JPS60202966A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS60202966A JPS60202966A JP59058282A JP5828284A JPS60202966A JP S60202966 A JPS60202966 A JP S60202966A JP 59058282 A JP59058282 A JP 59058282A JP 5828284 A JP5828284 A JP 5828284A JP S60202966 A JPS60202966 A JP S60202966A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- solder
- plate
- electrode plate
- electrode plates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01065—Terbium [Tb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01073—Tantalum [Ta]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thyristors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は半導体装置、特に一方の主電極と制御電極とが
同−主表面上に形成されたGTO(ゲートターンオフ)
サイリスタや、トランジスタなどの半導体装置の製法に
関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor device, particularly a GTO (gate turn-off) in which one main electrode and a control electrode are formed on the same main surface.
Related to manufacturing methods of semiconductor devices such as thyristors and transistors.
gl、2図に従来のGTOサイリスタの構造を示す。図
において100は、pエミッタpg、nベースnJI、
pベース9m及びnエミッタn罵の各半導体層からなる
半導体基体101と、nエミッタr1gとオーミック接
続するカソード電極102と、nエミッタnBの露出面
と同一表面に露出したpベース9mにオーミック接続す
る制御電極すなわちゲート電極103、及びpエミ“ツ
タ1層にオーミック接続する他方の主電極であるアノー
ド電極104からなるGTOサイリスク素子である。Figure 2 shows the structure of a conventional GTO thyristor. In the figure, 100 indicates p emitter pg, n base nJI,
A semiconductor substrate 101 consisting of semiconductor layers of a p base 9m and an n emitter n, a cathode electrode 102 ohmically connected to the n emitter r1g, and an ohmically connected to the p base 9m exposed on the same surface as the exposed surface of the n emitter nB. This is a GTO silice element consisting of a control electrode, that is, a gate electrode 103, and an anode electrode 104, which is the other main electrode, which is ohmically connected to one p-emitter layer.
図に示すように、nLcミッタngはゲート電極103
に取囲まれるように島状に配置されているうn工ξツタ
nIBを含むnpnp領域が動作領域、ゲート電極10
3を含むpnp領域が制御領域でおる。このように配置
するのは、大きな負荷電流を効率よく遮断するためでお
る。すなわち、細長いエミッタをゲートで取囲むことに
よって、エミッタ内でゲートから最も遠い領域とゲート
の距離、ならびにゲートから最も近い領域とゲートとの
距離の差をなるべく少なくシ、ゲートからターンオフ信
号が動作領域全体に有効に働くようにする。As shown in the figure, the nLc emitter ng is connected to the gate electrode 103.
The npnp region including the n-type ivy nIB arranged in an island shape surrounded by the gate electrode 10 is the operating region.
The pnp region containing 3 is the control region. The purpose of this arrangement is to efficiently cut off large load currents. In other words, by surrounding the elongated emitter with a gate, the distance between the gate and the region furthest from the gate within the emitter and the distance between the gate and the region closest to the gate can be minimized, and the turn-off signal from the gate can be distributed within the operating region. Make it work effectively throughout.
これとともに、このnエミッタを多数個配置して全体の
動作領域を大きくシ、素子の電流容量を大きくする。゛
電流容量を拡大するとともに、カソード電極102とゲ
ート電極103の幅を狭く形成することによって、負荷
電流を効率よく遮断可能にさせている。例えば、電極の
幅は50〜500μm1それらの電極中心間隔は30〜
300μmに形成されることが多い。GTOサイリスタ
素子基体100のカソード電極102、ゲート電極10
3には、有機絶縁フィルム2010表面に刀ソード電極
板108、ゲート電極板109が一体形成されてなる複
合電極材200の両電極板108゜109がはんだ層1
10を介して各々接続されている。なお、108Bおよ
び109Bは、対応する電極板108,109iそれぞ
れ一括接続して、外部リード線等に接続するための共通
接続部である。ターンオフ信号を付与した時に、ゲート
電極103を長手方向に流れる電流によシ、ゲー ト電
極103の長手方向に電圧降下が生じ、この電圧降下に
よシ、各動作領域のターンオフ動作が不均一になる欠点
がある。しかし、複合電極材200に形成された電極板
108,109の厚さを適当に選び、電極板を厚くする
ことにより各電極板の長手方向の抵抗を減少嘔せ、前述
の欠点を改善することができる。この構造のGTOサイ
リスタにおける電極板の接続方法としてrj、、GTO
サイリスタ素子100と複合電極材200との間に、は
んだを介在させて両者の位置合わせを行い、任意の加熱
源によシはんだを溶融させて一括接続する。At the same time, by arranging a large number of these n emitters, the overall operating area is enlarged and the current capacity of the element is increased. ``By increasing the current capacity and narrowing the widths of the cathode electrode 102 and gate electrode 103, it is possible to efficiently interrupt the load current. For example, the width of the electrodes is 50 to 500 μm, and the spacing between their electrode centers is 30 to 500 μm.
It is often formed to a thickness of 300 μm. Cathode electrode 102 and gate electrode 10 of GTO thyristor element base 100
3, both electrode plates 108 and 109 of a composite electrode material 200 in which a sword electrode plate 108 and a gate electrode plate 109 are integrally formed on the surface of an organic insulating film 2010 are attached to a solder layer 1.
They are connected to each other via 10. Note that 108B and 109B are common connection portions for collectively connecting the corresponding electrode plates 108 and 109i, respectively, to external lead wires and the like. When a turn-off signal is applied, a voltage drop occurs in the longitudinal direction of the gate electrode 103 due to the current flowing in the longitudinal direction of the gate electrode 103, and this voltage drop causes uneven turn-off operation in each operating region. There is a drawback. However, by appropriately selecting the thickness of the electrode plates 108 and 109 formed in the composite electrode material 200 and increasing the thickness of the electrode plates, the resistance in the longitudinal direction of each electrode plate can be reduced and the above-mentioned drawbacks can be improved. I can do it. As a connection method of the electrode plate in a GTO thyristor with this structure, rj, , GTO
A solder is interposed between the thyristor element 100 and the composite electrode material 200 to align the two, and the solder is melted by an arbitrary heating source to connect them all at once.
ここで、有機絶縁フィルム201は、細長いそれぞれ独
立したカソード電極板108、ゲート電極板109の変
形を防止するとともに、両者を同一表面上に支持し、半
導体基体101上のカソード電極102、ゲート電極1
08に一度に接続するためのものである。一方GTOサ
イリスタ素子100上に形成されているカソード電極1
03、アノード電極104としてははんだ付は可能で、
半導体基体101と容易にオーミック接続する金属膜が
用いられている。At−Ni−Ag、Cr−N1−Ag
、Cr−Cu−Auの多層金属膜がこの代表である。Here, the organic insulating film 201 prevents deformation of the elongated and independent cathode electrode plate 108 and gate electrode plate 109, supports both on the same surface, and supports the cathode electrode 102 and gate electrode 1 on the semiconductor substrate 101.
This is for connecting to 08 at once. On the other hand, the cathode electrode 1 formed on the GTO thyristor element 100
03. It is possible to solder the anode electrode 104,
A metal film that easily makes an ohmic connection with the semiconductor substrate 101 is used. At-Ni-Ag, Cr-N1-Ag
A typical example of this is a multilayer metal film of Cr-Cu-Au.
上述した構造を持つ半導体装置について、さらに電流容
量を拡大しようとする場合nエミッタを多数個配置し、
素子の電流容量を拡大するわけであるが、前述した如く
、カソード電極102、ゲート電極103の幅および電
極間の距離をできるだけ狭く形成しなければならない。In order to further increase the current capacity of a semiconductor device having the structure described above, it is necessary to arrange a large number of n emitters,
In order to increase the current capacity of the device, as described above, the widths of the cathode electrode 102 and gate electrode 103 and the distance between the electrodes must be made as narrow as possible.
第1.2図示すGTOサイリスタのような半導体素子構
造においては、以下の様な欠点があった。A semiconductor device structure such as the GTO thyristor shown in FIG. 1.2 has the following drawbacks.
一般に複合電極材200の電極板108,109を支持
している有機フィルム201はポリイミド、ポリエステ
ル等が用いられている。その熱膨張率は、半導体素子1
00よシ1桁以上大きい。第1゜2図に示したはんだ接
続構造を有する半導体装置にあっては、動作時に流れる
負荷電流によって半導体素子の温度が上昇し、これによ
り熱膨張の小さな半導体電極面と、熱膨張の大きな有機
フィルム201の熱膨張差によシ、はんだ層に熱応力が
発生する。このためはんだ層に熱応力が発生し、半導体
装置の信頼性に大きな支障を起す。Generally, the organic film 201 supporting the electrode plates 108 and 109 of the composite electrode material 200 is made of polyimide, polyester, or the like. The coefficient of thermal expansion of the semiconductor element 1
It is one or more digits larger than 00. In a semiconductor device having the solder connection structure shown in Fig. 1-2, the temperature of the semiconductor element increases due to the load current flowing during operation, and this causes the semiconductor electrode surface with small thermal expansion and the organic Due to the difference in thermal expansion of the film 201, thermal stress is generated in the solder layer. This generates thermal stress in the solder layer, which greatly impedes the reliability of the semiconductor device.
また、上記したような熱膨張の大きい有機フィルム20
1を用いた場合、GTOサイリスタの電流容量の拡大を
図るため、nエミッタを多数個配置しようとした場合に
も以下の欠点がある。In addition, the organic film 20 with large thermal expansion as described above may be used.
1, the following drawbacks also occur when attempting to arrange a large number of n emitters in order to increase the current capacity of the GTO thyristor.
第3図は、電流容量を拡大するためnエミッタを多数個
配置した場合の問題を説明するための図である。図は複
合電極材200とGTOサイリスタ素子100のはんだ
接続の部分図を示している。FIG. 3 is a diagram for explaining the problem when a large number of n emitters are arranged to increase current capacity. The figure shows a partial view of the solder connection between the composite electrode material 200 and the GTO thyristor element 100.
一般にはんだ接続は、はんだ材の融点に応じて加熱溶融
して行っている。ここで、複合電極材200は有機絶縁
フィルム201で、カソード電極板108、ゲート電極
板109を支持しており、加熱した場合、その加熱温度
に応じて膨張する。それに伴い、カソード電極板108
、ゲート電極板109は、GTOサイリスタ素子100
上のカソード電極102、ゲート電極103に対して位
置ずれが生じる。すなわち冷却してはんだ接続を完了r
るが、はんだllOの凝固温度に達すると、複合電極材
200はその温度分だけ膨張した状態で、カソード電極
板108、ゲート電極板109がカソード電極102、
ゲート電極103に対してはんだで固定されてしまい、
その結果位置ずれを起す。このため、隣接する′電極同
志がブリッジ島状におるいは櫛歯をかみ合わせたように
、相互に入り組んで形成されているような構造で、電流
拡大を図るためnエミッタn、を多数個配置しようとし
た場合、顕著に生じる。さらに、この傾向は半導体基体
101の端部にゆく程著しくなる。Generally, solder connections are made by heating and melting the solder material depending on its melting point. Here, the composite electrode material 200 is an organic insulating film 201 that supports the cathode electrode plate 108 and the gate electrode plate 109, and when heated, expands according to the heating temperature. Accordingly, the cathode electrode plate 108
, the gate electrode plate 109 is the GTO thyristor element 100
Misalignment occurs with respect to the cathode electrode 102 and gate electrode 103 above. In other words, cool down and complete the solder connection.
However, when the solidification temperature of the solder 10 is reached, the composite electrode material 200 expands by that temperature, and the cathode electrode plate 108, the gate electrode plate 109, and the cathode electrode 102,
It is fixed to the gate electrode 103 with solder,
As a result, positional deviation occurs. For this reason, the structure is such that adjacent electrodes are intertwined with each other, like a bridge island or interlocking comb teeth, and a large number of emitters are arranged to expand the current. If you try, it will occur noticeably. Furthermore, this tendency becomes more pronounced toward the ends of the semiconductor substrate 101.
このような、ブリッジaが生じた場合、例えば第1図の
ような、GTOサイリスタの場合、カソード、すなわち
nエミッタn1からゲート、すなわちpベースp11に
直接電流が流れるので、ゲート電流によって基体内のキ
ャリアを引き抜くことが出来なくなる場合がある。When such a bridge a occurs, for example in the case of a GTO thyristor as shown in Fig. 1, a current flows directly from the cathode, that is, the n emitter n1, to the gate, that is, the p base p11. You may not be able to pull out the carrier.
また、他の問題として、第3図に示したようなブリッジ
が生じない場合であっても、電極板108゜109が電
極102,103に対して位置ずれを起すため、はんだ
材が電極板に対して一様に接続されず、第4図に示すよ
うに一方に片寄る。はんだによる接続構造を有する半導
体装置にあっては、動作時に流れる負荷電流によって半
導体素子の温度が上昇し、これによシ熱膨張の小さな半
導体素子電極面熱膨張の大きな引出し電極との熱膨張差
によって接続部のはんだ層に熱応力が発生する。Another problem is that even if the bridge shown in FIG. 3 does not occur, the electrode plates 108 and 109 may be misaligned with respect to the electrodes 102 and 103, causing the solder material to be attached to the electrode plates. They are not connected uniformly to each other, but are biased to one side as shown in FIG. In a semiconductor device having a solder connection structure, the temperature of the semiconductor element increases due to the load current flowing during operation, and this causes a difference in thermal expansion between the electrode surface of the semiconductor element, which has a small thermal expansion, and the extraction electrode, which has a large thermal expansion. This causes thermal stress in the solder layer of the connection.
このため、電極板の位置ずれによシはんだが一方に片寄
ったシするとその部分に熱応力が集中して、クラック等
の原因となシ半導体装置の信頼性に大きな支障を起す。For this reason, if the solder is biased to one side due to the positional shift of the electrode plate, thermal stress will be concentrated in that area, causing cracks and the like, which will seriously impede the reliability of the semiconductor device.
本発明の目的は前記した問題点を解決し、半導体装置の
性能維持および信頼性を損うことなくはんだ接続を行う
半導体装置の製法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a semiconductor device in which solder connections can be made without sacrificing the performance or reliability of the semiconductor device.
本発明は、半導体素子の電極と支持板に支持された電極
板の位置合わせ、はんだの加熱溶融および支持板の除去
、はんだの再加熱溶融の工程を経ることにょシ、前記電
極と電極板の位置ずれを修正し、本発明の目的を達成す
るものである。The present invention involves aligning the electrodes of a semiconductor element and an electrode plate supported by a support plate, heating and melting the solder, removing the support plate, and reheating and melting the solder. This corrects the misalignment and achieves the object of the present invention.
以下、本発明を実施例にょシ詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.
第5図は、実施例に用いた複合電極材2oと半導体素子
1oである。複合電極材2oは厚さ75μn1のポリイ
ミドフィルムの支持板1と、その下面に厚さ35μmの
電解銅箔が厚さ20μmのエポキシ接着剤2にょシ貼シ
合ゎせた後、幅180μmのカソード電極板3と、幅1
20μmのゲート電極板4がパターンニングされである
。電極板3.4には厚さ25μmのはんだ層5がめっき
によシ施されている。実施例ではカソード電極板3が2
0本、ゲート電極板4が21本で、ゲート電極板4はカ
ソード電極板3を取シ囲むようにパターンニングされて
いる。FIG. 5 shows a composite electrode material 2o and a semiconductor element 1o used in the example. The composite electrode material 2o is made by pasting a support plate 1 made of polyimide film with a thickness of 75 μm and an electrolytic copper foil with a thickness of 35 μm on the lower surface of the support plate with an epoxy adhesive 2 having a thickness of 20 μm, and then forming a cathode with a width of 180 μm. Electrode plate 3 and width 1
A gate electrode plate 4 of 20 μm is patterned. The electrode plate 3.4 is plated with a solder layer 5 having a thickness of 25 μm. In the embodiment, the cathode electrode plate 3 is 2
The number of gate electrode plates 4 is 21, and the gate electrode plates 4 are patterned so as to surround the cathode electrode plates 3.
は最上層をAgとして、Cr−Ni −Agの多層金属
膜の幅280μmのカソード電極13と幅220μmの
ケート電極14が形成されてGTOサイリスタ素子素子
l溝成しておシ、電極中心間隔300μmである。その
本数は前記複合電極材20の電極板13.14と対応し
ており、同数である。なお、GTOサイリスク素子10
は1o順X20mの大きさである。The uppermost layer is made of Ag, and a cathode electrode 13 with a width of 280 μm and a cathode electrode 14 with a width of 220 μm of a multilayer metal film of Cr-Ni-Ag are formed to form a GTO thyristor element L groove, and the electrode center spacing is 300 μm. It is. The number corresponds to and is the same as the electrode plates 13 and 14 of the composite electrode material 20. In addition, GTO Cyrisk element 10
is the size of 1o order x 20m.
第6図は上記した複合電極材2oとGTOサイリスタ素
子lOをはんだ接続する工程を示す図である。第6図U
)は複合電極材2oのカソード電極板3、ゲート電極板
4とdToサイリスタ素子のカソード電極13、ゲート
電極14t−それぞれ対応する位置に合わせた状態を示
している。第6図0)は還元雰囲気中で加熱し、はんだ
層5を溶融させ複合電極材200両電極板3.4とGT
Oサイリスタ素子をはんだ接続したものである。この時
、複合電極材20は加熱とともに膨張し始める。はんだ
層5を溶融した後、冷却し始めるとはんだ層5は凝固す
る。この時点で、両電極板3.4ははんだ層5で固定さ
れ接続される。すなわち、はんだの凝固点の温度に対し
て、複合電極材20の膨張分だけ、位置がずれた状態で
はんだで接続される。このため、第3,4図に示すよう
な、電極板3.4の電極13.14に対する位置ずれ及
びはんだブリッジが生じる。第6図(3)ははんだ接続
後、複合電極材20のポリイミドフィルム支持板1を剥
離除去する工程を示す。本実施例に用いた複合電極材2
0は前記したようにエポキシ系接着剤2によシ支持板1
と電極板3,4が貼り合わせられている。このエポキシ
系接着剤2ははんだ接続の際の加熱によって、その接着
力が低下しておシ、容易に剥離除去が可能であり、本実
施例では機械的に剥離除去した。(4)は、支持板1を
剥離除去した後はんだを再加熱、再溶融し電極板3.4
の位置ずれを修正した状態を示している。第6図(2)
で複合電極材20の膨張分だけ電極3,4は電極13.
14に対して位置ずれを生じたものは、はんだ層5を再
加熱、再溶融させることによシ、はんだ層5の表面張力
により電極板3.4は電極13.14のほぼ中央に張つ
ばられその位置を修正できる。FIG. 6 is a diagram showing a process of soldering the above-described composite electrode material 2o and GTO thyristor element 1O. Figure 6 U
) shows a state in which the cathode electrode plate 3 and gate electrode plate 4 of the composite electrode material 2o are aligned with the cathode electrode 13 and gate electrode 14t of the dTo thyristor element in corresponding positions, respectively. Fig. 6 0) is heated in a reducing atmosphere to melt the solder layer 5 and connect the composite electrode material 200, both electrode plates 3.4 and GT.
This is a solder-connected O thyristor element. At this time, the composite electrode material 20 begins to expand as it is heated. After melting the solder layer 5, when cooling begins, the solder layer 5 solidifies. At this point, both electrode plates 3.4 are fixed and connected with the solder layer 5. That is, the connection is made by solder in a state where the position is shifted by the amount of expansion of the composite electrode material 20 with respect to the temperature of the solidifying point of the solder. For this reason, a positional shift of the electrode plate 3.4 with respect to the electrode 13.14 and a solder bridge occur as shown in FIGS. 3 and 4. FIG. 6(3) shows the step of peeling off and removing the polyimide film support plate 1 of the composite electrode material 20 after soldering. Composite electrode material 2 used in this example
0 is a support plate 1 with an epoxy adhesive 2 as described above.
and electrode plates 3 and 4 are bonded together. The adhesive force of this epoxy adhesive 2 is reduced by heating during solder connection, and it can be easily peeled off, and in this example, it was mechanically peeled off and removed. (4) After peeling and removing the support plate 1, the solder is reheated and remelted to form the electrode plate 3.4.
This shows the state in which the positional deviation of has been corrected. Figure 6 (2)
The electrodes 3 and 4 are expanded by the expansion of the composite electrode material 20.
If the electrode plate 3.4 is misaligned with respect to the electrode 13.14, it can be fixed by reheating and remelting the solder layer 5. Due to the surface tension of the solder layer 5, the electrode plate 3.4 can be stretched to the approximate center of the electrode 13.14. and its position can be corrected.
本実施例のような構成の複合電極材においては支持板l
としてのポリイミドフィルムの膨張を特に考慮する必要
かめる。すなわち、本実施例で構成されている半導体基
体、電極板等と比較するとポリイミドフィルムの膨張係
数は充分大きいためである。第7図は、従来方法と本発
明の位置ずれを実際に測定したものである。図によると
従来方法では、最端部の位置ずれは40μm前後に達し
ている。逆に本発明によると5μm以下である。In the composite electrode material configured as in this example, the support plate l
Particular consideration must be given to the expansion of polyimide films as the temperature increases. That is, this is because the expansion coefficient of the polyimide film is sufficiently large compared to the semiconductor substrate, electrode plate, etc. constructed in this example. FIG. 7 shows actual measurement of positional deviation between the conventional method and the present invention. According to the figure, in the conventional method, the positional deviation at the extreme end reaches approximately 40 μm. Conversely, according to the present invention, it is 5 μm or less.
なお、本実施例に示した半導体装置について、−55C
−室温→150Cを1サイクルとして1000サイクル
の温度サイクル試験を実施したところ、はんだ接続層に
何等異常が発生しなかった。Note that for the semiconductor device shown in this example, -55C
- When a temperature cycle test was carried out for 1000 cycles in which one cycle was from room temperature to 150C, no abnormality occurred in the solder connection layer.
以上において、実施例では本発明をGTOサイリスタに
適用した場合について説明したが、本発明はこれに限定
されるものではなく、制御信号に応じて負荷電流をオン
オフするトランジスタナトの他の半導体装置にも適用で
きることは明らかである。また、実施例ではんだ材の供
給方法としてははんだめっきを、はんだ材としてPb−
51Snはんだを用いたが、これに限定されるものでは
ない。In the above embodiments, the case where the present invention is applied to a GTO thyristor has been described, but the present invention is not limited to this, and can be applied to other semiconductor devices such as transistors that turn on and off a load current according to a control signal. It is clear that the same can also be applied. In addition, in the examples, solder plating was used as the method of supplying the solder material, and Pb-
Although 51Sn solder was used, the present invention is not limited to this.
また、本実施例では予じめ複合電極材の電極板にはんだ
めっきを施して用いたが半導体基体上の電極に予じめは
んだを形成して複合電極材をはんだ接続しても何等その
効果はかわらない。In addition, in this example, the electrode plate of the composite electrode material was used by applying solder plating in advance, but there is no effect even if solder is formed on the electrode on the semiconductor substrate in advance and the composite electrode material is connected by soldering. does not change.
第8図に示す様に、GTOサイリスタ素子lOはペース
401に補助支持板402を介してろう材407,40
8にニジマウントされ電極板3゜4は補助支持板402
上にGTOサイリスタ素子10を取囲む様にろう材40
5で設けたアルミナ板404にはんだ403を介して固
定され、シリコン樹脂406で被覆されてから、キャッ
プ409で封止されて使用される例がある、このような
場合、はんだ接続工程は前述の支持板除去後のはんだ再
溶融と同程度の温度で行われるので、パッケージング時
のはんだ接続工程と位置ずれ修正のためのはんだ再#融
工程を兼ねさせることができる。As illustrated in FIG.
8 is mounted on the electrode plate 3゜4 is the auxiliary support plate 402
A brazing material 40 is placed above to surround the GTO thyristor element 10.
There is an example in which the alumina plate 404 provided in step 5 is fixed via a solder 403, covered with a silicone resin 406, and then sealed with a cap 409. In such a case, the soldering process is the same as described above. Since the solder remelting process is carried out at the same temperature as the solder remelting process after removing the support plate, the solder connection process during packaging and the solder remelting process for correcting positional deviation can be combined.
以上説明したように、本発明製法によれは複合電極材に
支持された電極板と半導体素子の電極とのはんだ接続の
位置ずれが是正でき、半導体装置の性能、信頼性を損う
ことがなくなる。As explained above, the manufacturing method of the present invention can correct the misalignment of the solder connection between the electrode plate supported by the composite electrode material and the electrode of the semiconductor element, without impairing the performance and reliability of the semiconductor device. .
第1.2図は従来例のGTOサイリスタの構造であシ、
第1図は平面図、第2図は第1図のA−A切断線に沿っ
た断面図、第3.4図は従来例の欠点を示すGTOサイ
リスタの部分的断面図、第5〜7図は本発明の一実施例
を説明する図であり、第5図はGTOサイリスタ、複合
電極材の構造を示す部分的断面図、第6図は電極の接続
工程を示す断面図、第7図は本発明は本発明の詳細な説
明する図、第8図は本発明の応用例を示す図である。
l・・・支持板、2・・・接着剤、3・・・カソード電
極板、4・・・ゲート電極板、5・・・はんだ層、10
・・・GTOサイリスタ素子、13・・・カソード電極
、14・・・ゲート電極、20・・・複合電極材°。
代理人 弁理士 高橋明夫
f1図
/1112
¥2図
μ象
荀J 目
冨5図
′Jrt 図
(2)
茗7図
(すJム・郁) ヶ−1−tjk /l 411 f
(yptm)18 図
ダt yiy #7 (dlllFigure 1.2 shows the structure of a conventional GTO thyristor.
Fig. 1 is a plan view, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, Fig. 3.4 is a partial sectional view of the GTO thyristor showing the drawbacks of the conventional example, and Figs. The figures are diagrams for explaining one embodiment of the present invention; FIG. 5 is a partial cross-sectional view showing the structure of the GTO thyristor and composite electrode material; FIG. 6 is a cross-sectional view showing the electrode connection process; and FIG. 8 is a diagram illustrating a detailed explanation of the present invention, and FIG. 8 is a diagram showing an application example of the present invention. l... Support plate, 2... Adhesive, 3... Cathode electrode plate, 4... Gate electrode plate, 5... Solder layer, 10
...GTO thyristor element, 13... cathode electrode, 14... gate electrode, 20... composite electrode material°. Agent Patent Attorney Akio Takahashi f1 diagram / 1112 ¥ 2 diagram μ elephant J Metomi 5 diagram 'Jrt Figure (2) Mei 7 diagram (SuJmu・Iku) ga-1-tjk /l 411 f
(yptm) 18 figure dat yiy #7 (dllll
Claims (1)
成され、かつ一方゛の主光面には複数個の動作領域およ
びそれらに隣接した制御領域が露出されている半導体基
体と複数の動作領域表面に設けられた一方の主電極と制
御電極を有する半導体素子と、主電極および制御電極に
それぞれ位置合せされ、はんだ接続される主電極板およ
び制御電極板を支持板上に一体形成された複合電極材と
を用Xヱシ、半導体素子の複数の主電極および制御電極
と複合電極材の複数の主電極板および制御電極板をはん
だ層を介して位置合せし、はんだを溶融させてから支持
板を主電極板、制御電極板から除去し、その後、はんだ
t再溶融させることを特徴とする半導体装置の製法 2、特許請求の範囲第1項において、主電極板、制御電
極板は支持板に熱で劣化する接着剤で一体化されている
ことを特徴とする半導体装置の製法。[Claims] 1. It has a pair of principal optical surfaces, a predetermined pn junction is formed on the principal surfaces, and one principal optical surface has a plurality of operating regions and a control region adjacent thereto. A semiconductor element having one main electrode and a control electrode provided on the surface of an exposed semiconductor substrate and a plurality of operating regions, and a main electrode plate and a control electrode that are aligned with the main electrode and the control electrode, respectively, and connected by solder. Using a composite electrode material integrally formed on a support plate, a plurality of main electrodes and control electrodes of the semiconductor element and a plurality of main electrode plates and control electrode plates of the composite electrode material are connected via a solder layer. A semiconductor device manufacturing method 2, characterized in that after aligning and melting the solder, the support plate is removed from the main electrode plate and the control electrode plate, and then the solder is melted again, in claim 1 A method for manufacturing a semiconductor device, characterized in that a main electrode plate and a control electrode plate are integrated with a support plate using an adhesive that deteriorates with heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058282A JPS60202966A (en) | 1984-03-28 | 1984-03-28 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058282A JPS60202966A (en) | 1984-03-28 | 1984-03-28 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60202966A true JPS60202966A (en) | 1985-10-14 |
JPH0560264B2 JPH0560264B2 (en) | 1993-09-01 |
Family
ID=13079829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59058282A Granted JPS60202966A (en) | 1984-03-28 | 1984-03-28 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60202966A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347711A (en) * | 1992-07-15 | 1994-09-20 | The Whitaker Corporation | Termination of multi-conductor electrical cables |
US5482047A (en) * | 1992-11-23 | 1996-01-09 | Advanced Technology Laboratories, Inc. | Intraoperative ultrasound probe |
US6012225A (en) * | 1996-12-10 | 2000-01-11 | The Whitaker Corporation | Method of making surface mount pads |
ES2196950A1 (en) * | 2001-04-17 | 2003-12-16 | Honda Motor Co Ltd | Thyristor soldering method e.g. for vehicle, involves melting solder for fixing thyristor on heat sink, while soldering electrodes |
-
1984
- 1984-03-28 JP JP59058282A patent/JPS60202966A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347711A (en) * | 1992-07-15 | 1994-09-20 | The Whitaker Corporation | Termination of multi-conductor electrical cables |
US5482047A (en) * | 1992-11-23 | 1996-01-09 | Advanced Technology Laboratories, Inc. | Intraoperative ultrasound probe |
US6012225A (en) * | 1996-12-10 | 2000-01-11 | The Whitaker Corporation | Method of making surface mount pads |
ES2196950A1 (en) * | 2001-04-17 | 2003-12-16 | Honda Motor Co Ltd | Thyristor soldering method e.g. for vehicle, involves melting solder for fixing thyristor on heat sink, while soldering electrodes |
Also Published As
Publication number | Publication date |
---|---|
JPH0560264B2 (en) | 1993-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100434232B1 (en) | Method and structure of attaching leadframe to heat spreader / heat slug structure | |
US4736236A (en) | Tape bonding material and structure for electronic circuit fabrication | |
JP3796016B2 (en) | Semiconductor device | |
JPH0794553A (en) | Semiconductor device and fabrication thereof | |
JP2019216214A (en) | Semiconductor device, lead frame and method of manufacturing semiconductor device | |
EP0456066A2 (en) | Semiconductor chip mounted inside a device hole of a film carrier | |
US4516149A (en) | Semiconductor device having ribbon electrode structure and method for fabricating the same | |
JP4026882B2 (en) | Semiconductor device | |
JP2008288415A (en) | Semiconductor device and its manufacturing method | |
JPS60202966A (en) | Manufacture of semiconductor device | |
JPH10270626A (en) | Semiconductor device and manufacture thereof | |
JP2001237258A (en) | Method of manufacturing semiconductor device | |
US4865193A (en) | Tape carrier for tape automated bonding process and a method of producing the same | |
JP2021007182A (en) | Semiconductor device and manufacturing method thereof | |
JPS6351538B2 (en) | ||
US3418544A (en) | Attachment of leads to semiconductor devices | |
JPS5946415B2 (en) | Manufacturing method of semiconductor device | |
JPH0758112A (en) | Semiconductor device | |
JPS63304655A (en) | Manufacture of laminated body | |
JPS60226178A (en) | Manufacture of semiconductor device | |
US20240047294A1 (en) | Semiconductor device and method of manufacturing semiconductor device | |
EP0154187B1 (en) | Tape bonding material and structure for electronic circuit fabrication | |
JPH09293799A (en) | Semiconductor integrated circuit package and manufacture thereof | |
JPH10261735A (en) | Semiconductor device and its manufacture | |
US20240194581A1 (en) | Power module and manufacturing method therefor |