を常圧下に排出す
れば良い。この排出の際に二次粒子が損なわれないよう
にする必要がある。また原料スラリーの水比をさげて反
応容器中で反応せしめ、反応後所定量の水を圧入して排
出する方法を行なっても良い。この珪酸カルシウムの合
成に際しては、反応促進剤、触媒、沈殿防止剤等を適宜
に原料スラリーに添加できる。これ等としてはワラスト
ナイト、珪酸カルシウム水和物をはじめ苛性ソーダや苛
性カリ等のアルカリやアルカリ金属の各種塩類を例示出
来る。上記添加剤の添加量は、目的とする珪酸カルシウ
ム結晶の球状二次粒子が得られる限り特に制限はない
が、ワラストナイト等は通常30重量%程度までとする
のがよい。上記特定の石灰乳と珪酸原料とから調製した
原料スラリーから水熱合成反応によって、本発明成形体
を製造するための球状二次粒子の水性スラリーを得るに
当っては、原料スラリーに、石綿、耐アルカリガラス繊
維、セラミックファイバー、岩綿等の無機繊維や耐アル
カリ性パルプ等の有機繊維を更に添加することが出来
る。この操作により、球状二次粒子と無機繊維とが均一
に水に分散した水性スラリーが得られる。この水性スラ
リーは、上記原料スラリーを水熱合成反応せしめて得ら
れる球状二次粒子の水性スラリーに無機繊維を添加した
ものとは次の点で異なる。即ち前者の場合は、無機繊維
上で原料スラリー中の珪酸原料と石灰原料とが結晶化す
ると同時に球状二次粒子を形成するので、無機繊維に結
合した球状二次粒子が生成し易い。一方後者では結晶化
並びに球状二次粒子化が終了した後で無機繊維を添加す
るため無機繊維と球状二次粒子とは原則として結合して
いない。この様な差により、この種水性スラリーから得
られる本発明成形体の機械的強度は前者の方が若干大き
くなる傾向がある。以下に本発明の特徴とする所をより
明瞭にするための実施例を示す。但し下記実施例に於い
て部又は%とあるは特に断らない限り、重量部又は重量
%を示すものとする。 実施例1 生石灰(CaO 95.0%)42.25部を80℃の
温湯507部中で消和し、ホモミクサーにて3分間水中
で分散させて得た石灰乳の沈降容積は18.9mlであ
った。上記石灰乳に平均粒子径約9μmの珪石粉末(S
iO 97.37%、Al 0.99%)5
3.21部を加えて全体の水量を固形分の22重量倍と
なるように混合して原料スラリーを得、これを飽和水蒸
気圧12kg/cm、温度191℃で容積3000c
c、内径15cmのオートクレーブで回転数174r.
p.mで撹拌翼を回転しながら3時間水熱合成反応を行
なって結晶スラリーを得た。この結晶スラリーを100
℃で24時間乾燥してX線回折分析した所、トベルモラ
イト結晶であることを確認した。この結晶スラリーをス
ライドグラス上で乾燥して光学顕微鏡で観察すると図1
に示される通り外径が平均38μmの球状二次粒子が認
められた。また該スラリーに界面活性剤を添加混合し、
48時間静置自然沈降せしめ次いでこれを100℃で4
8時間乾燥して得られた自然沈降成形体の一部を切り出
し、これをカナダバルサムで固定し、次いでこれを研磨
した後キシレンで上記カナダバルサムを除去して研磨試
料を得た。この試料を走査型電子顕微鏡で観察すると図
3に示される通りトベルモライト結晶が粗に集合して球
状二次粒子を形成していることが判明した。またこの二
次粒子を分散して電子顕微鏡で観察すると図2に示され
る通り長さ0.1〜10μm、巾0.1〜2μmの板状
結晶と長さ0.1〜10μm、巾0.05〜0.5μm
の針状結晶が認められた。上記二次粒子の各特性は第1
表の通りであった。
[Chemical 3] Is given by Where I (002) and I
(220) is the diffraction intensity of the non-oriented powder sample, I '(00
2) and I '(220) are the diffraction intensity of the oriented sample. The molded product of the present invention is characterized in that the above-mentioned degree of preferential orientation is very large. As described above, the orientation is the degree to which the tobermorite crystals present in the compact are arranged in a certain direction due to the pressure during molding, and only in the compact composed of spherical secondary particles interconnected. Although it is a peculiarity to be recognized, its preferential orientation is particularly dependent on the number of secondary particles per unit area that are subject to compressive deformation due to pressure during molding and the packing density of crystals on the surface of each secondary particle. different. The molded product of the present invention has a characteristic that the preferential orientation is remarkably large at 0.3 g / cm 3 or more, as compared with the conventionally known molded product of the tobermorite spherical secondary particles. The molded product of the invention has a low density (that is, a large number per unit area) and an internal hollow ratio of 3
Since it is composed of 0% or less of hollow or coarse spherical secondary particles, the degree of preferential orientation is remarkably large at the same density. As described above, the molded body of the present invention is composed of tobermorite crystals, and these crystals form the above-mentioned unique spherical secondary particles, and these secondary particles are connected to each other. Compared with conventional tobermorite moldings, it has extremely low density and practical strength. The molded article of the present invention will be described below by its manufacturing method. The molded body of the present invention is, for example, spherical secondary particles before molding, that is, spherical secondary particles formed by three-dimensionally entangled tobermorite crystals, and the outer diameter thereof is about 10 to about 120.
It can be produced by molding and drying an aqueous slurry in which spherical secondary particles having a mean apparent density of 0.14 to 1.21 g / cm 3 and a coarse or hollow interior are dispersed in water. The desired characteristics are exhibited by being produced from the aqueous slurry as described above. That is, when the above slurry is molded, water existing between the secondary particles easily escapes from between the particles, and the molding pressure uniformly acts on the entire slurry. The water present in the hollow or coarse portions inside the particles resists the above-mentioned pressure and is compressed and connected to each other while maintaining the particle shape without destroying it. Following this decrease in interparticle water, the water inside the particles is gradually discharged. Therefore, if the molded product obtained after the dehydration molding is dried, the water inside the particles is completely discharged and thus a molded product having a desired low density and high strength can be obtained. The ratio of water to solid content of the aqueous slurry used in the above method is not particularly limited, but is preferably 3 times (weight) or more, preferably about 5 to 30 times (weight). Further, this aqueous slurry may contain various additives as required. As a result, the tobermorite molded product of the present invention, which is a composite of various additives, can be obtained. Here, as the additive, for example, asbestos, rock wool, glass fiber, ceramic fiber, carbon fiber, inorganic fiber such as metal fiber, animal fiber such as pulp, cotton, hemp, wool, wood fiber, rayon, polyacrylonitrile, polypropylene Examples of the reinforcing material include organic synthetic fibers such as polyamide and polyester, and these fiber materials can further improve the mechanical strength, hardness, and other characteristics of the molded body, and further improve the moldability. In particular, the fibrous material serves to increase the mechanical strength of the shaped body. In addition, various clays can be used for improving heat resistance, and further, cements, gypsum, colloidal silica, alumina sol for reducing or eliminating shrinkage at the time of drying after molding or for increasing the surface strength of the molded body. Alternatively, a phosphoric acid-based or water glass-based binder or the like may be added. It is also possible to interpose a wire net, a metal streak or the like. In the present invention, examples of the molding means for molding the aqueous slurry into a molded product include a natural sedimentation method, a mold injection method, a press dehydration molding method, a centrifugal molding method and the like. Further, the tobermorite molded product manufactured as described above is fired to transform the tobermorite crystals constituting the same into β-wollastonite crystals, whereby a β-wollastonite molded product can be obtained. Tobermorite is β
-It is easily performed under a temperature condition equal to or higher than the temperature at which it transforms into wollastonite. Generally, it may be heated at 800 ° C. or higher, for example, 850 ° C. for about 3 hours. Further, since the molded body composed of the β-wollastonite crystal requires heating, the additive material added to the molded body is not substantially changed by heating such as the above-mentioned inorganic fibers and clay binder. Must be inorganic. Thus, the crystals constituting the molded body are transformed into β-wollastonite crystals, and a molded body in which various inorganic additives are compounded is obtained as necessary. The aqueous slurry of spherical secondary particles for producing the above-mentioned molded article of the present invention can be easily produced, for example, by the following method.
That is, lime milk having a sedimentation volume of 5 ml or more and silicic acid mainly containing crystalline are mixed so that the amount of water to solid content is 15 times (weight) or more to form a raw material slurry, which is heated and stirred under pressure. A hydrothermal synthesis reaction can be performed to obtain an aqueous slurry of spherical secondary particles composed of tobermorite crystals. At this time, the sedimentation volume of 5 ml or more means that 50 ml of lime milk prepared by increasing the solid content ratio of water to lime to 120 times has a diameter of 1.3.
The volume of the lime settled after being placed in a cylindrical container having a volume of 50 cm or more and having a volume of 50 ml or more and allowed to stand for 20 minutes is shown in ml. The large settling volume means that lime is well dispersed in water and in a stable state, that is, it is composed of extremely fine particles, and thus exhibits high reactivity. Since the molded product of the present invention is manufactured from the spherical secondary particles having the above-mentioned characteristics by using the highly reactive lime as described above, it has low density and sufficient practical strength. . In the above production method, it is essential to use lime milk having a sedimentation volume of 5 ml or more and having extremely excellent dispersion stability. If lime milk whose sedimentation volume does not reach 5 ml is used, the above-mentioned unique spherical secondary particles cannot be obtained. The method itself for producing lime milk having a sedimentation volume of 5 ml or more used is secondary and is not particularly limited. The settling volume of this lime milk depends on the limestone itself as a raw material, the firing temperature during lime production, the amount of water when slaked lime into water, the temperature at that time, the stirring conditions at that time, etc. Although it is greatly affected by the temperature and stirring conditions at the time of medium digestion, it is not possible to obtain the desired lime milk having a sedimentation volume of 5 ml or more by the usual method for producing lime milk. Thus, for lime milk having a sedimentation volume of 5 ml or more, typically, the ratio of water to lime content (solid content) is 5 times (weight) or more, and the mixture may be stirred at a high temperature or at high speed, preferably at a temperature of 60 ° C. or more. For example, the desired lime milk can be obtained by vigorous stirring with a homomixer. The stirring speed and stirring strength can generally be lowered by increasing the temperature and time during stirring. Various types of stirrers are used, and those with or without a baffle plate can be used. Various kinds of lime can be used as a lime raw material used for producing lime milk, and for example, quick lime and slaked lime are suitable because they can increase the sedimentation volume most.
A crystalline silicic acid raw material is used as the silicic acid raw material used for producing the aqueous slurry of spherical secondary particles in the present invention. Examples thereof include quartzite, quartz, sandstone quartzite, cohesive quartzite, recrystallized quartzite, composite quartzite, silica sand, and quartzite. These silicic acid raw materials generally have an average particle size of 30μ.
m is preferably 1 to 20 μm or less. The above-mentioned silicic acid raw material may further contain amorphous silicic acid as long as it contains a crystalline silicic acid raw material as a main component, and the amorphous silicic acid is converted into crystalline silicic acid in an amount of 50% (by weight) or less. It can also be mixed and used. As the silicic acid raw material, A
It is possible to use a material having a considerably high l 2 O 3 content, and it is usually sufficient if the content is about 5% or less. The mixing molar ratio of lime and silicic acid is 0.70 to 0.95, which is a desirable molar ratio for producing tobermorite or other crystals of calcium silicate. The lime milk and the silicic acid raw material are mixed to prepare a raw material slurry with a water-to-solid content ratio of 15 times (weight) or more, and this is then subjected to a hydrothermal synthesis reaction while heating and stirring under pressure. The reaction conditions such as pressure, temperature and stirring speed at this time are appropriately determined depending on the reaction vessel used for the reaction, the stirrer, the type of reaction product and the like. The temperature and pressure in the hydrothermal reaction are usually 5 kg / cm 2
That is all. The time can be shortened by increasing the temperature and pressure, but it is economically preferable that the reaction time is short, but considering the safety during operation, it is preferably 10 hours or less. An example of preferable conditions is, for example, a saturated steam pressure of 12 k.
It is about 3 hours at g / cm 2 and about 6 hours at 8 kg / cm 2 . The stirring in this hydrothermal synthesis reaction is appropriately determined according to the raw materials used, the reaction vessel and the reaction conditions. For example, when a sliding type stirring blade is used in a reaction vessel having a diameter of 150 mm and a capacity of 3 l, silica stone powder having a sedimentation volume of lime milk of 30 ml and an average particle diameter of about 5 μm is used as a raw material slurry at a water ratio of 24 times. At a stirring speed of 100 r. p. It is about m. Examples of the stirring operation include various stirring operations of rotating the reactor itself, vibrating it, and injecting a gas or a liquid. The hydrothermal reaction may be a batch type reaction or a continuous reaction. When performing the continuous reaction, the raw material slurry is continuously pressed into the reaction vessel and the synthetic slurry (calcium silicate crystal slurry) after the reaction is discharged under normal pressure. Good. Secondary particles need to be kept intact during this discharge. Alternatively, the water ratio of the raw material slurry may be reduced to cause the reaction in the reaction vessel, and after the reaction, a predetermined amount of water may be pressed and discharged. When synthesizing the calcium silicate, a reaction accelerator, a catalyst, a suspending agent and the like can be appropriately added to the raw material slurry. Examples thereof include wollastonite and calcium silicate hydrate, as well as various salts of alkali and alkali metals such as caustic soda and caustic potash. The addition amount of the above-mentioned additive is not particularly limited as long as the intended spherical secondary particles of calcium silicate crystals can be obtained, but wollastonite and the like are usually preferably up to about 30% by weight. By hydrothermal synthesis reaction from a raw material slurry prepared from the specific lime milk and a silicic acid raw material, in obtaining an aqueous slurry of spherical secondary particles for producing the molded body of the present invention, the raw material slurry, asbestos, Inorganic fibers such as alkali resistant glass fibers, ceramic fibers, rock wool, and organic fibers such as alkali resistant pulp can be further added. By this operation, an aqueous slurry in which spherical secondary particles and inorganic fibers are uniformly dispersed in water is obtained. This aqueous slurry differs from the one obtained by adding inorganic fibers to an aqueous slurry of spherical secondary particles obtained by subjecting the raw material slurry to a hydrothermal synthesis reaction in the following points. That is, in the former case, since the silicic acid raw material and the lime raw material in the raw material slurry are crystallized on the inorganic fibers to form spherical secondary particles, spherical secondary particles bonded to the inorganic fibers are easily generated. On the other hand, in the latter, since the inorganic fiber is added after the crystallization and the formation of the spherical secondary particles, the inorganic fiber and the spherical secondary particles are not bonded in principle. Due to such a difference, the mechanical strength of the molded product of the present invention obtained from this kind of aqueous slurry tends to be slightly higher in the former case. Examples for clarifying the features of the present invention will be shown below. In the following examples, parts or% means parts by weight or% by weight unless otherwise specified. Example 1 42.25 parts of quicklime (CaO 95.0%) was hydrated in 507 parts of hot water at 80 ° C. and dispersed in water with a homomixer for 3 minutes to obtain a lime milk having a sedimentation volume of 18.9 ml. there were. Silica powder (S with an average particle size of about 9 μm) (S
iO 2 97.37%, Al 2 O 3 0.99%) 5
3.21 parts were added and the total amount of water was mixed to be 22 times the solid content by weight to obtain a raw material slurry, which was saturated water vapor pressure 12 kg / cm 2 , temperature 191 ° C. and volume 3000 c.
c, rotation speed of 174 r.m. in an autoclave having an inner diameter of 15 cm.
p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. 100% of this crystal slurry
It was confirmed that the crystals were tobermorite when dried at 24 ° C. for 24 hours and analyzed by X-ray diffraction. This crystal slurry was dried on a slide glass and observed with an optical microscope.
As shown in (4), spherical secondary particles having an average outer diameter of 38 μm were recognized. Further, by adding and mixing a surfactant to the slurry,
Allow it to stand for 48 hours to let it settle at room temperature and then add it to 100 ° C for 4 hours.
A part of the spontaneous precipitation molded body obtained by drying for 8 hours was cut out, fixed with Canadian balsam, and then polished, and then the above Canadian balsam was removed with xylene to obtain a polished sample. When this sample was observed with a scanning electron microscope, it was found that the tobermorite crystals coarsely aggregated to form spherical secondary particles as shown in FIG. When these secondary particles are dispersed and observed with an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a length of 0.1 to 10 μm and a width of 0. 05-0.5 μm
Needle crystals were observed. The characteristics of the secondary particles are as follows:
It was as shown in the table.

【表1】 また上記で得た結晶スラリーをプレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度は第2表の
通りであった。
[Table 1] Also, the crystal slurry obtained above is press-molded, and the temperature is 120 ° C.
The degree of preferential orientation of the molded body obtained by drying for 20 hours was as shown in Table 2.

【表2】 次いで上記で得た結晶スラリー85部(固形分)に添加
材としてガラス繊維7部、パルプ5部及びポルトランド
セメント3部を加えて、同様にプレス成形し、120℃
で20時間乾燥して成形体を得た。得られた成形体の物
性は第3表の通りであった。
[Table 2] Next, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the crystal slurry obtained above, and press-molded in the same manner to 120 ° C.
And dried for 20 hours to obtain a molded body. The physical properties of the obtained molded product are shown in Table 3.

【表3】 実施例2 生石灰(CaO 95.1%)41.42部を80℃の
温湯497部中で消和し、ホモミクサーにて5分間水中
で分散させて得た石灰乳の沈降容積は17.5mlであ
った。上記石灰乳に平均粒子径約8.5μmの珪石粉末
(SiO 94.03%、Al 2.37%)
54.04部を加えて全体の水量を固形分の22重量倍
となるように混合して原料スラリーを得、これを飽和水
蒸気圧12kg/cm、温度191℃で容積3000
cc、内径15cmのオートクレーブで回転数174
r.p.mで撹拌翼を回転しながら3時間水熱合成反応
を行なって結晶スラリーを得た。この結晶スラリーを1
00℃で24時間乾燥してX線回折分析した所、トベル
モライト結晶であることを確認した。この結晶スラリー
をスライドグラス上で乾燥して光学顕微鏡で観察すると
外径が平均52μmの球状二次粒子が認められた。また
該スラリーに界面活性剤を添加混合し、48時間静置、
自然沈降せしめ次いでこれを100℃で48時間乾燥し
て得られた自然沈降成形体の一部を切り出し、これをカ
ナダバルサムで固定し、次いでこれを研磨した後キシレ
ンで上記カナダバルサムを除去して研磨試料を得た。こ
の試料を走査型電子顕微鏡で観察すると図4に示される
通りトベルモライト結晶が粗に集合したもの及び内部が
中空の球状二次粒子を形成していることが判明した。ま
たこの二次粒子を分散して電子顕微鏡で観察すると長さ
0.1〜10μm、巾0.1〜2μmの板状結晶と長さ
0.1〜10μm、巾0.05〜0.5μmの針状結晶
が認められた。上記二次粒子の各特性は第4表の通りで
あった。
[Table 3] Example 2 41.42 parts of quicklime (CaO 95.1%) was dissolved in 497 parts of hot water at 80 ° C. and dispersed in water with a homomixer for 5 minutes to obtain a lime milk having a sedimentation volume of 17.5 ml. there were. Silica powder (SiO 2 94.03%, Al 2 O 3 2.37%) with an average particle size of about 8.5 μm is added to the lime milk.
54.04 parts were added and the total amount of water was mixed to be 22 times the solid content by weight to obtain a raw material slurry, which was saturated water vapor pressure 12 kg / cm 2 , temperature 191 ° C. and volume 3000.
Rotation speed 174 in an autoclave with cc and inner diameter of 15 cm
r. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. 1 of this crystal slurry
When it was dried at 00 ° C. for 24 hours and analyzed by X-ray diffraction, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 52 μm were recognized. In addition, a surfactant was added to the slurry and mixed, and the mixture was allowed to stand for 48 hours,
A portion of the natural sedimentation molded body obtained by allowing it to spontaneously sediment and then drying it at 100 ° C. for 48 hours was cut out, fixed with Canadian balsam, and then ground to remove the Canadian balsam with xylene. A polished sample was obtained. When this sample was observed with a scanning electron microscope, it was found that the tobermorite crystals were coarsely aggregated and spherical secondary particles having a hollow inside were formed as shown in FIG. When these secondary particles are dispersed and observed by an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a plate crystal having a length of 0.1 to 10 μm and a width of 0.05 to 0.5 μm. Needle-like crystals were observed. The characteristics of the secondary particles are as shown in Table 4.

【表4】 また上記で得た結晶スラリーをプレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度は第5表の
通りであった。
[Table 4] Also, the crystal slurry obtained above is press-molded, and the temperature is 120 ° C.
The degree of preferential orientation of the molded body obtained by drying for 20 hours was as shown in Table 5.

【表5】 また上記第5表の成形体(試料No.1)の一部を切り
出し、これをカナダバルサムで固定し、次いで研磨した
後、キシレンで上記カナダバルサムを除去して得た研磨
試料を走査型電子顕微鏡で観察すると、図5に示す通
り、球状二次粒子が相互に連結しているのが判る。次い
で上記で得た結晶スラリー85部(固形分)に添加材と
してガラス繊維7部、パルプ5部及びポルトランドセメ
ント3部を加えて、同様にプレス成形し、120℃で2
0時間乾燥して成形体を得た。得られた成形体の物性は
第6表の通りであった。
[Table 5] Further, a part of the molded body (Sample No. 1) shown in Table 5 was cut out, fixed with Canadian balsam, then polished, and then the polished sample obtained by removing the Canadian balsam with xylene was used as a scanning electron. Observation with a microscope reveals that the spherical secondary particles are interconnected as shown in FIG. Then, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the crystal slurry obtained above, and press-molded in the same manner, and then at 2O 0 C for 2 hours.
It was dried for 0 hours to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 6.

【表6】 実施例3 生石灰(CaO 95.6%)45.56部を80℃の
温湯547部中で消和し、ホモミクサーにて6分間水中
で分散させて得た石灰乳の沈降容積は28.0mlであ
った。上記石灰乳に平均粒子径約8.5μmの珪石粉末
(SiO 94.03%、Al 2.37%)
59.44部を加えて全体の水量を固形分の20重量倍
となるように混合して原料スラリーを得、これを飽和水
蒸気圧8kg/cm、温度175℃で容積3000c
c、内径15cmのオートクレーブで回転数174r.
p.mで撹拌翼を回転しながら6時間水熱合成反応を行
なって結晶スラリーを得た。この結晶スラリーを100
℃で24時間乾燥してX線回折分析した所、トベルモラ
イト結晶であることを確認した。この結晶スラリーをス
ライドグラス上で乾燥して光学顕微鏡で観察すると外径
が平均45μmの球状二次粒子が認められた。また該ス
ラリーに界面活性剤を添加混合し、48時間静置、自然
沈降せしめ次いでこれを100℃で48時間乾燥して得
られた自然沈降成形体の一部を切り出し、これをカナダ
バルサムで固定し、次いでこれを研磨した後キシレンで
上記カナダバルサムを除去して研磨試料を得た。この試
料を走査型電子顕微鏡で観察するとトベルモライト結晶
が粗に集合して球状二次粒子を形成していることが判明
した。またこの二次粒子を分散して電子顕微鏡で観察す
ると長さ0.1〜10μm、巾0.1〜2μmの板状結
晶と長さ0.1〜10μm、巾0.05〜0.5μmの
針状結晶が認められた。上記二次粒子の各特性は第7表
の通りであった。
[Table 6] Example 3 45.56 parts of quicklime (CaO 95.6%) was dissolved in 547 parts of hot water at 80 ° C. and dispersed in water with a homomixer for 6 minutes to obtain a lime milk having a sedimentation volume of 28.0 ml. there were. Silica powder (SiO 2 94.03%, Al 2 O 3 2.37%) with an average particle size of about 8.5 μm is added to the lime milk.
A raw material slurry was obtained by adding 59.44 parts and mixing the total amount of water to be 20 times the solid content, and saturating a steam pressure of 8 kg / cm 2 at a temperature of 175 ° C. and a volume of 3000 c.
c, rotation speed of 174 r.m. in an autoclave having an inner diameter of 15 cm.
p. The hydrothermal synthesis reaction was carried out for 6 hours while rotating the stirring blade at m to obtain a crystal slurry. 100% of this crystal slurry
It was confirmed that the crystals were tobermorite when dried at 24 ° C. for 24 hours and analyzed by X-ray diffraction. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 45 μm were recognized. Further, a surfactant was added to the slurry and mixed, allowed to stand for 48 hours to spontaneously settle, and then dried at 100 ° C. for 48 hours to cut out a part of the naturally settled molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample. Observation of this sample with a scanning electron microscope revealed that the tobermorite crystals aggregated coarsely to form spherical secondary particles. When these secondary particles are dispersed and observed by an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a plate crystal having a length of 0.1 to 10 μm and a width of 0.05 to 0.5 μm. Needle-like crystals were observed. The properties of the secondary particles are shown in Table 7.

【表7】 また上記で得た結晶スラリーをプレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度は第8表の
通りであった。
[Table 7] Also, the crystal slurry obtained above is press-molded, and the temperature is 120 ° C.
The degree of preferential orientation of the molded body obtained by drying for 20 hours was as shown in Table 8.

【表8】 次いで上記で得た結晶スラリー85部(固形分)に添加
材としてガラス繊維7部、パルプ5部及びポルトランド
セメント3部を加えて、同様にプレス成形し、120℃
で20時間乾燥して成形体を得た。得られた成形体の物
性は第9表の通りであった。
[Table 8] Next, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the crystal slurry obtained above, and press-molded in the same manner to 120 ° C.
And dried for 20 hours to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 9.

【表9】 実施例4 生石灰(CaO 95.0%)45.83部を80℃の
温湯550部中で消和し、ホモミクサーにて7分間水中
で分散させて得た石灰乳の沈降容積は31.6mlであ
った。上記石灰乳に平均粒子径約1.6μmの珪石粉末
(SiO 95.01%、Al 3.27%)
59.17部を加えて全体の水量を固形分の20重量倍
となるように混合して原料スラリーを得、これを飽和水
蒸気圧12kg/cm、温度191℃で容積3000
cc、内径15cmのオートクレーブで回転数112
r.p.mで撹拌翼を回転しながら3時間水熱合成反応
を行なって結晶スラリーを得た。この結晶スラリーを1
00℃で24時間乾燥してX線回折分析した所、トベル
モライト結晶であることを確認した。この結晶スラリー
をスライドグラス上で乾燥して光学顕微鏡で観察すると
外径が平均24μmの球状二次粒子が認められた。また
該スラリーに界面活性剤を添加混合し、48時間静置、
自然沈降せしめ次いでこれを100℃で48時間乾燥し
て得られた自然沈降成形体の一部を切り出し、これをカ
ナダバルサムで固定し、次いでこれを研磨した後キシレ
ンで上記カナダバルサムを除去して研磨試料を得た。こ
の試料を走査型電子顕微鏡で観察するとトベルモライト
結晶が粗に集合したもの及び内部が中空の球状二次粒子
を形成していることが判明した。またこの二次粒子を分
散して電子顕微鏡で観察すると長さ0.1〜10μm、
巾0.1〜2μmの板状結晶と長さ0.1〜10μm、
巾0.05〜0.5μmの針状結晶が認められた。上記
二次粒子の各特性は第10表の通りであった。
[Table 9] Example 4 45.83 parts of quicklime (CaO 95.0%) was dissolved in 550 parts of hot water at 80 ° C. and dispersed in water for 7 minutes with a homomixer to obtain a lime milk having a sedimentation volume of 31.6 ml. there were. Silica powder (SiO 2 95.01%, Al 2 O 3 3.27%) having an average particle diameter of about 1.6 μm is added to the lime milk.
59.17 parts were added and the total amount of water was mixed to be 20 times the weight of the solid content to obtain a raw material slurry, which was saturated water vapor pressure 12 kg / cm 2 , temperature 191 ° C. and volume 3000.
Rotation speed of 112 in autoclave with cc and inner diameter of 15 cm
r. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. 1 of this crystal slurry
When it was dried at 00 ° C. for 24 hours and analyzed by X-ray diffraction, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 24 μm were recognized. In addition, a surfactant was added to the slurry and mixed, and the mixture was allowed to stand for 48 hours,
A portion of the natural sedimentation molded body obtained by allowing it to spontaneously sediment and then drying it at 100 ° C. for 48 hours was cut out, fixed with Canadian balsam, and then ground to remove the Canadian balsam with xylene. A polished sample was obtained. When this sample was observed with a scanning electron microscope, it was found that the tobermorite crystals were coarsely aggregated and spherical secondary particles having a hollow inside were formed. When these secondary particles are dispersed and observed with an electron microscope, the length is 0.1 to 10 μm,
A plate crystal having a width of 0.1 to 2 μm and a length of 0.1 to 10 μm,
Needle-like crystals with a width of 0.05 to 0.5 μm were observed. Table 10 shows the respective properties of the secondary particles.

【表10】 また上記で得た結晶スラリーをプレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度は第11表
の通りであった。
[Table 10] Also, the crystal slurry obtained above is press-molded, and the temperature is 120 ° C.
The degree of preferential orientation of the molded body obtained by drying for 20 hours was as shown in Table 11.

【表11】 次いで上記で得た結晶スラリー85部(固形分)に添加
材としてガラス繊維7部、パルプ5部及びポルトランド
セメント3部を加えて、同様にプレス成形し、120℃
で20時間乾燥して成形体を得た。得られた成形体の物
性は第12表の通りであった。
[Table 11] Next, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the crystal slurry obtained above, and press-molded in the same manner to 120 ° C.
And dried for 20 hours to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 12.

【表12】 実施例5 生石灰(CaO 95.0%)42.23部を80℃の
温湯507部中で消和し、ホモミクサーにて6分間水中
で分散させて得た石灰乳の沈降容積は26.0mlであ
った。上記石灰乳に平均粒子径約1.6μmの珪石粉末
(SiO 95.01%、Al 3.27%)
53.23部を加えて全体の水量を固形分の20重量倍
となるように混合して原料スラリーを得、これを飽和水
蒸気圧12kg/cm、温度191℃で容積3000
cc、内径15cmのオートクレーブで回転数112
r.p.mで撹拌翼を回転しながら3時間水熱合成反応
を行なって結晶スラリーを得た。この結晶スラリーを1
00℃で24時間乾燥してX線回折分析した所、トベル
モライト結晶に少量のゾーノトライト結晶が混合したも
のであることを確認した。この結晶スラリーをスライド
グラス上で乾燥して光学顕微鏡で観察すると外径が平均
31μmの球状二次粒子が認められた。また該スラリー
に界面活性剤を添加混合し、48時間静置、自然沈降せ
しめ次いでこれを100℃で48時間乾燥して得られた
自然沈降成形体の一部を切り出し、これをカナダバルサ
ムで固定し、次いでこれを研磨した後キシレンで上記カ
ナダバルサムを除去して研磨試料を得た。この試料を走
査型電子顕微鏡で観察するとトベルモライト結晶と少量
のゾーノトライト結晶が粗に集合したもの及び内部が中
空の二次粒子を形成していることが判明した。上記二次
粒子の各特性は第13表の通りであった。
[Table 12] Example 5 42.23 parts of quick lime (CaO 95.0%) was dissolved in 507 parts of hot water at 80 ° C. and dispersed in water for 6 minutes with a homomixer to obtain a lime milk having a sedimentation volume of 26.0 ml. there were. Silica powder (SiO 2 95.01%, Al 2 O 3 3.27%) having an average particle diameter of about 1.6 μm is added to the lime milk.
A raw material slurry was obtained by adding 53.23 parts and mixing the total amount of water to be 20 times the solid content by weight, and saturating a steam pressure of 12 kg / cm 2 at a temperature of 191 ° C. and a volume of 3000.
Rotation speed of 112 in autoclave with cc and inner diameter of 15 cm
r. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. 1 of this crystal slurry
When dried at 00 ° C. for 24 hours and subjected to X-ray diffraction analysis, it was confirmed that the tobermorite crystals were mixed with a small amount of zonotolite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 31 μm were recognized. Further, a surfactant was added to the slurry and mixed, allowed to stand for 48 hours to spontaneously settle, and then dried at 100 ° C. for 48 hours to cut out a part of the naturally settled molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample. When this sample was observed with a scanning electron microscope, it was found that the tobermorite crystals and a small amount of zonotolite crystals were roughly aggregated and that secondary particles having a hollow inside were formed. The properties of the secondary particles are as shown in Table 13.

【表13】 また上記で得た結晶スラリーをプレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度は第14表
の通りであった。
[Table 13] Also, the crystal slurry obtained above is press-molded, and the temperature is 120 ° C.
The degree of preferential orientation of the molded body obtained by drying for 20 hours was as shown in Table 14.

【表14】 次いで上記で得た結晶スラリー85部(固形分)に添加
材としてガラス繊維7部、パルプ5部及びポルトランド
セメント3部を加えて、同様にプレス成形し、120℃
で20時間乾燥して成形体を得た。得られた成形体の物
性は第15表の通りであった。
[Table 14] Next, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the crystal slurry obtained above, and press-molded in the same manner to 120 ° C.
And dried for 20 hours to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 15.

【表15】 実施例6 生石灰(CaO 95.0%)42.25部を80℃の
温湯507部中で消和し、ホモミクサーにて2分間水中
で分散させて得た石灰乳の沈降容積は8.1mlであっ
た。上記石灰乳に平均粒子径約9μmの珪石粉末(Si
97.37%、Al 0.99%)53.
21部を加えて全体の水量を固形分の22重量倍となる
ように混合して原料スラリーを得、これを飽和水蒸気圧
12kg/cm、温度191℃で容積3000cc、
内径15cmのオートクレーブで回転数174r.p.
mで撹拌翼を回転しながら3時間水熱合成反応を行なっ
て結晶スラリーを得た。この結晶スラリーを100℃で
24時間乾燥してX線回折分析した所、トベルモライト
結晶であることを確認した。この結晶スラリーをスライ
ドグラス上で乾燥して光学顕微鏡で観察すると外径が平
均47μmの球状二次粒子が認められた。また該スラリ
ーに界面活性剤を添加混合し、48時間静置、自然沈降
せしめ次いでこれを100℃で48時間乾燥して得られ
た自然沈降成形体の一部を切り出し、これをカナダバル
サムで固定し、次いでこれを研磨した後キシレンで上記
カナダバルサムを除去して研磨試料を得た。この試料を
走査型電子顕微鏡で観察するとトベルモライト結晶が粗
に集合して球状二次粒子を形成していることが判明し
た。またこの二次粒子を分散して電子顕微鏡で観察する
と長さ0.1〜10μm、巾0.1〜2μmの板状結晶
と長さ0.1〜10μm、巾0.05〜0.5μmの針
状結晶が認められた。上記二次粒子の各特性は第16表
の通りであった。
[Table 15] Example 6 42.25 parts of quicklime (CaO 95.0%) was hydrated in 507 parts of hot water at 80 ° C. and dispersed in water for 2 minutes with a homomixer to obtain a lime milk having a sedimentation volume of 8.1 ml. there were. Silica powder (Si having an average particle size of about 9 μm) (Si
O 2 97.37%, Al 2 O 3 0.99%) 53.
21 parts was added and the total amount of water was mixed to be 22 times the solid content by weight to obtain a raw material slurry, which was saturated water vapor pressure 12 kg / cm 2 , temperature 191 ° C., volume 3000 cc,
Rotation speed of 174 r.m. in autoclave with inner diameter of 15 cm. p.
The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. When this crystal slurry was dried at 100 ° C. for 24 hours and subjected to X-ray diffraction analysis, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed by an optical microscope, spherical secondary particles having an average outer diameter of 47 μm were recognized. Further, a surfactant was added to the slurry and mixed, allowed to stand for 48 hours to spontaneously settle, and then dried at 100 ° C. for 48 hours to cut out a part of the naturally settled molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample. Observation of this sample with a scanning electron microscope revealed that the tobermorite crystals aggregated coarsely to form spherical secondary particles. When these secondary particles are dispersed and observed by an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a plate crystal having a length of 0.1 to 10 μm and a width of 0.05 to 0.5 μm. Needle-like crystals were observed. The characteristics of the secondary particles are as shown in Table 16.

【表16】 また上記で得た結晶スラリーをプレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度は第17表
の通りであった。
[Table 16] Also, the crystal slurry obtained above is press-molded, and the temperature is 120 ° C.
The degree of preferential orientation of the molded body obtained by drying for 20 hours was as shown in Table 17.

【表17】 次いで上記で得た結晶スラリー85部(固形分)に添加
材としてガラス繊維7部、パルプ5部及びポルトランド
セメント3部を加えて、同様にプレス成形し、120℃
で20時間乾燥して成形体を得た。得られた成形体の物
性は第18表の通りであった。
[Table 17] Next, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the crystal slurry obtained above, and press-molded in the same manner to 120 ° C.
And dried for 20 hours to obtain a molded body. The physical properties of the resulting molded product are shown in Table 18.

【表18】 比較例1 生石灰(CaO 95.0%)42.25部を80℃の
温湯507部中で消和して得た石灰乳の沈降容積は4.
0mlであった。上記石灰乳に平均粒子径約9μmの珪
石粉末(SiO 97.37%、Al 0.9
9%)53.21部を加えて全体の水量を固形分の22
重量倍となるように混合して原料スラリーを得、これを
飽和水蒸気圧12kg/cm、温度191℃で容積3
000cc、内径15cmのオートクレープで回転数1
74r.p.mで撹拌翼を回転しながら3時間水熱合成
反応を行なって結晶スラリーを得た。この結晶スラリー
を100℃で24時間乾燥してX線回折分析した所、ト
ベルモライト結晶であることを確認した。この結晶スラ
リーをスライドグラス上で乾燥して光学顕微鏡で観察す
ると外径が平均48μmの球状二次粒子が認められた。
また該スラリーに界面活性剤を添加混合し、48時間静
置、自然沈降せしめ次いでこれを100℃で48時間乾
燥して得られた自然沈降成形体の一部を切り出し、これ
をカナダバルサムで固定し、次いでこれを研磨した後キ
シレンで上記カナダバルサムを除去して研磨試料を得
た。この試料を走査型電子顕微鏡で観察するとトベルモ
ライト結晶が密に集合して球状二次粒子を形成している
ことが判明した。またこの二次粒子を分散して電子顕微
鏡で観察すると長さ0.1〜10μm、巾0.1〜2μ
mの板状結晶と長さ0.1〜10μm、巾0.05〜
0.5μmの針状結晶が認められた。上記二次粒子の各
特性は第19表の通りであった。
[Table 18] Comparative Example 1 The sedimentation volume of lime milk obtained by soaking 42.25 parts of quick lime (CaO 95.0%) in 507 parts of hot water at 80 ° C. was 4.
It was 0 ml. Silica powder (SiO 2 97.37%, Al 2 O 3 0.9) with an average particle diameter of about 9 μm was added to the lime milk.
9%) 53.21 parts were added to bring the total amount of water to 22% of the solid content.
A raw material slurry was obtained by mixing so that the weight of the raw material slurry was 12 kg / cm 2 , the temperature was 191 ° C., and the volume was 3
Rotation speed of 1 in an autoclave with 000 cc and an inner diameter of 15 cm
74r. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. When this crystal slurry was dried at 100 ° C. for 24 hours and subjected to X-ray diffraction analysis, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 48 μm were recognized.
Further, a surfactant was added to the slurry and mixed, allowed to stand for 48 hours to spontaneously settle, and then dried at 100 ° C. for 48 hours to cut out a part of the naturally settled molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample. Observation of this sample with a scanning electron microscope revealed that the tobermorite crystals were densely aggregated to form spherical secondary particles. When these secondary particles are dispersed and observed with an electron microscope, the length is 0.1 to 10 μm and the width is 0.1 to 2 μm.
m plate-like crystals, length 0.1-10 μm, width 0.05-
Needle-like crystals of 0.5 μm were observed. The properties of the secondary particles are as shown in Table 19.

【表19】 また上記で得た結晶スラリーをプレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度は第20表
の通りであった。
[Table 19] Also, the crystal slurry obtained above is press-molded, and the temperature is 120 ° C.
The degree of preferential orientation of the molded body obtained by drying for 20 hours was as shown in Table 20.

【表20】 次いで上記で得た結晶スラリー85部(固形分)に添加
材としてガラス繊維7部、パルプ5部及びポルトランド
セメント3部を加えて、同様にプレス成形し、120℃
で20時間乾燥して成形体を得た。得られた成形体の物
性は第21表の通りであった。
[Table 20] Next, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the crystal slurry obtained above, and press-molded in the same manner to 120 ° C.
And dried for 20 hours to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 21.

【表21】 [Table 21]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のトベルモライト結晶球状二次粒子の
100倍の光学顕微鏡写真を示す。
1 shows a 100 × optical micrograph of spherical secondary particles of tobermorite crystals of Example 1. FIG.

【図2】実施例1のトベルモライト結晶球状二次粒子を
分散した7500倍の電子顕微鏡写真を示す。
FIG. 2 shows an electron micrograph at 7500 times in which spherical tobermorite crystal secondary particles of Example 1 were dispersed.

【図3】実施例1の自然沈降成形体の研磨面の走査型電
子顕微鏡写真(600倍)を示す。
FIG. 3 shows a scanning electron micrograph (600 times) of a polished surface of a spontaneous sedimentation molded article of Example 1.

【図4】実施例2の自然沈降成形体の研磨面の走査型電
子顕微鏡写真(600倍)を示す。
FIG. 4 shows a scanning electron micrograph (600 times) of a polished surface of a spontaneous precipitation molded body of Example 2.

【図5】実施例2の本発明トベルモライト成形体(密度
0.201g/cm)の研磨面の走査型電子顕微鏡写
真(600倍)を示す。
FIG. 5 shows a scanning electron micrograph (600 times) of a polished surface of a tobermorite molded article of the present invention (density 0.201 g / cm 3 ) of Example 2.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】トベルモライト結晶またはこれと少量のそ
の他の珪酸カルシウム結晶が三次元的に絡合して成るほ
ぼ球状の二次粒子が、相互に連結して構成された成形体
であって、該球状二次粒子は成形前にはその外径が10
〜120μm、その中空率が30%以下で且つその自然
沈降成形体密度が0.12g/cm以下であったこと
を特徴とする珪酸カルシウム成形体。
Claims: 1. A molded article formed by interconnecting tobermorite crystals or secondary spherical particles having a small amount of other calcium silicate crystals entangled three-dimensionally with each other. , The spherical secondary particles have an outer diameter of 10 before molding.
˜120 μm, the hollow rate thereof is 30% or less, and the density of the natural sedimentation molded body thereof is 0.12 g / cm 3 or less, a calcium silicate molded body.
【請求項2】 成形体中に無機繊維及び結合剤の少くと
も1種が更に含有されている請求項1記載の成形体。
2. The molded product according to claim 1, further comprising at least one kind of an inorganic fiber and a binder in the molded product.
【請求項3】成形体のかさ密度が0.3g/cm以下
であり、該成形体を構成する球状二次粒子は、成形体の
研磨面の走査電子顕微鏡写真(600倍)で球状二次粒
子の存在が確認できる程度に圧縮変形されていることを
特徴とする請求項1記載の成形体。
3. The bulk density of the molded product is 0.3 g / cm 3 or less, and the spherical secondary particles constituting the molded product are spherical secondary particles in a scanning electron micrograph (600 times) of the polished surface of the molded product. The molded product according to claim 1, which is compressed and deformed to the extent that the presence of secondary particles can be confirmed.
【請求項4】成形体のかさ密度が0.3g/cm以上
であり、該成形体を構成する球状二次粒子は偏平化され
顕著な優先配向を示す程度に圧縮変形されていることを
特徴とする請求項1記載の成形体。
4. The molded article has a bulk density of 0.3 g / cm 3 or more, and the spherical secondary particles constituting the molded article are flattened and compressed and deformed to such an extent as to exhibit a remarkable preferential orientation. The molded article according to claim 1, which is characterized in that.
JP5047571A 1993-01-26 1993-01-26 Calcium silicate compact Expired - Lifetime JPH0747503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047571A JPH0747503B2 (en) 1993-01-26 1993-01-26 Calcium silicate compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047571A JPH0747503B2 (en) 1993-01-26 1993-01-26 Calcium silicate compact

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7422182A Division JPS58190852A (en) 1982-04-30 1982-04-30 Calcium silicate formed body and manufacture

Publications (2)

Publication Number Publication Date
JPH0616464A true JPH0616464A (en) 1994-01-25
JPH0747503B2 JPH0747503B2 (en) 1995-05-24

Family

ID=12778930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047571A Expired - Lifetime JPH0747503B2 (en) 1993-01-26 1993-01-26 Calcium silicate compact

Country Status (1)

Country Link
JP (1) JPH0747503B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529952A (en) * 1978-08-24 1980-03-03 Kawasaki Heavy Ind Ltd Automatic chocolate applicator
JPH0327487A (en) * 1989-06-26 1991-02-05 Oki Electric Ind Co Ltd Optical character reading device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529952A (en) * 1978-08-24 1980-03-03 Kawasaki Heavy Ind Ltd Automatic chocolate applicator
JPH0327487A (en) * 1989-06-26 1991-02-05 Oki Electric Ind Co Ltd Optical character reading device

Also Published As

Publication number Publication date
JPH0747503B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US4162924A (en) Shaped bodies of calcium silicate and process for producing same
JPH0214285B2 (en)
EP0166789B1 (en) Formed article of calcium silicate and method of the preparation thereof
EP1565406A1 (en) Method and apparatus for producing calcium silicate hydrate
JP2571993B2 (en) Method for producing spherical secondary particles of tobermorite crystals
US4295893A (en) Alumina-containing calcium silicate and process for producing same
JPH0616464A (en) Calciumsilicate molded body
JPH0422851B2 (en)
JPS62143854A (en) Manufacture of calcium silicate base formed body
JP2782198B2 (en) Calcium silicate compact
JPS5941942B2 (en) Calcium silicate molded body
JPS5945953A (en) Manufacture of calcium silicate hydrate product
KR800001114B1 (en) Shaped bodies of calcium silicate and process for producing the same
KR960006224B1 (en) Process for producing mould of calcium silicate
JPS60155561A (en) Aqueous slurry
JP4902008B1 (en) Inorganic binder and molded article produced using the same
CA1117990A (en) Alumina-containing calcium silicate and process for producing same
JPS6213299B2 (en)
JP2681203B2 (en) Calcium silicate compact
JP2022067564A (en) Method for producing calcium silicate hydrate slurry
KR810000873B1 (en) Preparation of the slurry for shaped bodies of calcium silicate
JPS61219751A (en) Manufacture of calcium silicate formed body
JPS61186256A (en) Manufacture of calcium silicate molded body
KR790001084B1 (en) Method for manufacturing of wollastonite crystals
JPH0158146B2 (en)