JPS61100944A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61100944A
JPS61100944A JP22155284A JP22155284A JPS61100944A JP S61100944 A JPS61100944 A JP S61100944A JP 22155284 A JP22155284 A JP 22155284A JP 22155284 A JP22155284 A JP 22155284A JP S61100944 A JPS61100944 A JP S61100944A
Authority
JP
Japan
Prior art keywords
film
silicon
oxide film
etching
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22155284A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22155284A priority Critical patent/JPS61100944A/en
Publication of JPS61100944A publication Critical patent/JPS61100944A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To achieve the miniaturization and stable supply of the ultra LSI like the memory device, etc. by suppressing the growth of bird's beak and improving the electric characteristics with the stacking and step difference of polycrystal silicon film and the side wall of silicon nitride. CONSTITUTION:The first pad silicon oxide film 2 is formed by the thermal oxidation of the <100> silicon substrate 1 on which p-well and n-well are formed. On the film 2, the polycrystal silicon film 3, the first silicon nitride film 4 and the first CVD silicon oxide film 5, the buffer for forming the side wall, are formed by the vapor growth. After these, the vapor growth films 5, 4 and 3 of the field part are undergone the selective etching with RIE. After the ion implantation of boron and phosphorus into the stopper region 6, the second silicon nitride film 7 and the second CVD silicon oxide film 8 are formed by vapor growth. Then the side walls of the vapor growth films 7 and 8 are formed by etching of RIE. After the hydro-fluoric acid etching of the CVD silicon oxide film 5 and 8, the field oxide film 9 for separation is formed by thermal oxidation. And then the etching of silicon nitride film 4 and 7 with thermal phosphoric acid, the etching of polycrystal silicon film 3 with mixed liquid of nitric acid and hydro-fluoric acid and the etching of the pad silicon oxide film 2 with hydro- fluoric acid are performed respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特に半導体基
板上の各素子を電気的絶縁する素子分離技術に係わり、
微細化を図る事に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular to an element isolation technique for electrically insulating each element on a semiconductor substrate.
This is related to miniaturization.

〔従来の技術〕[Conventional technology]

、従来、例えばMOS−LSI等の素子分離には、シリ
コン窒化膜をマスクとしたL OC,OS法と呼ばれる
選択技術が多く用いられている。これは活性領域となる
部分にシリコン窒化膜を被覆しフィールドにシリコン酸
化膜を形成させる方法であるが、フィールドのシリコン
酸化膜が成長するにつれてシリコン窒化膜の下に喰い込
んでいく、いわゆるバーズビークが形成され、パターン
設計、 。
Conventionally, a selection technique called the LOC, OS method using a silicon nitride film as a mask has been widely used for element isolation of, for example, MOS-LSI. In this method, a silicon nitride film is coated on the part that will become the active region and a silicon oxide film is formed on the field. However, as the silicon oxide film in the field grows, it digs into the bottom of the silicon nitride film, creating a so-called bird's beak. Formed and patterned, designed.

製造に於いての寸法余裕を大きく取る必要があり、微細
ルール(1,5μルール以下)の集積回路の供給は困難
であった。
It has been difficult to supply integrated circuits with a fine rule (1.5 micrometers or less) because it is necessary to have a large dimensional margin in manufacturing.

一方、特開昭55−165657.特開昭56−905
41や特開昭57−170548及び文献″に、Y、0
hiu、et  al 工EDMDig、Tech、P
aper  P224(1982)やSawaaa、e
t’al  Flfxt  A−bstract   
 Vow    B5−2    VC8Fall  
 Meeting   P492  0at。
On the other hand, JP-A-55-165657. Japanese Patent Publication No. 56-905
41, JP-A-57-170548, and literature, Y, 0
hiu, et al 工EDMDig, Tech, P
aper P224 (1982) and Sawaaa, e
t'al Flfxt A-btract
Vow B5-2 VC8Fall
Meeting P492 0at.

(1983)の様に、異方性エツチングによるシリコン
酸化膜やシリコン窒化膜の側壁を利用し、バーズビーク
を低減させる分離技術が提案されているが、その素子分
離工程を第2図に示す。シリコン基板21の表面に第1
のパッドシリコン酸化膜22と第1のシリコン窒化膜2
4と側壁形成時に第1のシリコン窒化膜24を保護する
為のCVDシリコン酸化膜25を順次形成し、島領域に
ボターニングされたフォトレジストをマスクに前記積層
[22,24,25をR工IC(Reactive工o
n 1litcher )で選択エツチングし、フィー
ルド領域のシリコン基板21を露出させた後、該シリコ
ン基板21をKOH溶液あるいは塩素ガスを用いたR工
Eで0.2〜13μ程度の深さにエツチングしてから、
イオン注入しチャンネルストッパー領域26を形成する
(第2図−α)。次に熱酸化で第2のパッドシリコン酸
化膜25を形成してから、第2のシリコン窒化膜27と
第2のCVDシリコン酸化膜28を気相成長した後(第
2図−b)、a工Eでエッチバックし、該第2のCVD
シリコン酸化膜28とシリコン窒化膜27の側壁を形成
しく第2図−C)、続いて第1.第2のCVDシリコン
酸化jQ24,2Bを弗酸で除去後、熱酸化して分離用
のフィールド酸化膜29を形成する(第2図−d)。こ
の時、第2シリコン窒化腺2ytv側Mがバーズビーク
の素子領域への浸入を防止する役割を果す。この後第1
.第2のシリコン窒化膜24 、27及び第1のパッド
シリコン酸化膜22を除去後、MOS)ランジスタ等の
素子を形成している(第2図−一)。ここで50はゲー
ト属で51はゲー)%極である。
(1983), an isolation technique has been proposed that utilizes the sidewalls of a silicon oxide film or silicon nitride film by anisotropic etching to reduce bird's beak. The device isolation process is shown in FIG. A first layer is formed on the surface of the silicon substrate 21.
pad silicon oxide film 22 and first silicon nitride film 2
4 and a CVD silicon oxide film 25 for protecting the first silicon nitride film 24 during sidewall formation are sequentially formed. IC (Reactive engineering)
After exposing the silicon substrate 21 in the field region by selectively etching it with a 1litcher), the silicon substrate 21 is etched to a depth of about 0.2 to 13 μm with an R process using a KOH solution or chlorine gas. from,
A channel stopper region 26 is formed by ion implantation (FIG. 2-α). Next, a second pad silicon oxide film 25 is formed by thermal oxidation, and then a second silicon nitride film 27 and a second CVD silicon oxide film 28 are grown in a vapor phase (FIG. 2-b). Etch back with process E and the second CVD
The side walls of the silicon oxide film 28 and the silicon nitride film 27 are formed (FIG. 2-C), and then the first. After removing the second CVD silicon oxide jQ24, 2B with hydrofluoric acid, it is thermally oxidized to form a field oxide film 29 for isolation (FIG. 2-d). At this time, the second silicon nitride gland 2ytv side M serves to prevent the bird's beak from entering the device region. After this, the first
.. After removing the second silicon nitride films 24 and 27 and the first pad silicon oxide film 22, elements such as MOS transistors are formed (FIG. 2-1). Here, 50 is the gate class and 51 is the gate class.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記の製造方法では、LOOO8法に比べてバー
ズビークは減少するものの、活性領域につくり込まれる
素子の電気特性と信頼性及びji1m性に問題があり、
微細ルールの半導体集積回路の安定供給がなされなかっ
た。すなわち従来の製造方法では次の様な欠点がある。
However, in the above manufacturing method, although the bird's beak is reduced compared to the LOOO8 method, there are problems with the electrical characteristics and reliability of the element built in the active region, and the ji1m property.
There was no stable supply of semiconductor integrated circuits with fine rules. That is, the conventional manufacturing method has the following drawbacks.

まず、活性領域のパターニングや側壁形成時のシリコン
窒化膜やシリコン酸化膜のエツチングにはフレオン系や
塩素系のガスを用いたRfEで同時エツチング処理を行
うが、被エツチング膜の厚みバラツキを考慮し、シリコ
ン基板との選択比を大キくシて過剰エツチングをする必
要があり、この時シリコン基板の株間はイオンビームや
プラズマにさらされ、荒れやダメージによる結晶欠陥が
発生する。又シリコン基板に溝を形成する場合、R工E
では、ダメージが大きい上、溝側面が垂直もしくは逆テ
ーパーとなり、チャンネルストッパー用の注入不純物が
ダメージの多い活性領域界面に入らない為、KOH溶液
等の湿式エツチングを行りて、溝vA面にテーパーをつ
け様としているが、サイドエッチや再限性が悪く、ロー
ディング効果も大きい上、MO8工程へのアルカリイオ
ン混入の危険も多く、実用量産的でなく、信頼性にも欠
ける。
First, when patterning the active region and etching the silicon nitride film and silicon oxide film when forming sidewalls, simultaneous etching is performed using RfE using Freon-based or chlorine-based gas, but taking into account the thickness variation of the film to be etched. In this case, it is necessary to increase the selectivity with respect to the silicon substrate and perform excessive etching, and at this time, the gaps between the silicon substrates are exposed to ion beams and plasma, causing crystal defects due to roughness and damage. Also, when forming grooves on a silicon substrate, R process E
In this case, the damage is large and the groove side surfaces become vertical or reversely tapered, and the implanted impurity for the channel stopper cannot enter the active region interface where there is a lot of damage, so wet etching with KOH solution etc. is performed to taper the groove vA surface. However, side etching and refining are poor, the loading effect is large, and there is a high risk of alkali ions being mixed into the MO8 process, making it impractical for practical mass production and lacking in reliability.

更に製造上りのMOS)ランジスタの形状では、チャン
ネル方向の両端部で、表面と異った結晶方位が表われる
為、特にく100〉シリコン基板を用いた場合には、ス
トッパーの入り具合とからんでNチャンネルでは両端部
のサブスレッシ言ルド特性が下りリークの原因となり、
その傾向はチャンネル巾が狭い程悪影響を及ぼす。
Furthermore, in the shape of a manufactured MOS transistor, a crystal orientation different from that on the surface appears at both ends in the channel direction, so especially when using a silicon substrate, this may be affected by the degree of insertion of the stopper. In the N channel, the subthreshold characteristics at both ends cause downstream leakage,
This tendency has a negative effect as the channel width becomes narrower.

これら結果は、例えば第5図、52の様な接合特性や第
4図、42の様なVG−4特性の不良となる。尚55.
45はLOOO8方式によるものである。
These results result in poor bonding characteristics as shown in FIG. 5, 52, and VG-4 characteristics as shown in FIG. 4, 42, for example. 55.
45 is based on the LOOO8 method.

そこで本発明は、以上の如き問題点を解決するものであ
り、その目的とするところは、実用量産的な工程でバー
ズビークの成長が押えられ、電気的特性の優れた素子分
離構造を持つ微細、ルールの半導体集積回路を安定供給
する事にある。
Therefore, the present invention is intended to solve the above-mentioned problems, and its purpose is to suppress the growth of bird's beaks in a practical mass production process and to provide a fine device having an element isolation structure with excellent electrical characteristics. Our goal is to provide a stable supply of semiconductor integrated circuits that meet the rules.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、半導体基板の活性領
域形成部上に、少なく共多結晶シリコン膜と第1のシリ
コン窒化膜を形成する工程と、前記形成膜の側面に第2
のシリコン窒化膜を形成する工程と、前記第1.第2の
シリコン窒化膜をマスクとして分離用酸化膜を形成する
工程と、該第1、第2のシリコン窒化膜と多結晶シリコ
ン膜を除去する工程と、分離用酸化膜の、形成されてい
ない領域に素子形成する工程を有する事を特徴とする。
The method for manufacturing a semiconductor device of the present invention includes the steps of forming at least a co-polycrystalline silicon film and a first silicon nitride film on an active region forming portion of a semiconductor substrate, and a second silicon nitride film on a side surface of the formed film.
a step of forming a silicon nitride film of the first step; a step of forming an isolation oxide film using the second silicon nitride film as a mask; a step of removing the first and second silicon nitride films and the polycrystalline silicon film; It is characterized by having a step of forming an element in the region.

〔作用〕[Effect]

本発明の作用を述べれば、多結晶シリコン族の積層によ
り溝を形成し、シリコン基板をエツチングしないのでフ
ィールド面や活性領域との界面の結晶欠陥を発生させず
、素子の電気特性の低下が防止出来、又該多結晶シリコ
ン膜と、シリコン窒化膜の側壁によりバーズビークが押
えられる。
The effects of the present invention are as follows: Grooves are formed by laminating polycrystalline silicon, and the silicon substrate is not etched, so crystal defects do not occur on the field surface or at the interface with the active region, and the deterioration of the electrical characteristics of the device is prevented. The bird's beak is suppressed by the polycrystalline silicon film and the sidewalls of the silicon nitride film.

〔実施例〕〔Example〕

以下、本発明について、実施例に基づき詳細に説明する
Hereinafter, the present invention will be described in detail based on examples.

第1図は、本発明の実施例を工程順に示す図である。ま
ずPウェル、Nウェルを形成した<100〉シリコン基
板1を熱酸化した第1のパッドシリコン酸化膜2上に約
5oooXの多結晶シリコン膜3と約1500にの第1
のシリコン窒化膜4と側壁形成時のバッファー用の第1
のOVDシリコン酸化&A5を5sooX気相成長させ
た後、フォトレジストをマスクにしてフィールド部の前
記気相成長kA 5 m ’ s 5をRYEで選択エ
ツチングした(第1図−α)。この時、第1のCVDシ
リコン酸化膜5とシリコン窒化膜4はOHF、+C87
6ガスを用いて連続エツチングし、多結晶シリコン族3
はS7・+c a tv、+aHaty!ガスにより、
各々異方性エツチングを行ったが、シリコンa化&a4
除宍後のオーバーエツチングにより下地多結晶シリコ′
f!、膜5がイオンビームにさらされ、表面の損傷を受
けるが、この部分は後工程で除去される事と多結晶シリ
コン族3のエツチングでは、シリコン醗化膜に対して大
きな選択比がとれるので、第1のパッドシリコン酸化膜
2はそのまま残り、下地シリコン基板1に損優を与える
事はない。尚多結晶シリコン膜5の厚みは1000X以
下ではバーズビークの抑制効果が少なく、4000A以
上ではR工Eでエツチングの際パターンラインがギザつ
く。
FIG. 1 is a diagram showing an embodiment of the present invention in order of steps. First, a polycrystalline silicon film 3 of about 500X and a first pad of about 1500
The silicon nitride film 4 and the first buffer for forming sidewalls are
After 5sooX vapor phase growth of OVD silicon oxide &A5, the vapor phase grown kA 5m's 5 in the field area was selectively etched with RYE using a photoresist as a mask (FIG. 1-α). At this time, the first CVD silicon oxide film 5 and silicon nitride film 4 are OHF, +C87
Polycrystalline silicon group 3 is etched continuously using 6 gases.
is S7・+c a tv, +aHaty! With gas,
Although anisotropic etching was performed for each, silicon a & a4
The underlying polycrystalline silicon is removed by over-etching after removal.
f! , the film 5 is exposed to the ion beam and the surface is damaged, but this part will be removed in a later process and the etching of the polycrystalline silicon group 3 will have a large selectivity with respect to the silicon oxide film. , the first pad silicon oxide film 2 remains as it is, and does not cause any damage to the underlying silicon substrate 1. Note that if the thickness of the polycrystalline silicon film 5 is less than 1000X, the effect of suppressing bird's beak is small, and if it is more than 4000A, the pattern lines become jagged during etching in RE etching.

次にフィールド反転防止用のストッパー領域6にボロン
、リンをイオン注入した後、第2のシリコン窒化膜7を
400Xと第2のCVDシリコン酸化膜8を5oooX
気相成長させた後(第1図−b )、RXmでエッチバ
ックし、該気相成長膜7.8の側壁をつくり(第19−
cl続いて第1、第2のCVDシリコン酸化膜5.8を
弗酸エツチングしてから、熱酸化で分離用のフィールド
酸化膜9を形成しく第1図−d)、続いて第1゜第2の
シリコン窒化膜4.7を熱リン酸で、多結晶シリコン膜
3を硝酸十弗酷の混合液で、第1のパッドシリコン酸化
膜2を弗酸で工、ツチングしく第1図−−)、その後活
性領域部にMO3)ランジスタ等の素子を形成した。
Next, after boron and phosphorus ions are implanted into the stopper region 6 for preventing field inversion, the second silicon nitride film 7 is deposited at 400X and the second CVD silicon oxide film 8 is deposited at 500X.
After vapor phase growth (Fig. 1-b), etching back with RXm is performed to form side walls of the vapor phase growth film 7.8 (Fig. 1-b).
Next, the first and second CVD silicon oxide films 5.8 are etched with hydrofluoric acid, and then a field oxide film 9 for isolation is formed by thermal oxidation. The silicon nitride film 4.7 of the second pad is treated with hot phosphoric acid, the polycrystalline silicon film 3 is treated with a mixed solution of nitric acid, and the first pad silicon oxide film 2 is treated with hydrofluoric acid. ), and then elements such as MO3) transistors were formed in the active region.

上述の工程を経た素子のバーズビークは、LOCOS方
式の115以下であり、従来問題となっていたMO8)
ランジスタ等の電気特性も第S図の54や第4図の44
の様に改善された。又制御困難な単結晶のシリコン基板
のエツチングが不必要になった上、活性領域境界付近の
形状や平担性が改善された。本工程を用いて1.2μル
ールの2256 S RAM等の製造の安定量産を可能
とし、歩留シの向上が図れた。
The bird's beak of the device that has gone through the above process is less than 115 of the LOCOS method, which is MO8), which has been a problem in the past.
The electrical characteristics of transistors, etc. are also shown at 54 in Figure S and 44 in Figure 4.
It has been improved as follows. Furthermore, etching of the single crystal silicon substrate, which is difficult to control, is no longer necessary, and the shape and flatness near the boundary of the active region are improved. Using this process, stable mass production of 2256 S RAMs and the like using the 1.2μ rule was made possible, and the yield was improved.

以上本発明の一実施例を説明したが、エッチパックの際
に、第1のシリコン窒化膜4が耐酸化膜としての効果を
有する範囲で残り、且つ第2シリ。
One embodiment of the present invention has been described above. During the etch pack, the first silicon nitride film 4 remains to the extent that it has an effect as an oxidation-resistant film, and the second silicon nitride film 4 remains.

コン窒化gQ7の側壁が形成されれば、第2のCVDシ
リコン酸化膜5の厚みは限定されなく、無くてもよい。
As long as the sidewalls of the silicon nitride gQ7 are formed, the thickness of the second CVD silicon oxide film 5 is not limited and may be omitted.

又、多結晶シリコン膜の代わりに、fモル7アスシリコ
ン膜や高融点金属膜やそのシリサイド膜でも効果が期待
出来、この分離工程はMO8構造に限らずパラポーラ−
構造の素子を持つ半導体装置に応用が出来る。
In addition, instead of the polycrystalline silicon film, an f-mol7as silicon film, a high melting point metal film, or its silicide film can also be used, and this separation process is applicable not only to the MO8 structure but also to the parapolar structure.
It can be applied to semiconductor devices with structured elements.

〔発明の効果〕   。〔Effect of the invention〕 .

本発明の効果は、多結晶シリコン膜の積層及び段差とシ
リコン窒化膜の側壁により、バーズビークの成長を押え
且つ電気特性を改良し、メモリー等の超r、+s工の微
細化と安定供給が図れた。
The effects of the present invention are that the stacked layers and steps of the polycrystalline silicon film and the sidewalls of the silicon nitride film suppress the growth of bird's beak and improve the electrical characteristics, allowing for the miniaturization and stable supply of ultra-r and +s processes such as memories. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(α)〜(g)は本発明の半導体装置の製造工程
の断面図。第2図(α)〜(5’)は従来の半導体装置
の製造工程の断面図。第3図は接合リーク特性で第4図
はMOS)ランジスタの7()−JT’o  特性であ
る。 1.21・・・・・・シリコン基板 ニア 、 22・・・・・・第1のパッドシリコン酸化
膜3   ・・・・・・多結晶シリコン膜4.24・・
・・・・第1のシリコン窒化膜5.25・・・・・・第
1のcvnシリコン酸化膜6.26・・・・・・ストッ
パー領域 7.27・・・・・・第2のシリコン窒化膜8.28・
・・・・・第2のOVDシリコン酸化膜9.29・・・
・・・フィールド酸化膜10.50・・・ゲート膜 11.31・・・ゲート電極 以  上
FIGS. 1(α) to 1(g) are cross-sectional views of the manufacturing process of the semiconductor device of the present invention. FIGS. 2 (α) to (5') are cross-sectional views of the manufacturing process of a conventional semiconductor device. FIG. 3 shows the junction leakage characteristics, and FIG. 4 shows the 7()-JT'o characteristics of a MOS transistor. 1.21...Silicon substrate near, 22...First pad silicon oxide film 3...Polycrystalline silicon film 4.24...
...First silicon nitride film 5.25 ...First CVN silicon oxide film 6.26 ... Stopper region 7.27 ... Second silicon Nitride film 8.28・
...Second OVD silicon oxide film 9.29...
...Field oxide film 10.50...Gate film 11.31...Gate electrode or more

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の活性領域形成部上に、少なく共多結晶シ
リコン膜と第1のシリコン窒化膜を形成する工程と、前
記形成膜の側面に第2のシリコン窒化膜を形成する工程
と、前記第1、第2のシリコン窒化膜をマスクとして分
離用酸化膜を形成する工程と、該第1、第2のシリコン
窒化膜と多結晶シリコン膜を除去する工程と、分離用酸
化膜の形成されていない領域に素子形成する工程を有す
る事を特徴とする半導体装置の製造方法。
a step of forming at least a co-polycrystalline silicon film and a first silicon nitride film on an active region formation portion of a semiconductor substrate; a step of forming a second silicon nitride film on a side surface of the formed film; and a step of forming a second silicon nitride film on a side surface of the formed film; , a step of forming an isolation oxide film using the second silicon nitride film as a mask, a step of removing the first and second silicon nitride films and the polycrystalline silicon film, and a step of removing the isolation oxide film when the isolation oxide film is not formed. A method for manufacturing a semiconductor device, comprising the step of forming an element in a region.
JP22155284A 1984-10-22 1984-10-22 Manufacture of semiconductor device Pending JPS61100944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22155284A JPS61100944A (en) 1984-10-22 1984-10-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22155284A JPS61100944A (en) 1984-10-22 1984-10-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61100944A true JPS61100944A (en) 1986-05-19

Family

ID=16768505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22155284A Pending JPS61100944A (en) 1984-10-22 1984-10-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61100944A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829019A (en) * 1987-05-12 1989-05-09 Texas Instruments Incorporated Method for increasing source/drain to channel stop breakdown and decrease P+/N+ encroachment
EP0429404A2 (en) * 1989-10-24 1991-05-29 STMicroelectronics S.r.l. A process for forming a field isolation structure and gate structure in integrated MISFET devices
US5252511A (en) * 1991-03-04 1993-10-12 Samsung Electronics Co., Ltd. Isolation method in a semiconductor device
US5374584A (en) * 1992-07-10 1994-12-20 Goldstar Electron Co. Ltd. Method for isolating elements in a semiconductor chip
US5397733A (en) * 1993-05-21 1995-03-14 Hyundai Electronics Industries Co., Ltd. Method for the construction of field oxide film in semiconductor device
US5538916A (en) * 1993-04-28 1996-07-23 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device isolation region

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829019A (en) * 1987-05-12 1989-05-09 Texas Instruments Incorporated Method for increasing source/drain to channel stop breakdown and decrease P+/N+ encroachment
EP0429404A2 (en) * 1989-10-24 1991-05-29 STMicroelectronics S.r.l. A process for forming a field isolation structure and gate structure in integrated MISFET devices
US5122473A (en) * 1989-10-24 1992-06-16 Sgs-Thomson Microelectronics S.R.L. Process for forming a field isolation structure and gate structures in integrated misfet devices
US5252511A (en) * 1991-03-04 1993-10-12 Samsung Electronics Co., Ltd. Isolation method in a semiconductor device
US5374584A (en) * 1992-07-10 1994-12-20 Goldstar Electron Co. Ltd. Method for isolating elements in a semiconductor chip
US5538916A (en) * 1993-04-28 1996-07-23 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device isolation region
US5397733A (en) * 1993-05-21 1995-03-14 Hyundai Electronics Industries Co., Ltd. Method for the construction of field oxide film in semiconductor device

Similar Documents

Publication Publication Date Title
US5691230A (en) Technique for producing small islands of silicon on insulator
US5151381A (en) Method for local oxidation of silicon employing two oxidation steps
JPS6340337A (en) Method of isolating integrated circuit
JPH03245553A (en) Formation of element isolating region
CN211480025U (en) Transistor structure
JPH08172087A (en) Structure of separation membrane of semiconductor element and its formation
US4435446A (en) Edge seal with polysilicon in LOCOS process
CN100477154C (en) Method for manufacturing isolation structure of shallow groove
JPS61100944A (en) Manufacture of semiconductor device
JPS63288043A (en) Method of isolating side surface isolated element
JPS60198841A (en) Element isolation of semiconductor device
JPH05304202A (en) Fabrication of semiconductor device
KR100359858B1 (en) Method of forming device isolation film in semiconductor device
JPS62125629A (en) Manufacture of semiconductor device
KR0161429B1 (en) Method for forming isolatio film on a semiconductor device
JPH03153031A (en) Manufacture of semiconductor device
JPS6135533A (en) Manufacture of semiconductor device
KR960002771B1 (en) Manufacturing process of semiconductor integrated circuit isolation area
KR20050014164A (en) Manufacturing method for semiconductor device
KR20050012584A (en) Method for forming isolation layer of semiconductor device
KR100245087B1 (en) Method of forming an element isolation film in a semiconductor device
JPH0210729A (en) Formation of field insulating film
KR100604525B1 (en) Method for formation of field oxidation of semiconductor device
JP2002100671A (en) Semiconductor device and its manufacturing method
JPH0298958A (en) Isolation structure of semiconductor element