JPS60201644A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60201644A
JPS60201644A JP5911484A JP5911484A JPS60201644A JP S60201644 A JPS60201644 A JP S60201644A JP 5911484 A JP5911484 A JP 5911484A JP 5911484 A JP5911484 A JP 5911484A JP S60201644 A JPS60201644 A JP S60201644A
Authority
JP
Japan
Prior art keywords
film
silicon
silicon oxide
oxide film
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5911484A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP5911484A priority Critical patent/JPS60201644A/en
Publication of JPS60201644A publication Critical patent/JPS60201644A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enhance the electric characteristic, and to enable to supply stably a high integrated memory of 1mum order level by a method wherein a first CVD silicon oxide film, a first silicon nitride film and a polycrystalline silicon film are patterned, and a second CVD silicon oxide film and a second silicon nitride film are anisotropically etched to form side walls. CONSTITUTION:A silicon substrate 14 formed with a P-well or an N-well is thermally oxidized, and after a polycrystalline silicon film 16, a first silicon nitride film 17 and a first CVD silicon oxide film 18 are grown on a first oxide film 15, the laminated films are driven to be etched. After thermal oxidation is performed, a second silicon nitride film 19 and a second CVD silicon oxide film 20 are grown, and the second CVD silicon oxide film 20 and the second silicon nitride film 19 are etched back to form side walls. After the first, the second CVD silicon oxide films 18, 20 are etched wholly, field silicon oxide films 21 are grown, the first and the second silicon nitride films 17, 19 are etched according to hot phosphoric acid, and the polycrystalline silicon film 16 is etched according to an aqueous solution mainly consisting of nitric acid-hydrofluoric acid.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、半導体装置の製造方法に関し、特に半導体基
板上の各素子を互いに電気的絶縁する素子分離技術に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method of manufacturing a semiconductor device, and particularly to an element isolation technique for electrically insulating each element on a semiconductor substrate from each other.

〔従来技術〕[Prior art]

従来、例えばMO8型トランジスター構造を有する半導
体装置の製造に於ける素子分離方法は、シリコン窒化膜
をマスクとした選択酸化によるLOCO8方式が用いら
れている。しかしながらこの分離構造では、第1図の如
く酸化マスクとなる窒化シリコン膜2の下に、フィール
ドの酸化シリコン膜3が成長するにつれ喰い込んでいく
、いわゆるバーズビークが形成され、例えば寸法が1.
0〜1.5μの素子領域を形成するには、五〇μ程度の
マスクパターンが必要である。この様にパターン設計、
製造に於いての寸法余裕を大きく取らなければならず、
微細集積化、あるいは短チヤンネルMOSディバイスの
チャンネル制御性を困難にさせ、1.0〜1.5μルー
ルのMO8集積回路の安定供給が出来なかった。
Conventionally, as an element isolation method in manufacturing a semiconductor device having, for example, an MO8 type transistor structure, a LOCO8 method using selective oxidation using a silicon nitride film as a mask has been used. However, in this isolation structure, a so-called bird's beak is formed under the silicon nitride film 2 serving as an oxidation mask as shown in FIG. 1, which digs in as the silicon oxide film 3 of the field grows.
To form a device region of 0 to 1.5 μm, a mask pattern of approximately 50 μm is required. Pattern design like this,
Large dimensional margins must be taken during manufacturing,
This made fine integration or channel control of short channel MOS devices difficult, making it impossible to stably supply MO8 integrated circuits with a 1.0 to 1.5 micron rule.

又一方最近は、異方性エツチングによるシリコン酸化膜
やシリコン窒化膜による側壁(、Si(lewall 
)を利用し、バーズビークを押えるSWAM工(5i6
e Wall MaeKed 工golation )
技術あるいはS T OM x (5tackedOx
iae SWAM工)技術が検討されており、例′ え
ば第2図−a〜−〇にその素子分離工程を示す。シリコ
ン基板4上に第1のシリコン酸化膜5゜第1のシリコン
窒化膜6と第1のOVDシリコン酸化膜7を連続的に成
長させた後ドライエツチャーで選択エツチングし、フィ
ールド領域のシリコン基板4を露出させた後にシリコン
基板4をKOH溶液あるいはドライエツチャーでエツチ
ングし溝を形成してから、前記積層膜をマスクにしてチ
ャンネルストッパー領域8に不純物イオンを注入し、更
に第2のシリコン酸化wA91第2のシリコン窒化膜1
0と第2のOVDシリコン酸化膜11を順次成長させ(
第2図−a)、次にドライエツチャーでエッチバックす
ると該OVDシリコン酸化膜11とシリコン窒化膜10
の側壁が形成され(第2図−b)、続イテ第1.第2(
7)OVDシリコン、酸化膜7.11を弗酸エツチング
し除去後、フィールドのシリコン酸化膜12を形成して
いる(第2図−〇)。しかしながらこれらの技術もLo
aos方式に比ペバーズビークは減少するものの、シリ
コン基板のエツチングに際し、KOH溶液のウェットエ
ツチングでは、アルカリイオンの混入やサイドエッチが
ありパターン変換差が大きくなる点又再限性も悪く、ド
ライエツチングでは、表面の荒れ、残渣等の欠陥が多く
素子とした場合の接合特性、ゲート耐圧等が著しく悪い
上、ウェハー内のエツチング量の均一性も悪い。この他
、ストッパーのイオン注入をシリコンエツチング後続い
て行う為、MO8’)ランシスター等を形成後には、ス
トッパー領域とソース・ドレイン領域が重なり、ドレイ
ン耐圧が下ると共にチャンネル巾がフィールド膜でなく
実効的にストッパー間で決まってしまい電流増巾率がよ
り多くとれない。
On the other hand, recently, sidewalls (Si(lewall)
) to hold down the bird's beak (5i6
e Wall MaeKed engineering)
Technology or STOM x (5tackedOx
For example, the device isolation process is shown in FIGS. 2-a to 2-0. A first silicon oxide film 5, a first silicon nitride film 6, and a first OVD silicon oxide film 7 are successively grown on the silicon substrate 4, and then selectively etched with a dry etcher to remove the silicon substrate in the field area. 4 is exposed, the silicon substrate 4 is etched with a KOH solution or a dry etcher to form a groove, and then impurity ions are implanted into the channel stopper region 8 using the laminated film as a mask, and then a second silicon oxide layer is etched. wA91 second silicon nitride film 1
0 and the second OVD silicon oxide film 11 are sequentially grown (
FIG. 2-a) Next, when etched back with a dry etcher, the OVD silicon oxide film 11 and silicon nitride film 10 are etched back.
The sidewalls of the following items are formed (FIG. 2-b), and the next step is 1. Second (
7) After removing the OVD silicon and oxide film 7.11 by etching with hydrofluoric acid, a field silicon oxide film 12 is formed (FIG. 2--). However, these techniques also have low
Although the Pebber's beak is reduced compared to the AOS method, when etching a silicon substrate, wet etching with a KOH solution causes alkali ion contamination and side etching, resulting in large pattern conversion differences and poor relimitation, while dry etching There are many defects such as surface roughness and residue, and when used as a device, the bonding characteristics, gate breakdown voltage, etc. are extremely poor, and the uniformity of the etching amount within the wafer is also poor. In addition, since the stopper ion implantation is performed after silicon etching, the stopper region overlaps with the source/drain region after forming the MO8') run sister, which lowers the drain breakdown voltage and reduces the effective channel width instead of the field film. The current amplification rate cannot be increased because it is fixed between the stoppers.

この様にプロセス及び特性上の問題が多く実用・量産に
供し得ない。
As described above, there are many process and characteristic problems that make it impossible to put it into practical use or mass production.

〔目的〕〔the purpose〕

本発明は、この様な問題点を解決するもので、その目的
とするところは、バーズビークの成長を押え、電気特性
の優れた素子分離構造を持つ微細高集積半導体装置を安
定供給する事にある。
The present invention is intended to solve these problems, and its purpose is to suppress the growth of bird's beaks and stably supply micro-highly integrated semiconductor devices having element isolation structures with excellent electrical characteristics. .

〔概要〕〔overview〕

本発明の半導体装置の製造方法は、半導体基板上に少な
く共、第1の酸化シリコン膜と多結晶シリコン膜と第1
のシリコン窒化膜ともしくは栴1のOVDシリコン酸化
膜を成長させる工程と、前記第1のOVDシリマン酸化
膜と第1のシリコン窒化膜と多結晶シリコン膜をバター
ニングする工程を経て1第2の窒化シリコン膜と第2の
OVDシリコン酸化膜を成長させる工程と、前記第2の
OVDシリコン酸化膜と第2の窒化シリコン膜をドライ
エツチャーで異方性エツチングし側壁を形成する工程を
経てからフィールドのシリコン酸化膜を形成させる事を
特徴とする。
The method for manufacturing a semiconductor device of the present invention includes forming at least a first silicon oxide film, a polycrystalline silicon film, and a first silicon oxide film on a semiconductor substrate.
After a step of growing a silicon nitride film or an OVD silicon oxide film, and a step of buttering the first OVD siliman oxide film, first silicon nitride film, and polycrystalline silicon film, a second After a step of growing a silicon nitride film and a second OVD silicon oxide film, and a step of anisotropically etching the second OVD silicon oxide film and second silicon nitride film with a dry etcher to form sidewalls. It is characterized by forming a field silicon oxide film.

更に本発明の半導体装置の製造方法は、酸化シリコンも
しくは窒化シリコン膜でなる側壁をイオン注入マスクの
一部として、チャンネルストッパー領域を形成する事を
特徴とする。
Furthermore, the method for manufacturing a semiconductor device of the present invention is characterized in that a channel stopper region is formed using a sidewall made of a silicon oxide or silicon nitride film as part of an ion implantation mask.

〔実施例〕〔Example〕

以下実施例に基づき本発明の詳細な説明するツー1第3
図−a〜−dに本発明に係わる半導体装置の素子分離工
程を示す。PウェルあるいはNウェルが形成されたシリ
コン基板14を熱酸化し450裏の#!1のシリコン酸
化膜1δの上に減圧OVD装置により約zoooXの多
結晶シリコン16と約1400Xの@1のシリコン窒化
膜17と約3000Xの第1のOVDシリコン酸化膜1
8を成長すせた後フォトレジストパターンで前記積層膜
をドライエツチングした。エツチングガスは酸化膜と窒
化膜の場合OHF B + Ot Ir s * 多結
晶シリコンはo、aty、+sy、+oot、を主成分
とした。再び熱酸化後筒2のシリコン窒化膜19を60
0Xと第2のOVDシリコン酸化膜20を6000に成
長させた(第3図−a)。次にドライエツチャーで第2
のOVDシリコン酸化膜20と第2のシリコン窒化膜1
9をエッチバックし側壁を形成した(第3図−b)。続
いて該側壁をイオン注入マスクの一部とし、素子領域か
らの距離を長くしたストッパー領域22の形成を行い(
第5−c)、更に第1.第2のCvDシリコンOvD酸
化膜18.20を弗酸水溶液で全面エツチングした後、
950℃の高圧酸化炉で5sooXのフィールドシリコ
ン酸化膜21を成長させ(第3図−a)、その後筒1及
び第2のシリコン窒化膜17.19は熱リン酸で、多結
晶シリコン16は硝酸十弗酸を主成分とする水溶液でエ
ツチングした。この時バーズビークはLOOO8方式の
片側0.7〜0.9μあるのに比べ、0.4〜0.5μ
と減少される事が出来た。この後、以上の素子分離工程
を用いて、1.0〜1.5μルールの0M0816K及
び64KSRAMが製造出来、フィールド寸法余裕の縮
少により、従来のものに比べ1.8倍の集積度を上げる
事が出来た。又リーク電流も少なく出来更にアクセスタ
イムも64にで50h秒台、16にで50A秒台を可能
にした。尚第1のQVDシリコン酸化膜18はパックエ
ッチの終点を明確に出来第1シリコン窒化膜17がやら
なければ用いなくてもよく、又第1のシリコン窒化膜1
7の成長前に多結晶シリコン膜16を軽く表面酸化して
おく′とドライエツチング時の終点か明確となる。
The following is a detailed explanation of the present invention based on examples.
Figures -a to -d show the element isolation process of a semiconductor device according to the present invention. The silicon substrate 14 on which the P-well or N-well is formed is thermally oxidized to #! Polycrystalline silicon 16 of about zooooX, silicon nitride film 17 of about 1400X @1, and first OVD silicon oxide film 1 of about 3000X are formed on the silicon oxide film 1δ of No. 1 using a low-pressure OVD apparatus.
After growing No. 8, the laminated film was dry etched using a photoresist pattern. The etching gas used was OHF B + Ot Irs * for oxide films and nitride films, and o, aty, +sy, and +oot as main components for polycrystalline silicon. After thermal oxidation again, the silicon nitride film 19 of the cylinder 2 is
0X and a second OVD silicon oxide film 20 were grown to a thickness of 6000 (FIG. 3-a). Next, use a dry etcher to dry the second layer.
OVD silicon oxide film 20 and second silicon nitride film 1
9 was etched back to form side walls (FIG. 3-b). Next, the sidewall is used as a part of the ion implantation mask, and a stopper region 22 with a long distance from the element region is formed (
5-c), and 1. After etching the entire surface of the second CvD silicon OvD oxide film 18.20 with a hydrofluoric acid aqueous solution,
A field silicon oxide film 21 of 5sooX is grown in a high-pressure oxidation furnace at 950°C (Fig. 3-a), and then the cylinder 1 and the second silicon nitride film 17 and 19 are grown with hot phosphoric acid, and the polycrystalline silicon 16 is grown with nitric acid. Etching was performed with an aqueous solution containing decafluoric acid as the main component. At this time, the bird's beak is 0.4 to 0.5 μ compared to 0.7 to 0.9 μ on one side in the LOOO8 method.
and was able to be reduced. After this, using the above element isolation process, 0M0816K and 64KSRAM with a 1.0 to 1.5 μ rule can be manufactured, and by reducing the field dimension margin, the degree of integration is increased by 1.8 times compared to the conventional one. I was able to do it. In addition, the leakage current can be reduced, and the access time can be on the order of 50 h seconds for the 64 and 50 A seconds for the 16. It should be noted that the first QVD silicon oxide film 18 can clearly define the end point of the pack etch and does not need to be used unless the first silicon nitride film 17 is used.
If the surface of the polycrystalline silicon film 16 is lightly oxidized before the growth of the polycrystalline silicon film 7, the end point of the dry etching can be clearly determined.

〔効果〕〔effect〕

以上の様に本発明は、側壁技術と多結晶シリコン膜のバ
ッファーを用いて、無欠陥でバーズビークの少ない素子
分離技術を含む半導体装置の製造方法を提供するもので
、電気特性が優れ、1μレベルの高集積メモ□リーの安
定供給が図れた。尚本発明は単チャンネルMOBディバ
イスにも適用出来1、メモリー、ゲートアレイ等の安定
供給と高速化、微細化に寄与するものである。
As described above, the present invention provides a method for manufacturing a semiconductor device including element isolation technology that is defect-free and has few bird's beaks using sidewall technology and a polycrystalline silicon film buffer. A stable supply of high-density memory □ was achieved. The present invention can also be applied to single-channel MOB devices, contributing to stable supply, speeding up, and miniaturization of memories, gate arrays, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図(α)〜(C)は従来の工程の概略断面
図、第3図(a)〜(d)は本発明に係わる工程の概略
断面図である。 j、4.14・・・・・・シリコン基板3.12.21
・・・フィールドシリコン酸化膜6.17・・・・・・
第1のシリコン窒化膜7.18・・・・・・第1のOV
Dシリコン酸化膜10.19・・・第2のシリコン窒化
膜11.20・・・第2のOVDシリコン酸化膜16・
・・・・・:・・・・・多結晶シリコン膜8.22・・
・・・・ストッパー領域 以 上 出願人 株式会社趣訪精工舎 代理人 弁理士 最上 務 第2図
FIGS. 1 and 2 (α) to (C) are schematic cross-sectional views of conventional processes, and FIGS. 3 (a) to (d) are schematic cross-sectional views of processes according to the present invention. j, 4.14...Silicon substrate 3.12.21
...Field silicon oxide film 6.17...
First silicon nitride film 7.18...First OV
D silicon oxide film 10.19...Second silicon nitride film 11.20...Second OVD silicon oxide film 16.
・・・・・・:・・・・・・Polycrystalline silicon film 8.22...
...stopper area and above Applicant Shuwa Seikosha Co., Ltd. Agent Patent attorney Tsutomu Mogami Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) 半導体基板上に少なく共、第1の酸化シリコン
膜と多結晶シリコン膜と第1の窒化シリコン膜ともしく
は第1のCvDシリコン酸化膜を成長させる工程と、前
記第1のOVDシリコン酸化膜と第1のシリコン窒化膜
と多結晶シリコン膜をパターニングする工程を経て、第
2の窒化シリコン膜と第2のOVD酸化シリコン膜を成
長させる工程と、前記第2のOVDシリコン酸化膜及び
第2の窒化シリコン膜をドライエツチャーで異方性エツ
チングし側壁を形成する工程を経てからフィールドのシ
リコン酸化膜を形成させる事を特徴とする半導体装置の
製造方法。
(1) A step of growing at least a first silicon oxide film, a polycrystalline silicon film, a first silicon nitride film, or a first CvD silicon oxide film on a semiconductor substrate, and the step of growing the first OVD silicon oxide film. a step of patterning the first silicon nitride film and a polycrystalline silicon film, a step of growing a second silicon nitride film and a second OVD silicon oxide film, and a step of patterning the second OVD silicon oxide film and the first silicon oxide film. 1. A method of manufacturing a semiconductor device, which comprises forming a field silicon oxide film after the step of anisotropically etching the silicon nitride film with a dry etcher to form a sidewall.
(2) 酸化シリコン膜もしくは窒化シリコン膜でなる
側壁をイオン注入マスクの一部として、チャンネルスト
ッパー領域を形成する事を特徴とする特許請求の範囲第
1項の半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device according to claim 1, characterized in that a channel stopper region is formed using a sidewall made of a silicon oxide film or a silicon nitride film as part of an ion implantation mask.
JP5911484A 1984-03-27 1984-03-27 Manufacture of semiconductor device Pending JPS60201644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5911484A JPS60201644A (en) 1984-03-27 1984-03-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5911484A JPS60201644A (en) 1984-03-27 1984-03-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60201644A true JPS60201644A (en) 1985-10-12

Family

ID=13103959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5911484A Pending JPS60201644A (en) 1984-03-27 1984-03-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60201644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144543A (en) * 1986-12-09 1988-06-16 Nec Corp Formation of semiconductor interelement isolation region

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126145A (en) * 1981-01-28 1982-08-05 Toshiba Corp Manufacture of semiconductor device
JPS5840839A (en) * 1981-09-04 1983-03-09 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126145A (en) * 1981-01-28 1982-08-05 Toshiba Corp Manufacture of semiconductor device
JPS5840839A (en) * 1981-09-04 1983-03-09 Toshiba Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144543A (en) * 1986-12-09 1988-06-16 Nec Corp Formation of semiconductor interelement isolation region

Similar Documents

Publication Publication Date Title
US6900094B2 (en) Method of selective removal of SiGe alloys
US4615762A (en) Method for thinning silicon
US6537891B1 (en) Silicon on insulator DRAM process utilizing both fully and partially depleted devices
US6001706A (en) Method for making improved shallow trench isolation for semiconductor integrated circuits
US5151381A (en) Method for local oxidation of silicon employing two oxidation steps
JPH02102557A (en) Manufacture of semiconductor device
JPS626349B2 (en)
US5525535A (en) Method for making doped well and field regions on semiconductor substrates for field effect transistors using liquid phase deposition of oxides
US5208181A (en) Locos isolation scheme for small geometry or high voltage circuit
US6054368A (en) Method of making an improved field oxide isolation structure for semiconductor integrated circuits having higher field oxide threshold voltages
JPH03152954A (en) Formation of electric field separation construction and gate construction in integrated misfet device
JPS60201644A (en) Manufacture of semiconductor device
US20060154415A1 (en) Method for manufacturing semiconductor substrate and semiconductor substrate
US20080227265A1 (en) Methods for Fabricating Semiconductor Devices
JPS61100944A (en) Manufacture of semiconductor device
JPS58220443A (en) Manufacture of semiconductor device
US4546537A (en) Method for producing a semiconductor device utilizing V-groove etching and thermal oxidation
JP2002026309A (en) Manufacturing method of field-effect transistor
KR0167252B1 (en) Method for forming isolation on a semiconductor
KR20020010971A (en) Method for forming isolation in semiconductor
JPS60189235A (en) Production of semiconductor device
KR19980084714A (en) Method for manufacturing isolation region of semiconductor device
KR930008888B1 (en) Device seperating method of semiconductor apparatus
JPS6266619A (en) Manufacture of semiconductor device
CN117116911A (en) Semiconductor structure preparation method and semiconductor structure