JPS60201604A - Magnetic material and magnetic film of metal oxide - Google Patents

Magnetic material and magnetic film of metal oxide

Info

Publication number
JPS60201604A
JPS60201604A JP5805284A JP5805284A JPS60201604A JP S60201604 A JPS60201604 A JP S60201604A JP 5805284 A JP5805284 A JP 5805284A JP 5805284 A JP5805284 A JP 5805284A JP S60201604 A JPS60201604 A JP S60201604A
Authority
JP
Japan
Prior art keywords
magnetic
metal oxide
film
magnetic material
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5805284A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
均 中村
Nobuyuki Koinuma
鯉沼 宜之
Hajime Machida
元 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5805284A priority Critical patent/JPS60201604A/en
Publication of JPS60201604A publication Critical patent/JPS60201604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a material for a photomagnetic recording medium which enables recording or reproducing with semiconductor laser light maintaining reasonably high coercive force and lowering a curie temperature by substituting part of Fe atoms in a metal oxide of Pb-Fe system with a Cr atom and one or more atoms of specific five elements. CONSTITUTION:A material shown by a general formula PbO.n[Crx.Mey Fe(2-x-my/3)O3] is used. However, Me shows an element selected from In, Sc, Ti, Sn, Zn, Ta and Ga, (m) shows ion valence number and (n), (x) or (y) is 5.0<=n<=6.0, 0<x<=1.0 or 0<y<=0.6 respectively. In order to make such a metal oxide magnetic material, specific quantity of PbCO3, Fe2O3, Cr2O3 and either one of In2O3, Sc2O3, TiO2, SnO2 or ZnO are mixed and ground, put in a metal mold for forming and then sintered at a temperature of 1,200-1,400 deg.C. In order to make a magnetic film 2, e.g., on a substrate 1, the magnetic material is coated to a target of film thickness approx. 0.1-10mum by such a method as vacuum deposition, sputtering or ion plating.

Description

【発明の詳細な説明】 技術分野 本発明は新規な金属酸化物磁性体及びそtシよりなる磁
性膜に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a novel metal oxide magnetic material and a magnetic film comprising the same.

k泉皮1 近年、半導体レーザー光により磁気記録を行なう光磁気
記録媒体が高密度記録用として研究開発されている。従
来、光磁気記録媒体に用いられる磁性体としては希土類
金属と遷移金属との非晶質合金からなるものが多い。こ
のような非晶質合金磁性体を用いて光磁気記録媒体を作
るには一般にガラス板のような基板上に前記磁性体、例
えばTb−Fe合金を真空蒸着、スパッタリング等の方
法で厚さO01〜1μm程度に(」着させて磁性膜を形
成している。こうして得られる光磁気記録媒体への記録
、再生は次のようにして?テなわれる。即ち記録は磁性
膜のキュリ一温度又は補償温度近傍における温度変化に
対応した保磁力の急激な変化特性を利用して2値信号で
変調されたレーザー光を磁性膜に照射加熱して磁化の向
きを反転させることにより行なわれる。また再生はこう
して反転記録された磁性膜の磁気光学効果の差を利用し
て読出すことにより行なわれる。前述のような非晶質合
金磁性体を用いた光磁気記録媒体は記録感度が高いため
、半導体レーザー光によって高速度(周波数IMHzに
おいて)で記録できるという利点はあるが、非晶質合金
磁性体、特に希土類金属成分は酸化腐食を受け易いので
、経時と共に磁性膜の磁気光学特性が劣化するという大
きな欠点がある。これを防止するため、非晶質磁性膜上
にS i O,S i O,、等の保護膜を設ける(形
成法は磁性膜の場合と同様、真空蒸着、スパッタリング
等による)ことも知られているが、磁性膜或いは保護膜
の形成時、真空中に残存する02、基板面に吸着された
02.820等及び合金磁゛性体のターゲット中に含ま
れるO、、820等により経時と共に磁性膜が酸化腐食
される上、記録時の光及び熱により更にこの酸化腐食は
促進される。また非結晶質磁性体は熱によって結晶化さ
れ易く、そのために磁気特性の劣化を来たし易いという
欠点を有する。更に再生出力を向上するための再生方式
として磁性膜をできるだけ厚くし、その上にCu、 A
D、、Pt、Au等の反射膜を設け、レーザー光を磁性
膜に照射透過させた後1反射膜で反射させ、この反射光
を検出する反射型ファラデ一方式は高S/Nの信号が得
られるという点で有利であるが、従来の非晶質磁性膜は
透光性に欠けるため、この方式に用いることができない
ものであった。
In recent years, magneto-optical recording media that perform magnetic recording using semiconductor laser light have been researched and developed for high-density recording. Conventionally, magnetic materials used in magneto-optical recording media are often made of amorphous alloys of rare earth metals and transition metals. To make a magneto-optical recording medium using such an amorphous alloy magnetic material, the magnetic material, for example, a Tb-Fe alloy, is generally deposited on a substrate such as a glass plate to a thickness of O01 by vacuum deposition, sputtering, etc. A magnetic film is formed by depositing the magnetic film to a thickness of approximately 1 μm. Recording and reproduction on the magneto-optical recording medium obtained in this way is carried out as follows. That is, recording is performed at the Curie temperature of the magnetic film or This is done by heating the magnetic film by irradiating laser light modulated with a binary signal to reverse the direction of magnetization, making use of the characteristics of rapid changes in coercive force in response to temperature changes near the compensation temperature. This is done by reading out using the difference in the magneto-optical effect of the magnetic film recorded in reverse.The magneto-optical recording medium using the above-mentioned amorphous alloy magnetic material has high recording sensitivity, so it is not suitable for semiconductors. Although it has the advantage of being able to record at high speed (at a frequency of IMHz) using laser light, amorphous alloy magnetic materials, especially rare earth metal components, are susceptible to oxidative corrosion, so the magneto-optical properties of the magnetic film deteriorate over time. In order to prevent this, a protective film such as SiO, SiO, etc. is provided on the amorphous magnetic film. ) It is also known that during the formation of a magnetic film or protective film, O2 remaining in vacuum, O2.820 etc. adsorbed on the substrate surface, and O contained in the target of the magnetic alloy material. 820 etc. over time, and this oxidation corrosion is further accelerated by light and heat during recording.Furthermore, amorphous magnetic materials are easily crystallized by heat, resulting in deterioration of magnetic properties. Furthermore, as a reproduction method to improve the reproduction output, the magnetic film is made as thick as possible, and Cu, A
The reflective Faraday type, in which a reflective film made of D, Pt, Au, etc. is provided, a laser beam is irradiated onto the magnetic film, transmitted through it, reflected by one reflective film, and this reflected light is detected, produces a signal with a high S/N. Although it is advantageous in that it can be obtained, conventional amorphous magnetic films cannot be used in this method because they lack light transmission.

目 的 本発明の目的は記録感度が高く、しかも耐酸化腐食性及
び透光性に優れた、光磁気記録媒体用材料として特に好
適な新規な金属酸化物磁性体及びこの金属酸化物磁性体
よりなる磁性膜を提供することである。
Purpose The purpose of the present invention is to provide a novel metal oxide magnetic material that has high recording sensitivity, excellent oxidation corrosion resistance and light transmission properties, and is particularly suitable as a material for magneto-optical recording media, and a novel metal oxide magnetic material that is particularly suitable as a material for magneto-optical recording media. The purpose of the present invention is to provide a magnetic film having the following properties.

1−一部 本発明の金属酸化物磁性体は一般式(1)%式%)] ばれる元素を示し、mはMeのイオン価数を示し、ni
x、yは夫々5.0≦n≦6.0’、 0<X≦1.0
0<y≦6.0である。) で示されるものであり、また磁性膜は前記一般式の金属
酸化物磁性体よりなるものである。
1-Part of the metal oxide magnetic material of the present invention represents an element represented by the general formula (1) (% formula %)], m represents the ion valence of Me, and ni
x and y are respectively 5.0≦n≦6.0', 0<X≦1.0
0<y≦6.0. ), and the magnetic film is made of a metal oxide magnetic material having the above general formula.

光磁気記録媒体゛に用いられる磁性体又は磁性膜には半
導体レーザー光によって記録、再生可能な磁気光学特性
(適正なキュリ一温度、保磁力等)を備えていなければ
ならないが、特に高い記録感度を得るためにキュリ一温
度Tcが低いこと及び記録したメモリーを安定に維持す
るために保磁力Hcが適度に高いことが必要である。一
般にこのT c、及びHeの適正範囲は1’ cについ
ては100〜350℃、 F(cについては300〜6
000エルステツドと考えられる。これは1’ cが1
00℃以下では記録したメモリーが再生時のレーザー光
によって不安定になって再生特性の劣化原因となり、 
また、350℃以上では半導体レーザー光による記録が
困難であり、一方、)−1cが300エルステツド以下
ではメモリーが不安定となって消失する可能性があり、
また6000工ルステツド以上では記録時の磁化反転に
必要なレーザー出力や外部磁界が大きくなり、好ましく
ないからである。
The magnetic material or magnetic film used in the magneto-optical recording medium must have magneto-optical properties (appropriate Curie temperature, coercive force, etc.) to enable recording and reproduction using semiconductor laser light, but especially high recording sensitivity is required. In order to obtain this, it is necessary that the Curie temperature Tc be low, and that the coercive force Hc be appropriately high in order to maintain the recorded memory stably. In general, the appropriate ranges for T c and He are 100 to 350°C for 1' c, and 300 to 6 F for c.
It is thought to be 000 oersted. This is 1' c is 1
At temperatures below 00°C, the recorded memory becomes unstable due to the laser light during playback, causing deterioration of playback characteristics.
Furthermore, it is difficult to record with semiconductor laser light at temperatures above 350°C, and on the other hand, when -1c is below 300 oersteds, the memory becomes unstable and may disappear.
In addition, if it exceeds 6,000 millimeters, the laser output and external magnetic field necessary for magnetization reversal during recording will become large, which is undesirable.

一方、従来より磁気バブル材料として金属酸化物磁性体
が研究されている。このうち六方晶系のものでは例えば 一般式(2) %式%) (但しnは一般式(1)に同じ) で示されるものが知られている。本発明者らはこの種の
磁性体がそれ自体、酸化物であるため、酸化劣化の恐れ
がなく、 しかも膜厚10μmとしても透光性を備えて
いることに注目した。しかしこれらはキュリ一温度Tc
が450℃以上と高いため、前述のように半導体レーザ
ー光による記録は困難であり、そのままでは光磁気記録
媒体用材料として適用できない。
On the other hand, metal oxide magnetic materials have been studied as magnetic bubble materials. Among these hexagonal crystals, for example, those represented by the general formula (2) (% formula %) (where n is the same as in the general formula (1)) are known. The inventors of the present invention have noted that since this type of magnetic material is itself an oxide, there is no fear of oxidative deterioration and, moreover, it has translucency even with a film thickness of 10 μm. However, these are Curie temperature Tc
Since the temperature is as high as 450° C. or higher, recording with semiconductor laser light is difficult as described above, and it cannot be used as is as a material for magneto-optical recording media.

そこで本発明者らは一般式(2)の磁性体を基礎にして
種々検討した。その結果、一般式(2)中のFe原子の
一部をCr又はIn、Sc、Ti。
Therefore, the present inventors conducted various studies based on the magnetic material of general formula (2). As a result, some of the Fe atoms in general formula (2) are replaced by Cr, In, Sc, or Ti.

Sn及びZn原子で置換することによって、Tcが低下
することを見い出した。同時にHeについてはCr[換
の場合は増大するが、ln、Sc。
It has been found that Tc is lowered by substituting with Sn and Zn atoms. At the same time, He increases in the case of Cr[exchange, but ln, Sc.

Ti、Sn及びzn@換の場合は低下することを見い出
した。例えば P b F et tt−ユz ) M2019 (M
はCr、In+Sc、Ti、Sn及びZnを示し、2は
Mの置換数mはZのイオン価数を示す。)において、上
記各々の原子で置換した場合、Tcについては第1図の
ような傾向を示した。またHeについては第2図のよう
な傾向を示した。
It has been found that in the case of Ti, Sn and zn@ exchanges, it decreases. For example, P b F et tt-yuz ) M2019 (M
represents Cr, In+Sc, Ti, Sn, and Zn, 2 represents the substitution number of M, and m represents the ion valence of Z. ), when each of the above atoms was substituted, Tc showed a tendency as shown in FIG. In addition, He showed a tendency as shown in Fig. 2.

そこで本発明者らはこのようなCr又はIn。Therefore, the present inventors decided to use such Cr or In.

Sc+Ti’、Sn及びZnの置換効果に着目し、更に
光磁気記録媒体用の磁性体又は磁性膜に要求されるTc
及びHeの前記適正範囲を考慮して一般式(2)のFe
の一部を、Crと上記他の5種の原子の一つとの組み合
わせで種々の割合でもって置換した結果、一般式(1)
の金属酸化物磁性体が光磁気記録媒体として優」tだ特
性を与えることを見い出し本発明に到達した。
Focusing on the substitution effects of Sc+Ti', Sn and Zn, we also focused on the Tc required for magnetic materials or magnetic films for magneto-optical recording media.
and Fe of general formula (2) considering the appropriate range of He.
As a result of substituting a part of with a combination of Cr and one of the other five types of atoms in various proportions, the general formula (1)
The inventors have discovered that the metal oxide magnetic material provides excellent properties as a magneto-optical recording medium, and have arrived at the present invention.

このように本発明は、特にキュリ一温度が高いため、光
磁気記録媒体用材料として顧みられなかった一般式(2
)の金属酸化物中のFe原子の一部をMn及び上記他の
5種の原子のうちの一つで置換することによって、メモ
リーに要求される適度に高い保磁力を維持しながら、キ
ュリ一度を低下せしめて半導体レーザー光による記録、
再生を可能にし、光磁気記録媒体用材料として適用でき
るようにしたものである。
In this way, the present invention solves the problem of the general formula (2
) by substituting some of the Fe atoms in the metal oxides with Mn and one of the other five atoms mentioned above, the Curi Recording by semiconductor laser light by reducing the
This material enables reproduction and can be applied as a material for magneto-optical recording media.

例えばP bCrx ’ Mey’ F e12 M 
’ −3y ’ Olg(但し、MeはIn、Sc、T
i、Sn及びZnから選ばれる元素を示し、X′はAI
の置換数、y′はMeの置換数、mはMeのイオン価数
を示す。)において置換原子数を種々変えてT、c及び
Heへの影響を調べたところ、第3図及び第4図に示す
結果が得られた。ここで、 M e = I nの場合:第3−1図及び第4−1図
M e = S cの場合:第3−2図及び第4−2図
M e = T iの場合:第3−3図及び第4−3図
Me=Znの場合:第3−4図及び第4−4図である。
For example, P bCrx 'Mey' F e12 M
' -3y ' Olg (However, Me is In, Sc, T
represents an element selected from i, Sn and Zn, and X' is AI
, y' is the number of Me substitutions, and m is the ion valence of Me. ), the effects on T, c, and He were investigated by varying the number of substituted atoms, and the results shown in FIGS. 3 and 4 were obtained. Here, when M e = In: Fig. 3-1 and Fig. 4-1 When M e = Sc: Fig. 3-2 and Fig. 4-2 When M e = T i: Fig. 3-1 and Fig. 4-1. 3-3 and 4-3 When Me=Zn: FIGS. 3-4 and 4-4.

これらのTc及びHc特性により本発明の金属酸化物磁
性体又は磁性膜は半導体レーザー光により記録、再生を
行なう光磁気記録媒体用材料として適用できることは勿
論、キュリ一温度が低いため、記録感度が高い上、耐酸
化腐食性及び透光性を備えている等の特長を持っている
Due to these Tc and Hc properties, the metal oxide magnetic material or magnetic film of the present invention can be applied as a material for magneto-optical recording media that performs recording and reproduction using semiconductor laser light. In addition to being expensive, it has features such as oxidation corrosion resistance and translucency.

本発明の金属酸化物磁性体を作るには夫々所定量のpb
co3.とFe2O,とcr2o。
To make the metal oxide magnetic material of the present invention, a predetermined amount of pb
co3. and Fe2O, and cr2o.

と更にIn2o、 と5c2o3.Tio2 +5n0
2、ZnOのいずれが一つを混合粉砕し、これを適当な
形状の金型に入れて成型後、1200〜1400℃の温
度で焼結すればよい。
and further In2o, and 5c2o3. Tio2 +5n0
2. Any one of ZnO may be mixed and ground, put into a mold of an appropriate shape, molded, and then sintered at a temperature of 1200 to 1400°C.

以上のようにして得られる本発明の金属酸化物磁性体の
具体例としでは PbO・6.OCCro、It r n o、tFFc
 )、3 0−a )Pb0・6.0CCro、HT:
に、g−Fez、aFO,)PbC16,6(Cr I
n、、、 Fe1)t−Oz ]ρ11 Pb0・6.0 [Cr Zn a、z、、−Fe t
、uo Oa ]ρt−r pbo・s、o (Cr Sc 、He Fe /、)
 03 )0幻1 PbO16,0(Cr S n o、if F’e 1
.at’ Os、]tF Pb0・5.6[Cr(+4(1n 、、g Fe1,
3 C)3 ]Pb0・5.8 (C:ro、ti T
 i、、、 Fe2.、0. )が挙げられる。
A specific example of the metal oxide magnetic material of the present invention obtained as described above is PbO.6. OCCro, It r no, tFFc
), 30-a) Pb0・6.0CCro, HT:
, g-Fez, aFO,)PbC16,6(Cr I
n,,, Fe1)t-Oz ]ρ11 Pb0・6.0 [Cr Zn a,z,,-Fe t
, uo Oa ] ρt-r pbo・s, o (Cr Sc , He Fe /,)
03 ) 0 phantom 1 PbO16,0 (Cr Sn o, if F'e 1
.. at' Os,]tF Pb0・5.6[Cr(+4(1n,,g Fe1,
3 C) 3 ] Pb0・5.8 (C: ro, ti T
i,,, Fe2. ,0. ).

なお以上のような金属酸化物磁性体にはファラデー回転
角を更に増大して磁気光学特性を改善するためにCo、
Bit V、La、Y+ Yb。
In order to further increase the Faraday rotation angle and improve the magneto-optical properties, Co,
Bit V, La, Y+ Yb.

Sm、Tb、Dy’e Gd等(7)fijJiti[
1jJIlt ルコとかできる。
Sm, Tb, Dy'e Gd, etc. (7) fijJiti [
1jJIlt I can do Ruco.

本発明の金属酸化物磁性体を用いて磁性膜を作るには、
基板の種類にもよるが、一般に基板上にこの磁性体をタ
ーゲットとして基板温度500〜700℃で真空蒸着、
スパッタリング、イオンブレーティング等の方法で膜厚
0.1〜10μm程度に付着させればよい。こうして第
5図に示すように基板【上に、垂直磁化さ、ltた磁性
膜2を有する光磁気記録媒体が得られる。なお場合によ
っては磁性膜の形成は基板温度500℃未満で行なうこ
ともできる。但しこの場合は磁性膜形成後、これに50
0〜800℃の熱処理を、場合により磁界を印加しなが
ら、行なって垂直磁化させる必要がある。ここで基板の
材料としては一般にアルミニウムのような耐熱性金属;
石英ガラス:GGG;サファイヤ;リチウムタンタレー
ト;結晶化透明ガラス;パイレックスガラス;バリコー
ルガラス;表面を酸化処理し又は処理しない単結晶シリ
コン?AQ203゜ AQ203・MgO,Mg0−L i F、Y2o3・
LiF、Bed、ZrO2・Y2O,、’I’hO,,
・CaO等の透明セラミック材;無機シリコン材“(例
えば東芝シリコン社製トスガード、住人化学社製スミセ
ラムP)等の無機材料が使用できる。
To make a magnetic film using the metal oxide magnetic material of the present invention,
Although it depends on the type of substrate, generally this magnetic material is vacuum evaporated onto the substrate at a substrate temperature of 500 to 700°C.
The film may be deposited to a thickness of about 0.1 to 10 μm using methods such as sputtering and ion blasting. In this way, as shown in FIG. 5, a magneto-optical recording medium having a perpendicularly magnetized magnetic film 2 on the substrate is obtained. In some cases, the magnetic film may be formed at a substrate temperature of less than 500°C. However, in this case, after forming the magnetic film, it is
It is necessary to perform perpendicular magnetization by performing heat treatment at 0 to 800° C. while applying a magnetic field if necessary. Here, the substrate material is generally a heat-resistant metal such as aluminum;
Quartz glass: GGG; Sapphire; Lithium tantalate; Crystallized transparent glass; Pyrex glass; Varicor glass; Single crystal silicon with or without surface oxidation treatment? AQ203゜AQ203・MgO, Mg0-L i F, Y2o3・
LiF, Bed, ZrO2・Y2O,,'I'hO,,
・Transparent ceramic materials such as CaO; Inorganic materials such as inorganic silicon materials (for example, Tosguard manufactured by Toshiba Silicon Co., Ltd., and Sumiceram P manufactured by Sumitomo Chemical Co., Ltd.) can be used.

本発明の磁性膜は第5図のような単層型光磁気記録媒体
に限らず、従来公知のすべての多層型光磁気記録媒体に
適用できる。この種の多層型の例としては第6〜9図に
示すような構成のものが挙げられる。図中、1′はガイ
ドトラック付き基板、3は反射膜、4は透明誘電層、5
はガイドトラック層、6は保護膜、7は透明接着層、8
は耐熱層である。ここでガイドトラックイ」き基板1′
は前述のような有機材料を射出成型、押出成型、フォト
エツチング法等により加工して作られる。なお基板のガ
イドI・ラックは記録、再生時のレーザー光を案内する
ものである。反射膜3はCu 、 A (+、 + A
 g +ΔU。
The magnetic film of the present invention is applicable not only to a single-layer magneto-optical recording medium as shown in FIG. 5, but also to all conventionally known multilayer magneto-optical recording media. Examples of this type of multilayer type include structures shown in FIGS. 6 to 9. In the figure, 1' is a substrate with a guide track, 3 is a reflective film, 4 is a transparent dielectric layer, and 5 is a substrate with a guide track.
is a guide track layer, 6 is a protective film, 7 is a transparent adhesive layer, 8
is a heat-resistant layer. Now put the guide track on board 1'
is made by processing the above-mentioned organic materials by injection molding, extrusion molding, photoetching, etc. Note that the guide I/rack on the board guides the laser beam during recording and reproduction. The reflective film 3 is made of Cu, A (+, + A
g + ΔU.

Pt、TeOx、TeC,5eAs、TeAs+TiN
、TaN、CrN、シアニン染料、フタロシアニン染料
等を真空蒸着、スパッタリング、イオンブレーティング
等の方法で対象面に膜厚500〜toooo人程度に付
着させることにより形成される。なおこの反射膜は、磁
性膜を透過したレーザー光を反射し、再び磁性膜を透過
することによるファラデー効果を増大させる目的で設け
られる。透明誘電層4はS + 02 +’ S i 
O+Tie、、Tie、Ce2O,l−1fO2,Be
d。
Pt, TeOx, TeC, 5eAs, TeAs+TiN
, TaN, CrN, cyanine dye, phthalocyanine dye, etc., are deposited on the target surface by a method such as vacuum evaporation, sputtering, ion blasting, etc. to a film thickness of approximately 500 to 500 mm. Note that this reflective film is provided for the purpose of increasing the Faraday effect by reflecting the laser light that has passed through the magnetic film and transmitting it through the magnetic film again. The transparent dielectric layer 4 is S + 02 +' S i
O+Tie,,Tie,Ce2O,l-1fO2,Be
d.

The2.S t、N、等を前記と同様な方法で対象面
に膜厚約0.05〜0.5μm程度に付着させることに
より形成される。なおこの透明誘電層はファラデー回転
角を増大させて再生出力を向上する目的で設けられる。
The2. It is formed by depositing St, N, etc. on the target surface to a thickness of approximately 0.05 to 0.5 μm using the same method as described above. Note that this transparent dielectric layer is provided for the purpose of increasing the Faraday rotation angle and improving the reproduction output.

・ガイドトラック層5は対象面に紫外線硬化性樹脂を塗
布した後、ガイド溝を有する金型を圧着しながら、紫外
線を照射して前記樹脂を硬化させることにより形成され
る。保護膜6はアクリル樹脂、ポリウレタン樹脂、ポリ
カーボネート樹脂、ポリエーテルスルホン樹脂、ポリア
ミド樹脂、エポキシ樹脂、TiN、S i、N4.Ta
N+ S i02.S i。
- The guide track layer 5 is formed by applying an ultraviolet curable resin to the target surface, and then irradiating ultraviolet rays to cure the resin while pressing a mold having guide grooves. The protective film 6 is made of acrylic resin, polyurethane resin, polycarbonate resin, polyethersulfone resin, polyamide resin, epoxy resin, TiN, Si, N4. Ta
N+S i02. Si.

等を樹脂の場合は塗布法で、その他の場合は真空蒸着、
スパッタリング、イオンブレーティング等の方法で対象
面に膜厚約0.1〜10μl程度に付着させることによ
り形成される。なおこの保護膜は反射膜3を保護する目
的で設けられる。
etc., in the case of resin, by coating method, in other cases, vacuum evaporation,
It is formed by depositing it on the target surface to a thickness of about 0.1 to 10 μl using a method such as sputtering or ion blasting. Note that this protective film is provided for the purpose of protecting the reflective film 3.

透明接着層7は、反射膜3を設けたガイドトラック付き
基板1′の反射膜と磁性11ii 2を設けた耐熱層8
 (この層は前記無機材料よりなるので、[磁性膜を設
けた耐熱層」とは前記単層型光磁気記録材料のことであ
る。)の磁性膜とにエポキシ樹脂、ポリウレタン、ポリ
アミド等の樹脂で約2〜100μm厚程度に接着するこ
とにより形成される。即ちこの透明接着層は単に基板1
′上の反射膜3と単層型光磁気記録材料の磁性膜2とを
接合するための層である。なお耐熱層8は前述のような
無機材料よりなるので、基板1に相当するが、ここでは
磁性膜2の耐熱性向上の目的で設けられる。厚さは約1
0〜50071m程度が適当である。
The transparent adhesive layer 7 includes the reflective film of the substrate 1' with guide tracks provided with the reflective film 3 and the heat-resistant layer 8 provided with the magnetic layer 11ii2.
(Since this layer is made of the above-mentioned inorganic material, the term "heat-resistant layer provided with a magnetic film" refers to the above-mentioned single-layer magneto-optical recording material.) The magnetic film is made of a resin such as epoxy resin, polyurethane, or polyamide. It is formed by adhering to a thickness of approximately 2 to 100 μm. That is, this transparent adhesive layer is simply attached to the substrate 1.
This is a layer for bonding the reflective film 3 on the upper layer and the magnetic film 2 of the single-layer magneto-optical recording material. Note that the heat-resistant layer 8 is made of the above-mentioned inorganic material and thus corresponds to the substrate 1, but is provided here for the purpose of improving the heat resistance of the magnetic film 2. Thickness is approximately 1
Approximately 0 to 50,071 m is appropriate.

本発明の磁性膜を用いた以上のような光磁気記録媒体へ
の記録、再生は従来と同じく磁性膜又は基板側から変調
又は偏向さ1またレーザー光を照射して行なわれる。
Recording and reproduction on the above-described magneto-optical recording medium using the magnetic film of the present invention is carried out by irradiating modulated or deflected laser light from the magnetic film or substrate side, as in the prior art.

羞−一米 本発明の金属酸化物磁性体又は磁性膜は光磁気記録媒体
用材料として適正なTc及びHcを有し、記録感度が高
いにも拘わらず、従来品にはなかった耐酸化腐食性及び
透明性を備おているので、磁気光学特性の経時劣化がな
く、且つ再生時に透過光も利用でき、このため再生出力
の高いファラデー回転角を利用して再生することができ
る。
Although the metal oxide magnetic material or magnetic film of the present invention has appropriate Tc and Hc as a material for magneto-optical recording media and has high recording sensitivity, it has oxidation and corrosion resistance that conventional products did not have. Because of its high transparency and transparency, the magneto-optical properties do not deteriorate over time, and transmitted light can also be used during reproduction, making it possible to reproduce using a Faraday rotation angle with high reproduction output.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1〜8 下記表に示した組成のターゲットを各々用いて、石英基
板上に蒸着法により1じ)厚500人のΔgを付着し、
この上に膜厚1000人の5iC12を被着した石英基
板上にAr分圧2.0nyn T o r r、02分
圧0.3mnT o r r、放電々力0.35KW、
基板温度520〜700°Cの条件で2時間スパッタリ
ングして0.2μm厚の磁性膜を形成した。これら磁性
膜のキュリ一温度Tc及び保磁力11 cを測定した結
果を下表に示す。
Examples 1 to 8 Each target having the composition shown in the table below was used to deposit a Δg of 500 mm thick on a quartz substrate by vapor deposition,
On this quartz substrate, a 1000-thickness 5iC12 film was deposited, Ar partial pressure was 2.0 ny Torr, 02 partial pressure was 0.3 mn Torr, discharge force was 0.35 KW,
Sputtering was performed for 2 hours at a substrate temperature of 520 to 700°C to form a 0.2 μm thick magnetic film. The results of measuring the Curie temperature Tc and coercive force 11c of these magnetic films are shown in the table below.

次に以上のようにして得られた各光磁気記録媒体を一方
向に磁化させ、この磁化の方向どは逆の500エルステ
ツドの磁界を印加しながら、出力20mVの半導体レー
ザー光を記録媒体表面での強度10m1+l及び周波数
IMHzのパルスで照射して磁気反転せしめ、記録した
ところ、いずれもビット径約1.5μmの記録ビットが
形成された。
Next, each magneto-optical recording medium obtained as described above was magnetized in one direction, and while applying a magnetic field of 500 oersted in the opposite direction of magnetization, a semiconductor laser beam with an output of 20 mV was applied to the surface of the recording medium. When recording was performed by irradiating with pulses with an intensity of 10 ml+l and a frequency of IM Hz to cause magnetic reversal, recording bits with a bit diameter of about 1.5 μm were formed in each case.

【図面の簡単な説明】[Brief explanation of drawings]

一第1図及び第2図は夫々、金属酸化物磁性体P b 
F e 、2 m Z Mz O,、’(MはCr、I
n。 Sc、Ti+ Sn及びZnを示し、ZはMの置換数、
mはMeのイオン価数を示す。)における置換数2と、
キュリ一温度Tc及び保磁カド■Cとの関係図である。 第3図及び第4図は夫々、金属酸化物磁性体 P bCrK’ May’ Fe12’= x ’ −
v ’ 019(MeはIn、Sen Ti、Sn及び
Znから選ばれる元素を示し、X′はCrの置換数、y
′はMeの置換数、mはMeのイオン価数を示す。)に
おける置換数X′及びy′と、Tc及びHcCとの関係
図である。第5〜9図は夫々本発明の磁性体又は磁性膜
を用いた光磁気記録媒体の一例の構成図である。 1・・・基 板 1′・・・ガイド1−ラックイ]き基板2・・・磁性膜
 3・・・反射暎 4・・透明誘電層 5・・・ガイドトラック層6・・・
保 護 膜 7・・透明接着層8・・耐 熱 層 1答 [ト4 第2図 第5図 第7図 第9図 i”s 6 L矧 第8図 手続ネ市正店; 昭和59年5月8EI 昭和59年特許願第58052号 2、 発明の名称 金属酸化物磁性体及び磁性膜 3、 補正をする者 事件との関係 特許出願人 東京都大「1区中馬込1丁目3番6号 (674)株式会社リ コー 代表者 浜 1) 広 4、代理人 5、 補正の対象 6、 補正の内容 1) 明細書の第4頁第17行の「、′1°a+ Ga
、 Jを削除する。 2) 第12頁第14行のr C: ex OJ を[
i’ Ce O、Jlに補正する。 以上
- Figures 1 and 2 respectively show metal oxide magnetic material P b
F e , 2 m Z Mz O,,' (M is Cr, I
n. Sc, Ti+ represents Sn and Zn, Z is the number of substitutions of M,
m indicates the ion valence of Me. ), the number of substitutions is 2, and
FIG. 2 is a relationship diagram between Curie temperature Tc and coercivity angle C. FIGS. 3 and 4 respectively show metal oxide magnetic material P bCrK'May'Fe12'= x ' −
v' 019 (Me represents an element selected from In, Sen Ti, Sn and Zn, X' is the number of substitutions of Cr, y
' represents the number of substitutions of Me, and m represents the ion valence of Me. ) is a relationship diagram between the substitution numbers X' and y' and Tc and HcC. 5 to 9 are configuration diagrams of examples of magneto-optical recording media using the magnetic material or magnetic film of the present invention, respectively. 1...Substrate 1'...Guide 1-Rack] Substrate 2...Magnetic film 3...Reflection layer 4...Transparent dielectric layer 5...Guide track layer 6...
Protective film 7...Transparent adhesive layer 8...Heat-resistant layer 1 [To 4 Figure 2 Figure 5 Figure 7 Figure 9 Figure 9 i''s 6 L 矧Figure 8 Procedure Ne City Main Store; 1988 May 8EI Patent Application No. 58052, filed in 1982, 2, Name of the invention: Metal oxide magnetic material and magnetic film 3, Relationship to the person making the amendment case: Patent applicant Tokyo Metropolitan University, 1-3-6 Nakamagome, 1st Ward No. (674) Ricoh Co., Ltd. Representative Hama 1) Hiro 4, Agent 5, Subject of amendment 6, Contents of amendment 1) ``,'1°a+ Ga'' on page 4, line 17 of the specification
, delete J. 2) r C: ex OJ on page 12, line 14 [
Correct to i' Ce O, Jl. that's all

Claims (1)

【特許請求の範囲】 1、一般式 %式%) (但し、MeはIn、Sc、Ti、Sn、7.nから選
ば、する元素を示し、mはMeのイオン価数を示し、n
rXryは夫々5.0≦n≦6.0.0<x<1.00
 < y≦0.6である。) で示される金属酸化物磁性体。 2、一般式 %式%) (但し、MeはIn、Sc、Ti、Sn、Znがら選ば
Jする元素を示し、mはMeのイオン価数を示し、nr
XrYは夫々5.0≦n≦6 、0 、0 < x <
 1 、00 < y≦0.6である。) で示される金属酸化物磁性体よりなる磁性膜。
[Claims] 1. General formula (%)
rXry is 5.0≦n≦6.0.0<x<1.00, respectively
<y≦0.6. ) is a metal oxide magnetic material. 2. General formula % formula %) (However, Me represents an element selected from In, Sc, Ti, Sn, and Zn, m represents the ion valence of Me, and nr
XrY is 5.0≦n≦6, 0, 0<x<
1,00<y≦0.6. ) A magnetic film made of a metal oxide magnetic material.
JP5805284A 1984-03-26 1984-03-26 Magnetic material and magnetic film of metal oxide Pending JPS60201604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5805284A JPS60201604A (en) 1984-03-26 1984-03-26 Magnetic material and magnetic film of metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5805284A JPS60201604A (en) 1984-03-26 1984-03-26 Magnetic material and magnetic film of metal oxide

Publications (1)

Publication Number Publication Date
JPS60201604A true JPS60201604A (en) 1985-10-12

Family

ID=13073144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5805284A Pending JPS60201604A (en) 1984-03-26 1984-03-26 Magnetic material and magnetic film of metal oxide

Country Status (1)

Country Link
JP (1) JPS60201604A (en)

Similar Documents

Publication Publication Date Title
EP0314518A2 (en) Magnetooptical recording media
JPS60124901A (en) Metal oxide magnetic material and magnetic film
JPS60201604A (en) Magnetic material and magnetic film of metal oxide
JPS6189607A (en) Metal oxide magnetic substance and magnetic film
JPS60164302A (en) Magnetic material and magnetic film of metal oxide
JPS60201603A (en) Magnetic material and magnetic film of metal oxide
JPH0576763B2 (en)
JPS60164303A (en) Magnetic material and magnetic film of metal oxide
JPS60220909A (en) Metal oxide magnetic body and magnetic film
JPS60151225A (en) Magnetic body of metallic oxide and magnetic film
JPS60240106A (en) Metal oxide magnetic material and magnetic film
JPS60163406A (en) Metallic oxide magnetic material and magnetic film
JPS60180920A (en) Metallic oxide magnetic body and magnetic film
JPS60163408A (en) Metallic oxide magnetic material and magnetic film
JPS60226105A (en) Metal oxide magnetic material and magnetic film
JPS60124902A (en) Metal oxide magnetic material and magnetic film
JPS60214506A (en) Metal-oxide magnetic body and magnetic film
JPS60166233A (en) Magnetic material of metal oxide and magnetic film
JPS60231304A (en) Metallic oxide magnetic material and magnetic film
JPS60151222A (en) Magnetic body of metallic oxide and magnetic film
JPS60133711A (en) Metallic oxide magnetic material and magnetic film
JPS60151223A (en) Magnetic body of metallic oxide and magnetic film
JPS60120503A (en) Metallic oxide magnetic material and magnetic film
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JPS60158604A (en) Metal oxide magnetic substance and magnetic film