JPS60180920A - Metallic oxide magnetic body and magnetic film - Google Patents

Metallic oxide magnetic body and magnetic film

Info

Publication number
JPS60180920A
JPS60180920A JP3370384A JP3370384A JPS60180920A JP S60180920 A JPS60180920 A JP S60180920A JP 3370384 A JP3370384 A JP 3370384A JP 3370384 A JP3370384 A JP 3370384A JP S60180920 A JPS60180920 A JP S60180920A
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetic body
magneto
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3370384A
Other languages
Japanese (ja)
Inventor
Nobuyuki Koinuma
鯉沼 宜之
Hitoshi Nakamura
均 中村
Hajime Machida
元 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3370384A priority Critical patent/JPS60180920A/en
Publication of JPS60180920A publication Critical patent/JPS60180920A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled magnetic body suitable as the material for a photoelectromagnetic recording medium having high recording sensitivity, excellent resistance to corrosion by oxidation and light transmissive property by constituting the body of Ba, Sr, Ga, Sc, Ti, Sn, Zn, Fe, and O shown by a specified gneral formula. CONSTITUTION:The metallic oxide magnetic body consists of a compd. shown by the general formula BaxSr1-xO.(Gay.MezFe2-y-m/3z)O3 [where Me is >=1 kind of element among Sc, Ti, Sn, and Zn, (m) is the number of the valances of the iron, and 5.0<=n<=6.0, 0<x<1, 0<y<=0.8, and 0<z<=0.8]. The magnetic body has the Curie temp. Tc and the coersive force Hc within an appropriate range necessary for obtaining high recording sensitivity, and hence has less extent of deterioration of the magnetic characteristic with time. Said magnetic body is obtained by mixing and crushing a specified amt. of BaCO3, SrCO3, Fe2O3, and Ga2O3 and >=1 kind among Sc2O3, TiO2, SnO2, and ZnO, molding the mixture in a metallic mold, and then sintering the molded body at about 1,200-1,400 deg.C.

Description

【発明の詳細な説明】 且」り辷」 本発明は新規な金属酸化物磁性体及びそれよりなる磁性
膜に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel metal oxide magnetic material and a magnetic film made of the same.

裟米肢亙 近年、半導体レーザー光により磁気記録を行なう光磁気
記録媒体が高密度記録用として研究開発されている。従
来、光磁気記録媒体に用いられる磁性体としては希土類
金属と遷移金属との非晶質合金からなるものが多い。こ
のような非晶質合金磁性体を用いて光磁気記録媒体を作
るには一般にガラス板のような基′板上に前記磁性体、
例えばTb−Fe合金を真空蒸着、スパッタリング等の
方法で厚さ0.1〜1μm程度に(4着させて磁性膜を
形成している。こうして得られる光磁気記録媒体への記
録、再生は次のようにして行なわれる。即ち記録は磁性
膜のキュリ一温度又は補償温度近傍における温度変化に
対応した保磁力の急激な変化特性を利用して2値4B号
で変調されたレーザー光を磁性膜に照射加烈して磁化の
向きを反転させることにより行なわれる。また再生はこ
うして反転記録された磁性膜の磁気光学効果の差を利用
して読出すことにより行なわれる。前述のような非晶質
合金磁性体を用いた光磁気記録媒体は記録感度が高いた
め、半導体レーザー光によって高速度(周波数IMll
zにおいて)で記録できるという利点はあるが、非晶質
合金磁性体、特に希土類金属成分は酸化腐食を受け易い
ので、経時と共に磁性膜の磁気光学特性が劣化するとい
う大きな欠点がある。こ肛を防止するため、非晶質磁性
膜上にSiO,SiO□等の保護膜を設ける(形成法は
磁性膜の場合と同様、真空蒸着、スパッタリング等によ
る)ことも知られているが、磁性膜或いは保護膜の形成
時、真空中に残存する02、基板面に吸着されたO、、
820等及び合金磁性体のターゲット中に含まれる0□
、H2O等により経時と共に磁性膜が酸化腐食される占
、記録時の光及び熱により更にこの酸化腐食は促進され
る。また非結晶質磁性体は熱によって結晶化され易く、
そのために磁気特性の劣化を来たし易いという欠点を有
する。更に再生出力を向上するための再生方式として磁
性膜をできるだけ厚くし、その上にCu、AQ、Pt、
Au等の反射膜を設け、レーザー光を磁性膜に照射透過
させた後、反射膜で反射させ、この反射光を検出する反
射型ファラデ一方式は高S/Nの信号が得られるという
点で有利であるが、従来の非晶質磁性膜は透光性に欠け
るため、この方式に用いることができないものであった
In recent years, magneto-optical recording media that perform magnetic recording using semiconductor laser light have been researched and developed for high-density recording. Conventionally, magnetic materials used in magneto-optical recording media are often made of amorphous alloys of rare earth metals and transition metals. To make a magneto-optical recording medium using such an amorphous alloy magnetic material, the magnetic material is generally placed on a substrate such as a glass plate.
For example, a Tb-Fe alloy is deposited to a thickness of about 0.1 to 1 μm by vacuum evaporation, sputtering, etc. to form a magnetic film. In other words, recording is performed by using the characteristic of the magnetic film's rapid change in coercive force corresponding to temperature changes near the Curie temperature or the compensation temperature to direct a laser beam modulated in binary 4B to the magnetic film. This is done by inverting the direction of magnetization by irradiating the magnetic film with high intensity. Also, reproduction is performed by using the difference in the magneto-optical effect of the magnetic film recorded in this way. Magneto-optical recording media using high quality alloy magnetic materials have high recording sensitivity, so they can be recorded at high speeds (frequency IMll) by semiconductor laser light.
Although it has the advantage of being able to record at 300° C.), it has the major drawback that the magneto-optical properties of the magnetic film deteriorate over time because amorphous alloy magnetic materials, especially rare earth metal components, are susceptible to oxidative corrosion. In order to prevent this, it is known that a protective film such as SiO, SiO□, etc. is provided on the amorphous magnetic film (the formation method is by vacuum evaporation, sputtering, etc., as in the case of the magnetic film). When forming a magnetic film or protective film, O2 remains in vacuum, O adsorbed on the substrate surface,
0□ contained in targets of 820 etc. and alloy magnetic materials
, H2O, etc. over time, and this oxidative corrosion is further accelerated by light and heat during recording. In addition, amorphous magnetic materials are easily crystallized by heat,
Therefore, it has the disadvantage that magnetic properties tend to deteriorate. Furthermore, as a reproduction method to improve reproduction output, the magnetic film is made as thick as possible, and Cu, AQ, Pt,
The reflective Farade type method, in which a reflective film such as Au is provided, a laser beam is irradiated and transmitted through the magnetic film, and then reflected by the reflective film and the reflected light is detected, has the advantage that a high S/N signal can be obtained. Although advantageous, conventional amorphous magnetic films cannot be used in this method due to their lack of light transmission.

目 的 本発明の目的は記録感度が高く、しかも耐酸化腐食性及
び透光性に優れた、光磁気記録媒体用材料として特に好
適な新規な金属酸化物磁性体及びこの金属酸化物磁性体
よりなる磁性膜を提供することである。
Purpose The purpose of the present invention is to provide a novel metal oxide magnetic material that has high recording sensitivity, excellent oxidation corrosion resistance and light transmission properties, and is particularly suitable as a material for magneto-optical recording media, and a novel metal oxide magnetic material that is particularly suitable as a material for magneto-optical recording media. The purpose of the present invention is to provide a magnetic film having the following properties.

1−一部 本発明の金属酸化物磁性体は一般式(1)%式%) (但し、MeはSc、Ti、Sn、Znから選ばれた少
なくとも一種の元素を示し、IlはMeのイオン価数を
示し、n、x+y+Zは夫々5.0≦n≦6.0゜0<
x≦1.0. O<z≦0.8の値を表わす。)で示さ
れるものであり、また磁性膜は前記一般式の金属酸化物
磁性体よりなるものである。
1-Part of the metal oxide magnetic material of the present invention has the general formula (1) % formula %) (However, Me represents at least one element selected from Sc, Ti, Sn, and Zn, and Il represents an ion of Me. Indicates the valence, n, x+y+Z are each 5.0≦n≦6.0゜0<
x≦1.0. It represents a value of O<z≦0.8. ), and the magnetic film is made of a metal oxide magnetic material having the above general formula.

光磁気記録媒体に用いられる磁性体又は磁性°膜には半
導体レーザー光によって記録、再生可能な磁気光学特性
(適正なキュリ一温度、保磁力等)を備えていなければ
ならないが、特番;高い記録感度を得るためにキュリ一
温度Tcが低いこと及び記録したメモリーを安定に維持
するために保磁力Heが適度に高いことが必要である。
The magnetic material or magnetic film used in magneto-optical recording media must have magneto-optical properties (appropriate Curie temperature, coercive force, etc.) that allow recording and reproduction using semiconductor laser light. In order to obtain sensitivity, it is necessary that the Curie temperature Tc be low, and in order to maintain the recorded memory stably, it is necessary that the coercive force He be appropriately high.

一般にこのTc及びHeの適正範囲はTcについては1
00〜350℃、 Heについては300〜6000エ
ルステツドと考えられる。これはTcが100℃以下で
は記録したメモリーが再生時のレーザー光によって不安
定になって再生特性の劣化原因となり、また、350℃
以上では半導体レーザー光による記録が困難であり、一
方、Heが300エルステツド以下ではメモJJ−が不
安定となって消失する可能性があり、また6000工ル
ステツド以上では記録時の磁化反転に必要なレーザー出
力や外部磁界が大きくなり、好ましくないからである。
Generally, the appropriate range for Tc and He is 1 for Tc.
00 to 350°C, and 300 to 6000 oersted for He. This is because when Tc is below 100°C, the recorded memory becomes unstable due to laser light during playback, causing deterioration of playback characteristics;
Above this, it is difficult to record with a semiconductor laser beam.On the other hand, if He is less than 300 Oersteds, the memo JJ- may become unstable and disappear, and if it is more than 6000 Oersteds, it is difficult to record with a semiconductor laser beam. This is because the laser output and external magnetic field become large, which is undesirable.

一方、従来より磁気バブル材料として金属酸化物磁性体
が研究されている。このうち六方晶系のものでは例えば 一般式(2) %式%] (但しnは一般式(1)に同じ) で示されるものが知られている。本発明者らはこの種の
磁性体がそれ自体、酸化物であるため、酸化劣化の恐れ
がなく、 しかも膜厚10t1n+としても透光性を備
えていることに注目した。しかしこれらはキュリ一温度
Tcが450℃以上と高いため、前述のように半導体レ
ーザー光による記録は困難であり、そのままでは光磁気
記録媒体用材料として適用できない。
On the other hand, metal oxide magnetic materials have been studied as magnetic bubble materials. Among these hexagonal crystals, for example, those represented by the general formula (2) % formula %] (where n is the same as in general formula (1)) are known. The inventors of the present invention have noted that since this type of magnetic material is itself an oxide, there is no fear of oxidative deterioration and that it has light transmittance even with a film thickness of 10t1n+. However, since the Curie temperature Tc of these materials is as high as 450° C. or higher, recording with semiconductor laser light is difficult as described above, and they cannot be used as materials for magneto-optical recording media.

そこで本発明者らは一般式(2)の磁性体を基礎にして
種々検討した。その結果、一般式(2)中のFe原子の
一部をGa又はSc、T%、Sn及びZn原子で置換す
ることによって、Tcが低下することを見い出した。同
時にHeについてはGal!換の場合は増大するが、S
c + T 1rSn及びZn置換の場合は低下するこ
とを見い出した。また、Baの一部をSrで置換すると
、上記Ga及びSc等の置換効果は同様であるが、残留
磁化を増大できる。例えば B a、、、、S r、、、F e 、2− x、’ 
M、 ’ O,。
Therefore, the present inventors conducted various studies based on the magnetic material of general formula (2). As a result, it has been found that Tc can be lowered by substituting some of the Fe atoms in general formula (2) with Ga, Sc, T%, Sn, and Zn atoms. At the same time, regarding He, Gal! In the case of exchange, it increases, but S
It was found that c + T decreased in the case of 1rSn and Zn substitutions. Furthermore, when a part of Ba is replaced with Sr, the effect of replacing Ga, Sc, etc. is the same, but the residual magnetization can be increased. For example, B a, , S r, , F e ,2- x,'
M, 'O,.

(MはG a 、 Sc、Ti、Sn及びZnを示し、
8′はMの置換数を示す。)において、上記各々の原子
で置換した場合、Tcについては第1−1図〜第1−4
図のような傾向を示した。またHeについては第2−1
図〜第2−4図のような傾向を示した。なお、ここでG
aM換と他の原子置換との差異を明確に、するため、全
ての図にGa!換の結果を図示した。
(M represents Ga, Sc, Ti, Sn and Zn,
8' indicates the number of substitutions of M. ), when each of the above atoms is substituted, Tc is shown in Figures 1-1 to 1-4.
The trend was shown in the figure. Regarding He, Section 2-1
The trends shown in Figures 2-4 were shown. In addition, here G
To clearly distinguish between aM substitution and other atomic substitutions, Ga! is shown in all figures. The results of the conversion are illustrated.

そこで本発明者らはこのようなGa又はSc。Therefore, the present inventors investigated such Ga or Sc.

Ti、Sn及びZnの置換効果に着目し、更に光磁気記
録媒体用の磁性体又は磁性膜に要求されるTc及びHc
の前記適正範囲を考慮して一般式(2)のFeの一部を
、Gaと上記他の4種の原子の一つとの組み合わせで種
々の割合でもって置換した結果、一般式(1)の金属酸
化物磁性体が光磁気記録媒体として優れた特性を与える
ことを見い出し本発明に致達した。
Focusing on the substitution effects of Ti, Sn, and Zn, we also focused on the Tc and Hc required for magnetic materials or magnetic films for magneto-optical recording media.
As a result of substituting a part of Fe in general formula (2) with a combination of Ga and one of the other four types of atoms in various proportions in consideration of the above-mentioned appropriate range of general formula (1), The inventors have discovered that metal oxide magnetic materials provide excellent properties as a magneto-optical recording medium, and have arrived at the present invention.

このように本発明は、特にキュリ一温度が高いため、光
磁気記録媒体用材料として顧みられなかった一般式(2
)の金属酸化物中のFe原子の一部をGa及び上記他の
4種の原子のうちの一つで置換することによって、メモ
リーに要求される適度に高い保磁力を維持しながら、キ
ュリ一度を低下せしめて半導体レーザー光による記録、
再生を可能にし、光磁気記録媒体用材料として適用でき
るようにしたものである。
In this way, the present invention solves the problem of the general formula (2
) by substituting some of the Fe atoms in the metal oxides with Ga and one of the other four atoms mentioned above, the Curi Recording by semiconductor laser light by reducing the
This material enables reproduction and can be applied as a material for magneto-optical recording media.

例えばBa、、、ISt’、、tGay ’ Mez 
’ Fe12− v ’ −z ’ 019(但し、M
eはSc、Ti、Sn及びZnから選ばれる元素を示し
1.′はGaの置換数、2′はMeの置換数を示す。)
において置換原子数を種々変えてTc及びHeへの影響
を調べたところ、第3図及び第4図に示す結果が得られ
た。
For example, Ba,,,ISt',,tGay' Mez
'Fe12-v'-z' 019 (However, M
e represents an element selected from Sc, Ti, Sn and Zn; 1. ' represents the number of Ga substitutions, and 2' represents the number of Me substitutions. )
When the influence on Tc and He was investigated by varying the number of substituted atoms, the results shown in FIGS. 3 and 4 were obtained.

ここで、 M e = S cの場合:第3−1図及び第4−1図
Me=Tiの場合:第3−2図及び第4−2図M e 
= S nの場合゛:第3−3図及び第4−3図M’e
=Znの場合:第3−4図及び第4−4図である。更に
MezScの場合を例に説明すると、Gaの置換数、′
が2.24でInの置換数、′が1.2のとき、Tcは
第3−1図より225℃であり、11cは第4−1図よ
り4200eである。MeがSc、Ti、Sn及びZn
の場合も同様の傾向を示した。これらのTc及びHc特
性により本発明の金属酸化物磁性体又は磁性膜は半導体
レーザー光により記録、再生を行なう光磁気記録媒体用
材料として適用できることは勿論、キュリ一温度が低い
ため、記録感度が高い上、耐酸化腐食性及び透光性を備
えている等の特長を持っている。
Here, when M e = S c: Fig. 3-1 and Fig. 4-1. When Me = Ti: Fig. 3-2 and Fig. 4-2 M e
= S n case ゛: Figure 3-3 and Figure 4-3 M'e
=Zn: Figures 3-4 and 4-4. Further, to explain the case of MezSc as an example, the number of substitutions of Ga, ′
When is 2.24 and the number of In substitutions is 1.2, Tc is 225 DEG C. from FIG. 3-1, and 11c is 4200e from FIG. 4-1. Me is Sc, Ti, Sn and Zn
A similar trend was observed in the case of Due to these Tc and Hc properties, the metal oxide magnetic material or magnetic film of the present invention can be applied as a material for magneto-optical recording media that performs recording and reproduction using semiconductor laser light. In addition to being expensive, it has features such as oxidation corrosion resistance and translucency.

本発明の金属酸化物磁性体を作るには夫々所定量のB 
aCOsと5rCO,とFe、O,とGa、O,と更に
Sct O@ 、TiO2、S rt C)a +Zn
Oのいずれか一つを混合粉砕し、これを適当な形状の金
型に入れて成型後、 1200〜1400℃の温度で焼
結すればよい。
In order to make the metal oxide magnetic material of the present invention, a predetermined amount of B is required.
aCOs and 5rCO, and Fe, O, and Ga, O, and further Sct O@ , TiO2, S rt C) a + Zn
Any one of O can be mixed and pulverized, put into a mold of an appropriate shape, molded, and then sintered at a temperature of 1200 to 1400°C.

以上のようにして得られる本発明の金属酸化物磁性体の
具体例としては Ba、、# 5ra3t016 (G aa、愈7 S
 ca、ta F e /l O++ )B a o、
7t S r、J)O°6 (G a、、a7 Z n
a、tt F el、s O@ )Sr+QtBaa、
wO16(G a a4 T j 6.sl F et
、910 m )Ba、、、 Sr、、0・6 (G 
a、、、、 S n、、7. F e2.rO* )が
挙げられる。
Specific examples of the metal oxide magnetic material of the present invention obtained as described above include Ba, #5ra3t016 (G aa, Yu7 S
ca, ta F e /l O++ ) B a o,
7t S r, J) O°6 (G a,, a7 Z n
a,ttFel,sO@)Sr+QtBaa,
wO16(G a a4 T j 6.sl F et
, 910 m) Ba, , Sr, 0.6 (G
a,,,,S n,,7. F e2. rO*).

なお以上のような金属酸化物磁性体にはファラデー回転
角を更に増大して磁気光学特性を改善するためにGon
 Bit V+ La、Y、Yb。
In order to further increase the Faraday rotation angle and improve the magneto-optical properties of the metal oxide magnetic materials described above, Gon is added.
Bit V+ La, Y, Yb.

Sm、”rb、Dy+ Gd等の金属を添加することが
できる。
Metals such as Sm, "rb, Dy+Gd, etc. can be added.

本発明の金属酸化物磁性体を用いて磁性膜を作るには、
基板の種類にもよるが、一般に基板上にこの磁性体をタ
ーゲットとして基板温度500〜700℃で真空蒸着、
スパッタリング、イオンブレーティング等の方法で膜厚
0.1〜10μm程度に付着させればよい。こうして第
5図に示すように基板1上に、垂直磁化された磁性膜2
を有する光磁気記録媒体が得られる。なお場合によって
は磁性膜の形成は基板温度500℃未満で行なうことも
できる。但しこの場合は磁性膜形成後、これに500〜
800℃の熱処理を、場合により磁界を印加しながら、
行なって垂直磁化させる必要がある。ここで基板の材料
としては一般にアルミニウムのような耐熱性金属;石英
ガラス; GGG ;サファイヤ;リチウムタンタレー
ト;結晶化透明ガラス;パイレックスガラス;バイコー
ルガラス;表面を酸化処理し又は処理しない単結晶シリ
コン;AQ2011゜AQ、O,・M g Or M 
g O−L i F e Y 209・L i F H
B e OHZ r O2・Y 20s T T ho
2・CaO等の透明セラミック材;無機シリコン材(例
えば東芝シリコン社製トスガード、住友化学社製スミセ
ラムP)等の無機材料が使用できる。
To make a magnetic film using the metal oxide magnetic material of the present invention,
Although it depends on the type of substrate, generally this magnetic material is vacuum evaporated onto the substrate at a substrate temperature of 500 to 700°C.
The film may be deposited to a thickness of about 0.1 to 10 μm using methods such as sputtering and ion blasting. In this way, as shown in FIG. 5, a perpendicularly magnetized magnetic film 2 is placed on the substrate 1.
A magneto-optical recording medium having the following properties is obtained. In some cases, the magnetic film may be formed at a substrate temperature of less than 500°C. However, in this case, after forming the magnetic film, 500~
Heat treatment at 800°C, while applying a magnetic field if necessary.
It is necessary to perform perpendicular magnetization. Here, the substrate materials are generally heat-resistant metals such as aluminum; quartz glass; GGG; sapphire; lithium tantalate; crystallized transparent glass; Pyrex glass; Vycor glass; AQ2011゜AQ, O,・M g Or M
g O-L i F e Y 209・L i F H
B e OHZ r O2・Y 20s T T ho
2. A transparent ceramic material such as CaO; an inorganic material such as an inorganic silicon material (for example, Tosguard manufactured by Toshiba Silicon Co., Ltd. or Sumiceram P manufactured by Sumitomo Chemical Co., Ltd.) can be used.

本発明の磁性膜は第5図のような単層型光磁気記録媒体
に限らず、従来公知のすべての多層型光磁気記録媒体に
適用できる。この種の多層型の例としては第6〜9図に
示すような構成のものが挙げられる。図中、1′はガイ
ドトラック付き基板、3は反射膜、4は透明誘電層、5
はガイドトラック層、6は保護膜、7は透明接着層、8
は耐熱層である。ここでガイドトラック付き基板1′は
前述のような有機材料を射出成型、押出成型、フォトエ
ツチング法等により加工して作られる。なお基板のガイ
ドトラックは記録、再生時のレーザー光を案内するもの
である。反射膜3はCu、AQT Ag、Au+Pt*
 TeOx、TeC,5eAs、TeAs。
The magnetic film of the present invention is applicable not only to a single-layer magneto-optical recording medium as shown in FIG. 5, but also to all conventionally known multilayer magneto-optical recording media. Examples of this type of multilayer type include structures shown in FIGS. 6 to 9. In the figure, 1' is a substrate with a guide track, 3 is a reflective film, 4 is a transparent dielectric layer, and 5 is a substrate with a guide track.
is a guide track layer, 6 is a protective film, 7 is a transparent adhesive layer, 8
is a heat-resistant layer. Here, the guide track-equipped substrate 1' is manufactured by processing the above-mentioned organic material by injection molding, extrusion molding, photoetching, or the like. Note that the guide track on the substrate guides the laser beam during recording and reproduction. The reflective film 3 is Cu, AQT Ag, Au+Pt*
TeOx, TeC, 5eAs, TeAs.

TiN、TaN、CrN、シアニン染料、フタロシアニ
ン染料等を真空蒸着、スパッタリング、イオンブレーテ
ィング等の方法で対象面に膜厚500〜10000人程
度に付着させることにより形成される。なおこの反射膜
は、磁性膜を透過したレーザー光を反射し、再び磁性膜
を透過することによるファラデー効果を増大させる目的
で設けられる。透明誘電層4はSin、、Sin。
It is formed by depositing TiN, TaN, CrN, cyanine dye, phthalocyanine dye, etc. on the target surface to a thickness of about 500 to 10,000 layers using methods such as vacuum evaporation, sputtering, and ion blasting. Note that this reflective film is provided for the purpose of increasing the Faraday effect by reflecting the laser light that has passed through the magnetic film and transmitting it through the magnetic film again. The transparent dielectric layer 4 is made of Sin.

Tie、、Tie、Ce、0.HfO,、Bed。Tie,,Tie,Ce,0. HfO,,Bed.

The2.S t、IN、等を前記と同様な方法で対象
面に膜厚的0.05〜0.5μm程度に付着させること
により形成される。なおこの透明誘電層はファラデー回
転角を増大させて再生出力を向上する目的で設けられる
。ガイドトラック層5は対象面に紫外線硬化性樹脂を塗
布した後、ガイド溝を有する金型を圧着しながら、紫外
線を照射して前記樹脂を硬化させることにより形成され
る。保護膜6はアクリル樹脂、ポリウレタン樹脂、ポリ
カーボネート樹脂、ポリエーテルスルホン樹脂、ポリア
ミド樹脂、エポキシ樹脂、T i N t S ] 9
 N 4 pT a N + −3i O2* S +
 0等を樹脂の場合は塗布法で、その他の場合は真空蒸
着、スパッタリング、イオンブレーティング等の方法で
対象面に膜厚的0.1〜1oμm程度に付着させること
により形成される。なおこの保護膜は反射膜3を保護す
る目的で設けられる。
The2. It is formed by depositing St, IN, etc. on the target surface to a film thickness of about 0.05 to 0.5 μm using the same method as described above. Note that this transparent dielectric layer is provided for the purpose of increasing the Faraday rotation angle and improving the reproduction output. The guide track layer 5 is formed by applying an ultraviolet curable resin to the target surface, and then irradiating ultraviolet rays to cure the resin while pressing a mold having guide grooves thereon. The protective film 6 is made of acrylic resin, polyurethane resin, polycarbonate resin, polyethersulfone resin, polyamide resin, epoxy resin, T i N t S ] 9
N 4 pT a N + -3i O2* S +
In the case of resin, it is formed by a coating method, and in other cases, it is formed by adhering it to the target surface by a method such as vacuum evaporation, sputtering, ion blating, etc. to a film thickness of about 0.1 to 1 μm. Note that this protective film is provided for the purpose of protecting the reflective film 3.

透明接着層7は、反射膜3を設けたガイドトラック付き
基板1′の反射膜と磁性膜2を設けた耐熱層8(この層
は前記無機材料よりなるので、「磁性膜を設けた耐熱層
」とは前記単層型光磁気記録材料のことである。)の磁
性膜とをエポキシ樹脂、ポリウレタン、ポリアミド等の
樹脂で約2〜100μ…厚程度に接着することにより形
成される。即ちこの透明接着層は単に基板1′上の反射
膜3と単層型光磁気記録材料の磁性膜2とを接合するた
めの層である。なお耐熱層8は前述のような無機材料よ
りなるので、基板1に相当するが、ここでは磁性膜2の
耐熱性向上の目的で設けられる。厚さは約10〜500
μm程度が適当である。
The transparent adhesive layer 7 consists of the reflective film of the substrate 1' with guide tracks provided with the reflective film 3 and the heat-resistant layer 8 provided with the magnetic film 2 (this layer is made of the above-mentioned inorganic material, so the "heat-resistant layer provided with the magnetic film") '' refers to the single-layer type magneto-optical recording material.) It is formed by adhering the magnetic film of 2 to 100 μm thick with a resin such as epoxy resin, polyurethane, or polyamide. That is, this transparent adhesive layer is simply a layer for bonding the reflective film 3 on the substrate 1' and the magnetic film 2 of the single-layer magneto-optical recording material. Note that the heat-resistant layer 8 is made of the above-mentioned inorganic material and thus corresponds to the substrate 1, but is provided here for the purpose of improving the heat resistance of the magnetic film 2. The thickness is about 10~500mm
Approximately μm is appropriate.

本発明の磁性膜を用いた以上のような光磁気記録媒体へ
の記録、再生は従来と同じく磁性膜又は基板側から変調
又は偏向されたレーザー光を照射して行なわれる。
Recording and reproduction on the above-described magneto-optical recording medium using the magnetic film of the present invention is carried out by irradiating modulated or deflected laser light from the magnetic film or substrate side, as in the prior art.

羞−一米 本発明の金属酸化物磁性体又は磁性膜は光磁気記録媒体
用材料として適正なTc及び)I cを気記録媒体用材
料として適正なTc及びHeを有し、記録感度が高いに
も拘わらず、従来品にはなかった耐酸化腐食性及び透明
性を備えているので、磁気光学特性の経時劣化がなく、
且つ再生時に透過光も利用でき、このため再生出力の高
いファラデー回転角を利用して再生することができる。
The metal oxide magnetic material or magnetic film of the present invention has Tc and Ic suitable for use as a material for a magneto-optical recording medium, Tc and He suitable for use as a material for a recording medium, and has high recording sensitivity. Despite this, it has oxidation corrosion resistance and transparency that conventional products did not have, so there is no deterioration of magneto-optical properties over time.
In addition, transmitted light can also be used during reproduction, and therefore reproduction can be performed using a Faraday rotation angle with a high reproduction output.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1〜4 下記表に示した組成のターゲットを各々用いて1石英基
板上に蒸着法によって反射層Agを膜厚500人付着し
、この芋にスパッタリング法にて5in2を膜厚100
0人被覆した上にAr分圧2.0’++n T o r
 r、02分圧0.3m T o r r、放電々力0
.35KW、基板温度520〜700℃の条件で2時間
スパッタリングして0.3μ■厚の磁性膜を形成した。
Examples 1 to 4 Using each of the targets having the compositions shown in the table below, a reflective layer of Ag with a thickness of 500 layers was deposited on a quartz substrate by vapor deposition, and a layer of 5 in 2 with a thickness of 100 layers was deposited on this substrate by sputtering.
0 people covered and Ar partial pressure 2.0'++n Tor
r, 02 partial pressure 0.3m T o r r, discharge force 0
.. A magnetic film with a thickness of 0.3 .mu.m was formed by sputtering for 2 hours at 35 kW and a substrate temperature of 520 to 700.degree.

これら磁性膜のキュリ一温度Tc及び保磁力Heを測定
した結果を下表に示す。
The results of measuring the Curie temperature Tc and coercive force He of these magnetic films are shown in the table below.

次に以上のようにして得られた各光磁気記録媒体を一方
向に磁化させ、この磁化の方向とは逆の500エルステ
ツドの磁界を印加しながら、出力2抛νの半導体レーザ
ー光を記録媒体表面での強度10mV及び周波数I M
 II zのパルスで照射して磁気反転せしめ、記録し
たところ、いずれもビット径約1.5μ−の記録ビット
が形成された。
Next, each magneto-optical recording medium obtained as described above is magnetized in one direction, and while applying a magnetic field of 500 oersted opposite to the direction of magnetization, a semiconductor laser beam with an output of 2 ν is applied to the recording medium. Intensity 10 mV and frequency I M at the surface
When recording was performed by irradiating with a pulse of II z to cause magnetic reversal, recording bits with a bit diameter of about 1.5 .mu.m were formed in each case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々、−金属酸化物磁性体Bai+
、7#”r、、atFelp −X ’ MX’ Ol
g (MはG a +S−c、Ti、Sn及びZnを示
し+X′はMの置換数を示す。)における置換数8′と
、キュリ一温度Tc及び保磁力Hcとの関係図である。 第3図及び第4図は夫々、金属酸化物磁性体Baa、、
Sr、、、yGay ’ Me2’ FeI2− y 
’ −z ’ 0+s(MeはS’c、Ti、Sn及び
Znから選ばれる元素を示し1.′はQaの置換数、2
′はMeの置換数を示す。)における置換数ツ′及び2
′と、Tc及びHeとの関係図である。第5〜9図は夫
々本発明の磁性体又は磁性膜を用いた光磁気記録媒体の
一例の構成図である。 l・・・基 板 1″・・・ガイドトラック付き基板 2・・・磁 性 11i3・・・反 射 膜4・・・透
明誘電層 5・・・ガイドトラック層6・・・保 i!
 膜 7・・・透明接着層8・・・耐熱層 筒1−1図 第1−2図 第2−1図 第2−3図 第2−2図 第3−1図 第3−2図 第4−1図 第4−2図 23 2″ 第5図 第7図 蔦9図 第6図 第8図
FIGS. 1 and 2 respectively show −metal oxide magnetic material Bai+
,7#"r,,atFelp-X'MX'Ol
FIG. 3 is a diagram showing the relationship between the number of substitutions 8' in g (M indicates Ga + S-c, Ti, Sn, and Zn, and +X' indicates the number of substitutions of M), the Curie temperature Tc, and the coercive force Hc. 3 and 4 respectively show metal oxide magnetic materials Baa,
Sr,,,yGay'Me2'FeI2-y
' -z ' 0+s (Me represents an element selected from S'c, Ti, Sn and Zn; 1.' represents the number of substitutions for Qa, 2
' indicates the number of Me substitutions. ) and the replacement numbers t′ and 2
', Tc and He. 5 to 9 are configuration diagrams of examples of magneto-optical recording media using the magnetic material or magnetic film of the present invention, respectively. l...Substrate 1''...Substrate with guide track 2...Magnetic 11i3...Reflection film 4...Transparent dielectric layer 5...Guide track layer 6...Holding i!
Film 7... Transparent adhesive layer 8... Heat-resistant layer tube 1-1 Figure 1-2 Figure 2-1 Figure 2-3 Figure 2-2 Figure 3-1 Figure 3-2 Figure 4-1 Figure 4-2 23 2'' Figure 5 Figure 7 Ivy Figure 9 Figure 6 Figure 8

Claims (1)

【特許請求の範囲】 ■、 一般式 %式%] (但し1MeはSc、Ti、Sn、Znから選ばれた少
なくとも一種の元素を示し、mはMeのイオン価数を示
し、n r X r Y r Zは夫々5.0≦n≦6
.0゜0<x<1.0<y≦0.8.0<z≦0.8の
値を表わす、) で示される金属酸化物磁性体。 2、一般式 %式%) (但し、M’eはSc、Ti、Sr+、Znから選ばれ
た少なくとも一種の元素を示し、mはMeのイオン価数
を示し、nrXrVrZは夫々5.0≦n≦6.0゜0
<x≦1.0<y≦0.8. O<z≦0,8の値を表
わす。) で示される金属酸化物磁性体よりなる磁性膜。
[Claims] ■, General formula % formula %] (However, 1Me represents at least one element selected from Sc, Ti, Sn, and Zn, m represents the ion valence of Me, and n r X r Y r Z are each 5.0≦n≦6
.. 0゜0<x<1.0<y≦0.8.0<z≦0.8). 2. General formula % formula %) (However, M'e represents at least one element selected from Sc, Ti, Sr+, and Zn, m represents the ion valence of Me, and nrXrVrZ are each 5.0≦ n≦6.0゜0
<x≦1.0<y≦0.8. Represents a value of O<z≦0,8. ) A magnetic film made of a metal oxide magnetic material.
JP3370384A 1984-02-24 1984-02-24 Metallic oxide magnetic body and magnetic film Pending JPS60180920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3370384A JPS60180920A (en) 1984-02-24 1984-02-24 Metallic oxide magnetic body and magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3370384A JPS60180920A (en) 1984-02-24 1984-02-24 Metallic oxide magnetic body and magnetic film

Publications (1)

Publication Number Publication Date
JPS60180920A true JPS60180920A (en) 1985-09-14

Family

ID=12393775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3370384A Pending JPS60180920A (en) 1984-02-24 1984-02-24 Metallic oxide magnetic body and magnetic film

Country Status (1)

Country Link
JP (1) JPS60180920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797331A (en) * 1985-11-19 1989-01-10 Ricoh Company, Ltd. Magneto-optical recording material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797331A (en) * 1985-11-19 1989-01-10 Ricoh Company, Ltd. Magneto-optical recording material

Similar Documents

Publication Publication Date Title
US4670323A (en) Magneto-optic recording medium having a metal oxide recording layer
JPS60180920A (en) Metallic oxide magnetic body and magnetic film
JPS60124901A (en) Metal oxide magnetic material and magnetic film
JPS60164302A (en) Magnetic material and magnetic film of metal oxide
JPS6189607A (en) Metal oxide magnetic substance and magnetic film
JPS60231304A (en) Metallic oxide magnetic material and magnetic film
JPS60164303A (en) Magnetic material and magnetic film of metal oxide
JPS60163406A (en) Metallic oxide magnetic material and magnetic film
JPS60178607A (en) Metallic-oxide magnetic material and magnetic film
JPS60201603A (en) Magnetic material and magnetic film of metal oxide
JPS60220909A (en) Metal oxide magnetic body and magnetic film
JPS60182108A (en) Metal oxide magnetic body and magnetic film
JPS60163408A (en) Metallic oxide magnetic material and magnetic film
JPS60158604A (en) Metal oxide magnetic substance and magnetic film
JPS60201602A (en) Magnetic material and magnetic film of metal oxide
JPS60226105A (en) Metal oxide magnetic material and magnetic film
JPH0576763B2 (en)
JPS60120503A (en) Metallic oxide magnetic material and magnetic film
JPS60133711A (en) Metallic oxide magnetic material and magnetic film
JPS60163407A (en) Metallic oxide magnetic material and magnetic film
JPS60133705A (en) Metallic oxide magnetic material and magnetic film
JPS60151227A (en) Magnetic body of metallic oxide and magnetic film
JPS60201604A (en) Magnetic material and magnetic film of metal oxide
JPS60151225A (en) Magnetic body of metallic oxide and magnetic film
JPS60151222A (en) Magnetic body of metallic oxide and magnetic film