JP2023173642A - Method for producing inorganic lightweight material - Google Patents

Method for producing inorganic lightweight material Download PDF

Info

Publication number
JP2023173642A
JP2023173642A JP2022086040A JP2022086040A JP2023173642A JP 2023173642 A JP2023173642 A JP 2023173642A JP 2022086040 A JP2022086040 A JP 2022086040A JP 2022086040 A JP2022086040 A JP 2022086040A JP 2023173642 A JP2023173642 A JP 2023173642A
Authority
JP
Japan
Prior art keywords
inorganic
raw material
mass
foam
calcareous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022086040A
Other languages
Japanese (ja)
Inventor
泰英 尾塩
Yasuhide Oshio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2022086040A priority Critical patent/JP2023173642A/en
Publication of JP2023173642A publication Critical patent/JP2023173642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a method for producing an inorganic lightweight material, which is mainly composed of crystalline calcium silicate hydrate, and which does not degrade a function of a final inorganic board.SOLUTION: A method for producing an inorganic lightweight material mainly composed of calcium silicate hydrate includes hydrothermally synthesizing a slurry containing (a) a calcareous raw material, (b) a silicate raw material, (c) an inorganic foam, and (d) water, wherein: in a particle size of the inorganic foam, 80 mass% or less of the particles passes through a sieve having a gap of 0.15 mm; an addition rate of the inorganic foam is 20-45 mass% of (a) the calcareous material and (b) the silicate material; and a mass (d/(a+b+c)) of water (d) is 5.0 or more and less than 9.0 relative to the total mass of (a) the calcareous raw material, (b) the silicate raw material, and (c) the inorganic foam.SELECTED DRAWING: None

Description

本発明は、無機軽量化材の製造方法に関する。 The present invention relates to a method for manufacturing an inorganic lightweight material.

けい酸カルシウム板などの無機質板は、不燃性及び耐久性に優れており、かつ軽量であるため建材として広く使用されている。これらの無機質板の製造に際して、石灰質原料とけい酸質原料を水中に分散させたスラリーを水熱合成させて結晶質けい酸カルシウム水和物スラリーとし、これを無機軽量化材として原料に使用することが知られている(特許文献1~4)。 Inorganic boards such as calcium silicate boards are widely used as building materials because they are nonflammable, durable, and lightweight. When producing these inorganic plates, a slurry in which calcareous raw materials and silicic acid raw materials are dispersed in water is hydrothermally synthesized to produce a crystalline calcium silicate hydrate slurry, which is used as a raw material as an inorganic lightweight material. are known (Patent Documents 1 to 4).

特開昭52-105926号公報Japanese Unexamined Patent Publication No. 52-105926 特開昭52-135330号公報Japanese Unexamined Patent Publication No. 52-135330 特開2003-212629号公報Japanese Patent Application Publication No. 2003-212629 特開2019-43783号公報JP2019-43783A

しかしながら、従来使用されている結晶質けい酸カルシウム水和物を主成分とする無機軽量化材を用いて得られた無機質板(建材)のかさ密度は十分に低下していない。建材の施工員の高齢化や輸送時のエネルギー消費量削減の観点から、無機質板の曲げ強度などの機能を低下させることなく、更に軽量化できる無機軽量化材の製造が求められている。
従って、本発明の課題は、最終的な無機質板の機能を低下させることのない、結晶質けい酸カルシウム水和物を主成分とする無機軽量化材の製造方法を提供することにある。
However, the bulk density of inorganic boards (building materials) obtained using conventionally used inorganic lightweighting materials containing crystalline calcium silicate hydrate as a main component has not been sufficiently reduced. In view of the aging of building material construction workers and the reduction of energy consumption during transportation, there is a need for the production of inorganic lightweight materials that can further reduce the weight of inorganic plates without reducing their functions such as bending strength.
Therefore, an object of the present invention is to provide a method for producing an inorganic lightweight material containing crystalline calcium silicate hydrate as a main component without reducing the functionality of the final inorganic board.

そこで、本発明者は、まず、無機質板への前記無機軽量化材配合量増加を検討したが、それには無機軽量化材の反応設備であるダイジェスターの増設が必須であり、大きな設備投資が必要であることが判明した。また、既存のダイジェスターから無機軽量化材を多く得るために、ダイジェスターに投入する石灰質原料とけい酸質原料の固形物配合量を増加させたところ、合成後の無機軽量化材は流動性がなく、無機質板に用いる原料スラリーとして適さないものとなった。そこで、石灰質原料及びけい酸質原料に加えて一定の粒度を有する無機発泡体を一定量配合して水熱合成を行って得られた無機軽量化材を用いれば、無機質板製造時の無機軽量化材の固形物配合量を多くすることができるにもかかわらず、原料スラリーの流動性も良好で、かつ得られる無機質板が軽量化できるとともに強度の低下もないことが判明した。 Therefore, the present inventor first considered increasing the amount of the inorganic lightweighting material blended into the inorganic board, but this required the addition of a digester, which is a reaction equipment for the inorganic lightweighting material, and required a large capital investment. It turned out to be necessary. In addition, in order to obtain a large amount of inorganic lightweighting material from the existing digester, we increased the solid content of calcareous raw materials and silicic acid raw materials fed into the digester, but the fluidity of the inorganic lightweighting material after synthesis was increased. Therefore, it was not suitable as a raw material slurry for use in inorganic plates. Therefore, if we use an inorganic lightweighting material obtained by hydrothermally synthesizing a certain amount of inorganic foam with a certain particle size in addition to calcareous raw materials and silicic acid raw materials, it is possible to reduce the inorganic weight when manufacturing inorganic boards. It has been found that even though the amount of solids in the compounding material can be increased, the fluidity of the raw material slurry is good, and the weight of the resulting inorganic plate can be reduced, with no decrease in strength.

すなわち、本発明は、次の発明[1]及び[2]を提供するものである。
[1](a)石灰質原料、(b)けい酸質原料、(c)無機発泡体及び(d)水を含有するスラリーを水熱合成することを特徴とする、結晶質けい酸カルシウム水和物を主成分とする無機軽量化材の製造方法であって、前記無機発泡体の粒度が目開き0.15mmふるい通過分が80質量%以下であり、前記無機発泡体の添加率が(a)石灰質原料及び(b)けい酸質原料の質量に対して20~45質量%であり、(a)石灰質原料、(b)けい酸質原料及び(c)無機発泡体の合計質量に対する(d)水の質量(d/(a+b+c))が、5.0以上9.0以下である、無機軽量化材の製造方法。
[2](a)石灰質原料に含まれるCaOと(b)けい酸質原料に含まれるSiO2のモル比(CaO/SiO2)が、0.3以上1.5以下である[1]記載の無機軽量化材の製造方法。
That is, the present invention provides the following inventions [1] and [2].
[1] Crystalline calcium silicate hydration, characterized by hydrothermally synthesizing a slurry containing (a) a calcareous raw material, (b) a silicate raw material, (c) an inorganic foam, and (d) water. A method for producing an inorganic lightweighting material mainly composed of a ) Calcareous raw material and (b) silicic acid raw material 20 to 45% by mass based on the mass of (d) Calcareous raw material, (b) silicic acid raw material and (c) inorganic foam ) A method for producing an inorganic lightweight material, wherein the mass of water (d/(a+b+c)) is 5.0 or more and 9.0 or less.
[2] Description in [1] where the molar ratio (CaO/SiO 2 ) of (a) CaO contained in the calcareous raw material and (b) SiO 2 contained in the silicic raw material is 0.3 or more and 1.5 or less A method for producing an inorganic lightweight material.

本発明方法により得られる無機軽量化材を用いれば、無機質板製造時の無機軽量化材の固形物配合量を多くすることができるにもかかわらず、原料スラリーの流動性も良好で、かつ得られる無機質板が軽量化できるとともに強度の低下もない。また、無機軽量化材の固形物配合量が多いにもかかわらず、製造設備の増設も必要ない。 By using the inorganic lightweighting material obtained by the method of the present invention, it is possible to increase the amount of solids in the inorganic lightweighting material during the production of inorganic boards, and the fluidity of the raw material slurry is also good and the yield is good. The weight of the inorganic board can be reduced and there is no decrease in strength. Furthermore, despite the large amount of solid content of the inorganic lightweighting material, no additional manufacturing equipment is required.

本発明の一態様は、(a)石灰質原料、(b)けい酸質原料、(c)無機発泡体及び(d)水を含有するスラリーを水熱合成することを特徴とする、結晶質けい酸カルシウム水和物を主成分とする無機軽量化材の製造方法であって、
前記無機発泡体の粒度が目開き0.15mmふるい通過分が80質量%以下であり、
前記無機発泡体の添加率が(a)石灰質原料及び(b)けい酸質原料の質量に対して20~45質量%であり、
(a)石灰質原料、(b)けい酸質原料及び(c)無機発泡体の合計質量に対する(d)水の質量(d/(a+b+c))が、5.0以上9.0以下である、無機軽量化材の製造方法である。
One aspect of the present invention is to hydrothermally synthesize a slurry containing (a) a calcareous raw material, (b) a silicic acid raw material, (c) an inorganic foam, and (d) water. A method for producing an inorganic lightweighting material containing calcium acid hydrate as a main component, the method comprising:
The particle size of the inorganic foam is 80% by mass or less passing through a sieve with an opening of 0.15 mm,
The addition rate of the inorganic foam is 20 to 45% by mass with respect to the mass of (a) calcareous raw material and (b) silicic acid raw material,
The mass of (d) water (d/(a+b+c)) relative to the total mass of (a) calcareous raw material, (b) silicic acid raw material, and (c) inorganic foam is 5.0 or more and 9.0 or less, This is a method for producing an inorganic lightweight material.

本発明の製造方法に用いられる(a)石灰質原料としては、消石灰、生石灰などが挙げられる。
(b)けい酸質原料としては、珪砂、珪石粉、焼成珪藻土等の結晶質シリカ、珪藻土、シリカフューム、フライアッシュ、非晶質合成シリカ等の非晶質シリカが挙げられる。これらの石灰質原料及びけい酸質原料は、それぞれ1種又は2種以上を用いることができる。
(a)石灰質原料に含まれるCaOと(b)けい酸質原料に含まれるSiO2のモル比(CaO/SiO2)は、結晶化反応が進みやすいこと及び見掛け密度の小さい沈殿物を得やすい等の点から0.3以上1.5以下であるのが好ましく、0.4以上1.0以下であるのがより好ましい。
Examples of the calcareous raw material (a) used in the production method of the present invention include slaked lime and quicklime.
(b) Examples of the siliceous raw material include crystalline silica such as silica sand, silica powder, and calcined diatomaceous earth, and amorphous silica such as diatomaceous earth, silica fume, fly ash, and amorphous synthetic silica. These calcareous raw materials and silicic acid raw materials can be used alone or in combination of two or more.
The molar ratio (CaO/SiO 2 ) of (a) CaO contained in the calcareous raw material and (b) SiO 2 contained in the silicic acid raw material is such that the crystallization reaction tends to proceed easily and it is easy to obtain precipitates with low apparent density. From these points of view, it is preferably 0.3 or more and 1.5 or less, and more preferably 0.4 or more and 1.0 or less.

(c)無機発泡体とは、多孔質である無機材料をいい、多孔質金属、多孔質無機酸化物、多孔質無機酸化物複合体、多孔質セラミックスなどが含まれる。具体的には、パーライト、合成ゼオライト、メタロシリケート、多孔質金属、多孔質金属酸化物、多孔質ガラス、エアロゲル、多孔質シリコン、多孔質セラミックス、中空無機物粒子、無機質バルーン、ガラス質バルーン、火山性軽石粒子、気泡コンクリート粒子、ALC粉砕粒子、焼成ひる石、膨張スラグ、けい酸カルシウム断熱材粉砕粒子、軽量けい酸カルシウム造粒粒子、ガラス質発泡体や火山質発泡体を含む瓦廃材の粉砕物粒子、多孔質軽量陶磁器の粉砕物粒子、多孔質耐火断熱れんがの粉砕物粒子、多孔質のアロフェン焼成物粉砕粒子などが挙げられる。
ここで、多孔質金属としては、多孔質アルミ、多孔質チタン、多孔質鉄、多孔質ニッケル、多孔質銅及びそれらを組み合わせて合金とした材料を粒子状とした多孔質金属粉末が挙げられる。多孔質金属酸化物としては、多孔質酸化チタン、多孔質アルミナ、多孔質リン酸カルシウム、多孔質リン酸アルミニウムなどが挙げられる。多孔質ガラスとしては、耐アルカリ性多孔質ガラス、チタニア含有多孔質ガラス、リン酸塩系多孔質ガラス、ホウケイ酸ガラス、シラス多孔質ガラス、アルミノシリケート多孔質ガラスが挙げられる。エアロゲルとしては、チタニアエアロゲル、ジルコニアエアロゲル、バナジアエアロゲル、シリカエアロゲルをチタニアで被覆したチタニア被覆シリカエアロゲルが挙げられる。多孔質セラミックスとしては、多孔質窒化ケイ素、ジルコン酸カルシウム-マグネシア系多孔質複合材料、多孔質サイアロン、多孔質セラミックスフォーム、多孔質炭化ケイ素が挙げられる。中空粒子としては、中空酸化鉄粒子、中空炭酸コバルト粒子、中空アルカリ土類金属珪酸塩粒子、中空マグネシウムけい酸塩粒子、中空カルシウムけい酸塩粒子、中空ストロンチウムけい酸塩粒子、中空バリウムけい酸塩粒子、中空コバルト・フェライト粒子、中空酸化亜鉛粒子、酸化亜鉛・酸化コバルト複合中空粒子が挙げられる。無機質バルーンとしては、アルミナバルーン、シリカバルーン、ジルコニアバルーン、マグネシアバルーン、及びこれらの複合材料が挙げられる。ガラス質バルーンとしては、シラスバルーン、フライアッシュ、セノスフィア、フィライトが挙げられる。
これらの無機発泡体は1種又は2種以上を用いることができる。
(c) Inorganic foam refers to a porous inorganic material, and includes porous metals, porous inorganic oxides, porous inorganic oxide composites, porous ceramics, and the like. Specifically, pearlite, synthetic zeolite, metallosilicate, porous metal, porous metal oxide, porous glass, aerogel, porous silicon, porous ceramics, hollow inorganic particles, inorganic balloon, vitreous balloon, volcanic Pumice particles, aerated concrete particles, ALC pulverized particles, calcined vermiculite, expanded slag, calcium silicate insulation pulverized particles, lightweight calcium silicate granulated particles, pulverized tile waste materials including vitreous foam and volcanic foam. Examples include particles, crushed particles of porous lightweight ceramics, crushed particles of porous fireproof insulation brick, crushed particles of porous allophane fired product, and the like.
Here, porous metals include porous aluminum, porous titanium, porous iron, porous nickel, porous copper, and porous metal powders made of particles made of alloys made by combining these materials. Porous metal oxides include porous titanium oxide, porous alumina, porous calcium phosphate, porous aluminum phosphate, and the like. Examples of the porous glass include alkali-resistant porous glass, titania-containing porous glass, phosphate-based porous glass, borosilicate glass, shirasu porous glass, and aluminosilicate porous glass. Examples of the aerogel include titania aerogel, zirconia aerogel, vanadia aerogel, and titania-coated silica aerogel, which is a silica aerogel coated with titania. Porous ceramics include porous silicon nitride, calcium zirconate-magnesia porous composite material, porous sialon, porous ceramic foam, and porous silicon carbide. Hollow particles include hollow iron oxide particles, hollow cobalt carbonate particles, hollow alkaline earth metal silicate particles, hollow magnesium silicate particles, hollow calcium silicate particles, hollow strontium silicate particles, and hollow barium silicate particles. particles, hollow cobalt/ferrite particles, hollow zinc oxide particles, and zinc oxide/cobalt oxide composite hollow particles. Examples of inorganic balloons include alumina balloons, silica balloons, zirconia balloons, magnesia balloons, and composite materials thereof. Examples of glassy balloons include shirasu balloons, fly ash, cenospheres, and phyllites.
These inorganic foams can be used alone or in combination of two or more.

(c)無機発泡体の粒度は、水熱合成時のスラリーの流動性、得られる無機質板の軽量化の観点から、目開き0.15mmふるい通過分が80質量%以下であるのが好ましく、75質量%以下であるのがより好ましく、70質量%以下であるのがさらに好ましい。
(c)無機発泡体の添加率は、得られる無機質板の軽量化のために無機質板中の無機軽量化材固形物量を多くする観点から、(a)石灰質原料及び(b)けい酸質原料の質量に対して20~45質量%であるのが好ましく、20~40質量%であるのがより好ましい。
(c) The particle size of the inorganic foam is preferably such that the amount passing through a 0.15 mm sieve is 80% by mass or less, from the viewpoint of the fluidity of the slurry during hydrothermal synthesis and the weight reduction of the obtained inorganic plate. It is more preferably 75% by mass or less, and even more preferably 70% by mass or less.
(c) The addition rate of the inorganic foam is determined from the viewpoint of increasing the solid content of the inorganic lightweight material in the inorganic board in order to reduce the weight of the obtained inorganic board. It is preferably 20 to 45% by weight, more preferably 20 to 40% by weight, based on the weight of .

(d)水は、前記成分(a)及び(b)を反応させて結晶質けい酸カルシウム水和物を形成させる点から必要であるが、水熱合成時のスラリーの流動性、無機質板中の無機軽量化材固形物量を多くする観点から、(a)石灰質原料、(b)けい酸質原料及び(c)無機発泡体の合計質量に対する(d)水の質量(d/(a+b+c))が、5.0以上9.0以下であるのが好ましく、5.0以上8.0以下であるのがより好ましく、5.0以上7.5以下であるのがさらに好ましく、5.0以上7.0以下がよりさらに好ましい。 (d) Water is necessary to form crystalline calcium silicate hydrate by reacting the components (a) and (b), but it is necessary to improve the fluidity of the slurry during hydrothermal synthesis and the inorganic plate content. From the viewpoint of increasing the solid content of the inorganic lightweighting material, the mass (d/(a+b+c)) of (d) water relative to the total mass of (a) calcareous raw material, (b) silicic acid raw material, and (c) inorganic foam. is preferably 5.0 or more and 9.0 or less, more preferably 5.0 or more and 8.0 or less, even more preferably 5.0 or more and 7.5 or less, and 5.0 or more. Even more preferably 7.0 or less.

本発明においては、(a)石灰質原料、(b)けい酸質原料、(c)無機発泡体及び(d)水を含有するスラリーを水熱合成することにより、結晶質けい酸カルシウム水和物を主成分とする無機軽量化材を製造する。
水熱合成は、前記成分を含有するスラリーを、圧力容器中で150~220℃の温度で、沈降しない程度にゆっくり撹拌しながら好ましくは0.5~24時間、より好ましくは1~10時間、さらに好ましくは2~5時間反応させればよい。
この水熱合成により、石灰質原料とけい酸質原料が反応して結晶質けい酸カルシウム水和物を主成分とする無機軽量化材が得られる。結晶質けい酸カルシウム水和物としては、トバモライトを形成しているのが好ましい。ここで、(c)無機発泡体は、骨材のような作用をするものと考えられる。
In the present invention, crystalline calcium silicate hydrate is produced by hydrothermally synthesizing a slurry containing (a) a calcareous raw material, (b) a silicate raw material, (c) an inorganic foam, and (d) water. Manufactures inorganic lightweight materials whose main ingredients are
In the hydrothermal synthesis, a slurry containing the above-mentioned components is heated in a pressure vessel at a temperature of 150 to 220° C. while stirring slowly to the extent that no sedimentation occurs, preferably for 0.5 to 24 hours, more preferably for 1 to 10 hours. More preferably, the reaction may be carried out for 2 to 5 hours.
Through this hydrothermal synthesis, the calcareous raw material and the silicic acid raw material react, and an inorganic lightweight material containing crystalline calcium silicate hydrate as a main component is obtained. The crystalline calcium silicate hydrate preferably forms tobermorite. Here, the inorganic foam (c) is considered to act like an aggregate.

前記のようにして得られる無機軽量化材は、結晶質けい酸カルシウム水和物を主成分とするスラリーの形態で存在するので、そのままけい酸カルシウム板などの無機質板の軽量化材として使用することができる。
無機質板(けい酸カルシウム成形体ともいう)は、前記無機軽量化材、石灰質原料、けい酸質原料、補強繊維、セメント及び充填材を含有するスラリーを湿式成形することにより製造することができる。
The inorganic lightweighting material obtained as described above exists in the form of a slurry containing crystalline calcium silicate hydrate as a main component, so it can be used as it is as a lightweighting material for inorganic boards such as calcium silicate boards. be able to.
The inorganic board (also referred to as a calcium silicate molded body) can be produced by wet molding a slurry containing the inorganic lightweighting material, calcareous raw material, silicate raw material, reinforcing fiber, cement, and filler.

無機質板の製造においては、例えば前記無機軽量化材を10~30質量%、石灰質原料を5~15質量%、けい酸質原料を10~20質量%、補強繊維を5~15質量%、セメントを10~20質量%、充填材を0~60質量%使用する。ここで、補強繊維としては、天然繊維及び合成繊維のいずれも使用することができる。また、石灰質原料としては、消石灰、生石灰など、けい酸質原料としては、珪砂、珪石粉、焼成珪藻土等の結晶質シリカ、珪藻土、シリカフューム、フライアッシュ、非晶質合成シリカ等の非晶質シリカを用いることができ、セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメントを用いることができる。充填材としては、石炭灰、シリカヒューム、スラグ粉末、シラス、珪石粉、雲母粉、針状珪灰石(ワラストナイト)、珪灰石粉、炭酸カルシウム、タルク、ベントナイト、けい酸カルシウム板廃材の粉砕粉(スクラップ)などを用いることができる。
湿式成形手段としては、前記無機軽量化材、石灰質原料、けい酸質原料、補強繊維、セメント及び充填材などを含有するスラリーを抄造法、脱水プレスなどにより成形する方法が挙げられる。得られた成形体は、1枚で又は複数枚積層して加圧成形した後、養生、硬化することにより、無機質板が得られる。
In the production of an inorganic board, for example, 10 to 30% by mass of the inorganic lightweighting material, 5 to 15% by mass of calcareous raw material, 10 to 20% by mass of silicate raw material, 5 to 15% by mass of reinforcing fiber, and cement. The filler is used in an amount of 10 to 20% by mass and a filler in an amount of 0 to 60% by mass. Here, both natural fibers and synthetic fibers can be used as the reinforcing fibers. Calcareous raw materials include slaked lime and quicklime, and silicic acid raw materials include silica sand, silica powder, crystalline silica such as calcined diatomaceous earth, and amorphous silica such as diatomaceous earth, silica fume, fly ash, and amorphous synthetic silica. As the cement, ordinary Portland cement, early strength Portland cement, and ultra early strength Portland cement can be used. Filling materials include coal ash, silica fume, slag powder, whitebait, silica powder, mica powder, acicular wollastonite, wollastonite powder, calcium carbonate, talc, bentonite, and crushed powder of calcium silicate board waste. (scrap) etc. can be used.
Examples of the wet forming means include a method of forming a slurry containing the above-mentioned inorganic lightweighting material, calcareous raw material, silicic acid raw material, reinforcing fiber, cement, filler, etc. by a paper making method, a dehydration press, etc. The obtained molded product is pressure-molded singly or in a plurality of layers, and then cured and cured to obtain an inorganic board.

本発明の無機軽量化材を用いて得られる無機質板(成形体)は、成形体1枚当たりの無機軽量化材固形物質量を多くすることができ、かつ多い数の成形体を得ることができる。その結果、得られた無機質板は軽量であり、かつ曲げ強度などの強度は高強度が維持されている。 The inorganic plate (molded body) obtained using the inorganic lightweighting material of the present invention can increase the amount of inorganic lightweighting material solid substance per molded body, and can obtain a large number of molded bodies. can. As a result, the obtained inorganic plate is lightweight and maintains high strength such as bending strength.

次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例(無機軽量化材の製造)
水に石灰質原料(生石灰)、けい酸質原料(7500ブレーン珪石)を加え、さらに無機発泡体を加えて(加えない場合もあり)スラリー状にし、撹拌機付きの圧力容器中で攪拌しながら温度185℃で2.0時間の水熱合成を行い、結晶質けい酸カルシウム水和物を主成分とする無機軽量化材を得た。
Example (manufacture of inorganic lightweight material)
Add calcareous raw material (quicklime) and silicic acid raw material (7500 Brain silica stone) to water, and then add (sometimes do not add) an inorganic foam to make a slurry. While stirring in a pressure vessel equipped with a stirrer, the temperature Hydrothermal synthesis was performed at 185° C. for 2.0 hours to obtain an inorganic lightweight material containing crystalline calcium silicate hydrate as a main component.

この結果、実施例1、2、3、4の無機軽量化材について、無機発泡体としてパーライトA(目開き0.15mmふるい通過分61質量%)を石灰質原料、けい酸質原料の和に対してそれぞれ30.0質量%、23.0質量%、30.0質量%、37.0質量%添加し、水比(d/(a+b+c))をそれぞれ6.9、6.1、5.8、5.5として合成したところ、無機質板の原料として適したスラリー流動性が得られた。 As a result, for the inorganic lightweighting materials of Examples 1, 2, 3, and 4, perlite A (61% by mass passing through a 0.15 mm sieve) was added as an inorganic foam to the sum of the calcareous raw material and the silicic acid raw material. 30.0% by mass, 23.0% by mass, 30.0% by mass, and 37.0% by mass were added, respectively, and the water ratio (d/(a+b+c)) was 6.9, 6.1, and 5.8, respectively. , 5.5, the slurry fluidity suitable as a raw material for an inorganic plate was obtained.

一方、比較例1、2、3、6の無機軽量化材について、
No.1:無機発泡体としてパーライトAを石灰質原料、けい酸質原料の和に対して実施例1、実施例3と同様に30質量%添加しているが、水比(d/(a+b+c))が10.0と高い。
No.2:水比(d/(a+b+c))は実施例1と同様で、無機発泡体としてのパーライトA添加が10.0質量%と少ない。
No.3:水比(d/(a+b+c))が5.2であるが、無機発泡体としてのパーライトA添加が50.0質量%と多い。
No.6:無機発泡体を添加しないで、水比(d/(a+b+c))を7.5として無機軽量化材を合成している。
また、比較例4、5、7の無機軽量化材について、
No.4:無機発泡体としてパーライトAを石灰質原料、けい酸質原料の和に対して30.0質量%添加している点は実施例1、実施例3と同じであるが、水比(d/(a+b+c))が4.8と低い
No.5:水比(d/(a+b+c))及び無機発泡体の添加率は実施例3同じであるが、使用無機発泡体がパーライトB(目開き0.15mmふるい通過分100質量%)の細粒品である
No.7:水比(d/(a+b+c))は実施例1、2、3より高い7.0であるが、無機発泡体を使用してない。
これらは、合成後流動性がなくスラリーの攪拌が困難な状態と確認され、無機質板の原料として適していないものであった。
On the other hand, regarding the inorganic lightweight materials of Comparative Examples 1, 2, 3, and 6,
No. 1: As an inorganic foam, 30% by mass of perlite A is added to the sum of calcareous raw materials and silicic raw materials as in Examples 1 and 3, but the water ratio (d/(a+b+c)) It is high at 10.0.
No. 2: Water ratio (d/(a+b+c)) is the same as in Example 1, and the addition of perlite A as an inorganic foam is as small as 10.0% by mass.
No. 3: The water ratio (d/(a+b+c)) is 5.2, but the addition of perlite A as an inorganic foam is as high as 50.0% by mass.
No. 6: An inorganic lightweight material was synthesized without adding an inorganic foam and with a water ratio (d/(a+b+c)) of 7.5.
In addition, regarding the inorganic lightweight materials of Comparative Examples 4, 5, and 7,
No. 4: Same as Examples 1 and 3 in that 30.0% by mass of perlite A is added as an inorganic foam based on the sum of the calcareous raw material and the silicic acid raw material, but the water ratio (d/ (a+b+c)) is low at 4.8 No. 5: The water ratio (d/(a+b+c)) and the addition rate of the inorganic foam are the same as in Example 3, but the inorganic foam used is fine particles of perlite B (100% by mass of the amount passing through a 0.15 mm sieve). Good quality No. 7: Water ratio (d/(a+b+c)) is 7.0, which is higher than Examples 1, 2, and 3, but no inorganic foam is used.
It was confirmed that these materials had no fluidity after synthesis and it was difficult to stir the slurry, so they were not suitable as raw materials for inorganic plates.

参考例(無機質板(けい酸カルシウム成形体)の製造)
比較例4、5、7以外の、流動性が確保され、無機質板の原料として適している無機軽量化材を用いた無機質板を以下のように製造した。
実施例、比較例により合成した無機軽量化材全量と、他の原料を表2、3に示すように配合し、抄造法を模したテーブルテストにより、厚さ8mm×幅150mm×長さ200mmの試験体を一定のプレス圧により成形し、180℃の飽和蒸気圧で10時間の水熱処理を行った。なお、無機質板配合について、パーライトを無機軽量化材合成時に添加した場合との比較として、比較例6のパーライト無添加無機軽量化材使用の場合で、無機質板配合にパーライトを使用し成形を行った。(使用無機軽量化材No.6-d~i)
表3においてかさ密度はJIS A5430 8.5 かさ密度試験(けい酸カルシウム板(タイプ2))により測定したものである。曲げ強さは、無機質板を60℃で24時間乾燥後、150mm×200mmサイズによりスパン150mm、クロスヘッドスピード1mm/分により3点曲げ試験法により行ったものである。
Reference example (manufacture of inorganic board (calcium silicate molded body))
Inorganic plates other than Comparative Examples 4, 5, and 7 using inorganic lightweighting materials that ensure fluidity and are suitable as raw materials for inorganic plates were manufactured as follows.
The total amount of the inorganic lightweight materials synthesized in the Examples and Comparative Examples and other raw materials were blended as shown in Tables 2 and 3, and a table test simulating the papermaking method was conducted to form a sheet of 8 mm thick x 150 mm wide x 200 mm long. The test specimen was molded under a constant press pressure and subjected to hydrothermal treatment at 180° C. and saturated steam pressure for 10 hours. Regarding the inorganic plate formulation, as a comparison with the case where pearlite was added during the synthesis of the inorganic lightweight material, in the case of using the inorganic lightweight material without pearlite added in Comparative Example 6, pearlite was used in the inorganic plate formulation and molding was performed. Ta. (Used inorganic lightweight materials No. 6-d to i)
In Table 3, the bulk density was measured by JIS A5430 8.5 bulk density test (calcium silicate plate (type 2)). The bending strength was determined by drying the inorganic plate at 60° C. for 24 hours, and then using a three-point bending test method using a size of 150 mm x 200 mm, a span of 150 mm, and a crosshead speed of 1 mm/min.

実施例1、2、3、4の無機軽量化材を用いた無機質板について、10枚の無機質板が成形され、無機質板かさ密度が0.65~0.69g/cm3、曲げ強さ7.5~7.8N/mm2が得られた。また、パーライトを無機軽量化材合成時に添加していることから、合成後パーライトがけい酸カルシウム水和物に覆われ、無機質板にパーライトの粒が目立つことがなく良好な外観であった。
比較例2、及び比較例6の無機軽量化材を用いたNo.2-a、6-a、6-b、6-d、6-e、6-gの無機質板について、10~12枚の無機質板が成形されたが、6-g以外では無機質板かさ密度が0.70g/cm3を超え、6-d、6-e、6-gについては無機質板にパーライトの粒が目立ち、外観上の問題が認められた。さらに、6-d、6-gについては無機質板配合へのパーライト使用の影響により曲げ強さが6.7~6.8N/mm2と低く認められた。
比較例1、比較例2、比較例3、比較例6の無機軽量化材を用いたNo.1-a、1-b、2-b、2-c、3-a、3-b、6-c、6-h、6-iの無機質板について、成形枚数が9枚以下と生産効率が低く、3-b、6-hについては、パーライト添加量の多い無機軽量化材の無機質板配合への多量添加、または、無機質板配合へのパーライト使用の影響によりパーライトの粒が目立つ外観上の問題が認められた。さらに、3-b、6-h、6-iについては曲げ強さが6.3~6.8N/mm2と低く認められた。
比較例6の無機軽量化材を用いたNo.6-fの無機質板について、無機質板成形枚数が10枚であり無機質板のかさ密度が0.67g/cm3と低かったが、無機質板配合へのパーライト使用の影響により曲げ強さが6.4N/mm2と低く、パーライトの粒が目立つ外観上の問題が認められた。
以上から、実施例1、2、3、4の無機軽量化材を用いた場合、合成時のパーライトの配合により水比を低くできることから合成の際の固形物を多くすることができ、それにより無機質板配合での無機軽量化材固形物を多く配合することができた。その結果、高い生産効率で低いかさ密度の無機質板を得ることができた。さらに、パーライトを無機軽量化材合成時に添加していることから、無機質板にパーライトの粒が目立つことがなく良好な外観であり、無機質板配合へのパーライト使用の場合より曲げ強さが高かった。
Ten inorganic plates were molded using the inorganic lightweight materials of Examples 1, 2, 3, and 4, and the bulk density of the inorganic plates was 0.65 to 0.69 g/cm 3 and the bending strength was 7. .5 to 7.8 N/mm 2 was obtained. In addition, since pearlite was added during the synthesis of the inorganic lightweight material, the pearlite was covered with calcium silicate hydrate after synthesis, and the inorganic board had no visible pearlite particles, giving it a good appearance.
No. 2 using the inorganic lightweight materials of Comparative Example 2 and Comparative Example 6. For the inorganic plates 2-a, 6-a, 6-b, 6-d, 6-e, and 6-g, 10 to 12 inorganic plates were molded, but the bulk density of the inorganic plates other than 6-g was exceeded 0.70 g/cm 3 , and for 6-d, 6-e, and 6-g, pearlite grains were noticeable on the inorganic plates, and problems in appearance were observed. Furthermore, for 6-d and 6-g, the bending strength was found to be low at 6.7 to 6.8 N/mm 2 due to the influence of the use of pearlite in the inorganic board formulation.
No. 1 using the inorganic lightweight materials of Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 6. Regarding inorganic plates 1-a, 1-b, 2-b, 2-c, 3-a, 3-b, 6-c, 6-h, and 6-i, production efficiency is high when the number of molded sheets is 9 or less. For low, 3-b and 6-h, pearlite grains are noticeable due to the influence of adding a large amount of inorganic lightweighting material to the inorganic board formulation, or the use of pearlite in the inorganic board formulation. Problem acknowledged. Furthermore, for 3-b, 6-h, and 6-i, the bending strength was found to be low at 6.3 to 6.8 N/mm 2 .
No. 1 using the inorganic lightweight material of Comparative Example 6. Regarding the inorganic board of 6-f, the number of inorganic boards molded was 10 and the bulk density of the inorganic board was low at 0.67 g/cm 3 , but the bending strength was 6.7 g/cm 3 due to the influence of the use of pearlite in the inorganic board formulation. It was as low as 4 N/mm 2 , and an appearance problem was observed in which pearlite grains were noticeable.
From the above, when the inorganic lightweighting materials of Examples 1, 2, 3, and 4 are used, the water ratio can be lowered by adding pearlite during synthesis, and the solid content during synthesis can be increased. It was possible to incorporate a large amount of solid inorganic weight-reducing material in the inorganic board formulation. As a result, it was possible to obtain an inorganic plate with high production efficiency and low bulk density. Furthermore, since pearlite was added during the synthesis of the inorganic lightweight material, the inorganic board had no noticeable pearlite particles, giving it a good appearance, and the bending strength was higher than when pearlite was used in the inorganic board formulation. .

Figure 2023173642000001
Figure 2023173642000001

Figure 2023173642000002
Figure 2023173642000002

Claims (2)

(a)石灰質原料、(b)けい酸質原料、(c)無機発泡体及び(d)水を含有するスラリーを水熱合成することを特徴とする、けい酸カルシウム水和物を主成分とする、無機軽量化材の製造方法であって、前記無機発泡体の粒度が目開き0.15mmふるい通過分が80質量%以下であり、前記無機発泡体の添加率が(a)石灰質原料及び(b)けい酸質原料の質量に対して20~45質量%であり、(a)石灰質原料、(b)けい酸質原料及び(c)無機発泡体の合計質量に対する(d)水の質量(d/(a+b+c))が、5.0以上9.0以下である無機軽量化材の製造方法。 The main component is calcium silicate hydrate, which is characterized by hydrothermally synthesizing a slurry containing (a) a calcareous raw material, (b) a silicate raw material, (c) an inorganic foam, and (d) water. A method for producing an inorganic lightweight material, wherein the particle size of the inorganic foam is 80% by mass or less passing through a sieve with an opening of 0.15 mm, and the addition rate of the inorganic foam is (a) a calcareous raw material and (b) 20 to 45% by mass based on the mass of the silicic acid raw material, and (d) the mass of water based on the total mass of (a) the calcareous raw material, (b) the silicic acid raw material, and (c) the inorganic foam. A method for producing an inorganic lightweight material in which (d/(a+b+c)) is 5.0 or more and 9.0 or less. (a)石灰質原料に含まれるCaOと(b)けい酸質原料に含まれるSiO2のモル比(CaO/SiO2)が、0.3以上1.5以下である請求項1記載の無機軽量化材の製造方法。 The inorganic lightweight according to claim 1, wherein the molar ratio (CaO/SiO 2 ) of (a) CaO contained in the calcareous raw material and (b) SiO 2 contained in the silicic acid raw material is 0.3 or more and 1.5 or less. Method of manufacturing treated materials.
JP2022086040A 2022-05-26 2022-05-26 Method for producing inorganic lightweight material Pending JP2023173642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022086040A JP2023173642A (en) 2022-05-26 2022-05-26 Method for producing inorganic lightweight material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022086040A JP2023173642A (en) 2022-05-26 2022-05-26 Method for producing inorganic lightweight material

Publications (1)

Publication Number Publication Date
JP2023173642A true JP2023173642A (en) 2023-12-07

Family

ID=89030519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022086040A Pending JP2023173642A (en) 2022-05-26 2022-05-26 Method for producing inorganic lightweight material

Country Status (1)

Country Link
JP (1) JP2023173642A (en)

Similar Documents

Publication Publication Date Title
Sturm et al. Synthesizing one-part geopolymers from rice husk ash
Font et al. Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash
KR101621024B1 (en) Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
US20120041087A1 (en) Dry mixture for manufacturing cellular fibro concrete and method thereof
EP2878585B1 (en) Method for the manufacturing of cementitious C-S-H seeds
KR101014866B1 (en) Alkall-activated masonry products with no cement
JP2022530493A (en) Autoclaved cement composition
Gomonsirisuk et al. Use of water glass from rice husk and Bagasse ashes in the preparation of fly ash based Geopolymer
JP2021161016A (en) Refractory material, refractory wall material, and method for manufacturing refractory material
Capelo et al. Optimization of the rice husk ash production process for the manufacture of magnesium silicate hydrate cements
JP4821003B2 (en) Method for producing calcium silicate
JP2023173642A (en) Method for producing inorganic lightweight material
GB2040906A (en) Composition for forming inorganic hardened products and process for producing inorganic hardened products therefrom
JPH10114518A (en) Synthetic ettringite, calcium silicate compact containing the ettringite and calcium silicate compact
Heikal et al. Characteristics and durability of alkali activated slag-microsilica pastes subjected to sulphate and chloride ions attack
JP4001478B2 (en) Composition for building materials
JP2007217208A (en) Method of manufacturing xonotlite based calcium silicate hydrate porous formed body
Rattanasak et al. Properties of alkali activated silica fume–Al (OH) 3–fluidized bed combustion fly ash composites
JP2002114562A (en) Hydrothermal hardened body and method for manufacturing the same
JP2022148720A (en) Method for manufacturing calcium silicate molding
ABDULLAH et al. Synthesis of geopolymer binder from the partially de-aluminated metakaolinite by-product resulted from alum industry.
JPS58176159A (en) Manufacture of amorphous calcium silicate formed body
Hemra et al. Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolin
NAWAUKKARATHARNANT Utilization of gypsum-bonded investment mold waste from jewelry and accessory industry as raw material for construction materials using geopolymer technology
KR100455472B1 (en) Calcium silicate board and method of manufacturing same