JPS60151225A - Magnetic body of metallic oxide and magnetic film - Google Patents

Magnetic body of metallic oxide and magnetic film

Info

Publication number
JPS60151225A
JPS60151225A JP659584A JP659584A JPS60151225A JP S60151225 A JPS60151225 A JP S60151225A JP 659584 A JP659584 A JP 659584A JP 659584 A JP659584 A JP 659584A JP S60151225 A JPS60151225 A JP S60151225A
Authority
JP
Japan
Prior art keywords
magnetic
film
magneto
magnetic body
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP659584A
Other languages
Japanese (ja)
Inventor
Nobuyuki Koinuma
鯉沼 宜之
Hitoshi Nakamura
均 中村
Atsuyuki Watada
篤行 和多田
Motoharu Tanaka
元治 田中
Fumiya Omi
文也 近江
Hajime Machida
元 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP659584A priority Critical patent/JPS60151225A/en
Priority to US06/676,007 priority patent/US4670322A/en
Priority to DE19843444351 priority patent/DE3444351A1/en
Publication of JPS60151225A publication Critical patent/JPS60151225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnetic body of a metallic oxide having high recording sensitivity, superior resistance to corrosion by oxidation and a superior light transmitting property by providing a specified sintered composition contg. Ba or Sr, Al, Zn and Fe. CONSTITUTION:A prescribed amount of BaCO3 or SrCO3 is mixed with prescribed amounts of Fe2O3, Al2O3 and ZnO, and the mixture is ground. The resulting powder is filled into a metallic mold of a proper shape, molded, and sintered at 1,200-1,400 deg.C to obtain a magnetic body of a metallic oxide represented by formula I (where Me is Ba or Sr, 0<x<=0.5, 0<y<=0.6, and 5<=n<=6), e.g., a magnetic body of a metallic oxide represented by formula II or III. A magnetic film of 0.1-10mum thickness is formed on a substrate heated to 500-600 deg.C by vacuum deposition, sputtering or other method using the magnetic body as a target.

Description

【発明の詳細な説明】 弦亙公厭 本発明は新規な金Re化物磁性体及びそれよりなる磁性
膜に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel gold-Re compound magnetic material and a magnetic film made of the same.

従来技術 近年、半導体レーザー光により磁気記録を行なう光磁気
記録媒体が高密度記録用として研究開発されている。従
来、光磁気記録媒体に用いられる磁性体としては希土類
金属と遷移金属との非晶質合金からなるものが多い。こ
のような非晶質合金磁性体を用いて光磁気記録媒体を作
るには一般にガラス板のような基板上に前記磁性体、例
えばTb −Fe合金を真空蒸着、スパッタリング等の
方法で厚さ0.1〜1μm程度に付着させて磁性膜を形
成している。こうして得られる光磁気記録媒体l\の記
録、再生は次のようにして行なわれる。即ち記録は磁性
膜のキュリ一温度又は補償温度近傍における温度変化に
対応した保磁力の急激な変化特性を利用して2値信号で
変調されたレーザー光を磁性膜に照射加熱して磁化の向
きを反転させることにより行なわれる。また再生はこう
して反転記録された磁性膜の磁気光学効果の差を利用し
て読出すことにより行なわれる。前述のような非晶質合
金磁性体を用いた光磁気記録媒体は、真空蒸着やスパッ
タリングで容易に作製でき、かつキュリ一温度が70〜
200℃と比較的低く、また記録感度が高いため、半導
体レーザー光によって高速度(周波数IMHzにおいて
)で記録できるという利点はあるが、非晶質合金磁性体
、特に遷移金属成分は酸化腐食を受け易いので、経時と
共に磁性膜の磁気光学特性が劣化するという大きな欠点
がある。これを防止するため、非晶質磁性膜上にS i
 O,S i O,等の保護膜を設ける(形成法は磁性
膜の場合と同様、真空蒸着、スパッタリング等による)
ことも知られているが、磁性膜或いは保護膜の形成時、
真空中に残存する02、基板面に吸着されたO7.H,
O等及び合金磁性体のターゲット中に含まれる0□、H
,O等により経時と共に磁性膜が酸化腐食される上、記
録時の光及び熱により更にこの酸化腐食は促進される。
BACKGROUND OF THE INVENTION In recent years, magneto-optical recording media in which magnetic recording is performed using semiconductor laser light have been researched and developed for high-density recording. Conventionally, magnetic materials used in magneto-optical recording media are often made of amorphous alloys of rare earth metals and transition metals. To make a magneto-optical recording medium using such an amorphous alloy magnetic material, the magnetic material, for example, a Tb-Fe alloy, is generally deposited on a substrate such as a glass plate to a thickness of 0 by vacuum deposition, sputtering, etc. A magnetic film is formed by depositing the magnetic material to a thickness of about .1 to 1 μm. Recording and reproduction of the magneto-optical recording medium l\ thus obtained is performed as follows. That is, recording is performed by heating the magnetic film by irradiating laser light modulated with a binary signal to change the direction of magnetization, taking advantage of the property of rapid changes in coercive force corresponding to temperature changes near the Curie temperature or compensation temperature of the magnetic film. This is done by reversing the . Further, reproduction is performed by reading out using the difference in the magneto-optical effect of the magnetic film recorded in this way. Magneto-optical recording media using the above-mentioned amorphous alloy magnetic material can be easily produced by vacuum evaporation or sputtering, and have a Curie temperature of 70 to 70°C.
Although it has the advantage of being able to record at high speeds (at a frequency of IMHz) using semiconductor laser light due to the relatively low temperature of 200°C and high recording sensitivity, amorphous alloy magnetic materials, especially transition metal components, are susceptible to oxidative corrosion. This has the major disadvantage that the magneto-optical properties of the magnetic film deteriorate over time. To prevent this, Si
Provide a protective film such as O, SiO, etc. (formation method is the same as for magnetic films, such as vacuum evaporation, sputtering, etc.)
It is also known that when forming a magnetic film or protective film,
O2 remaining in the vacuum, O7 adsorbed on the substrate surface. H,
O, etc. and 0□, H contained in the alloy magnetic target
, O, and the like over time, and this oxidative corrosion is further accelerated by light and heat during recording.

また非結晶質磁性体は熱によって結晶化され易く、その
ために磁気特性の劣化を来たし易いという欠点を有する
。更に再生出力を向上するための再生方式として磁性膜
をできるだけ厚くし、その」二にCu、AQ、Pt+ 
Au等の反射膜を設け、レーザー光を磁性膜に照射透過
させた後、反射膜で反射させ、この反射光を検出する反
射型ファラデ一方式は高S/Nの信号が得られるという
点で有利であるが、従来の非晶質磁性膜は透光性に欠け
るため、この方式に用いることができないものであった
In addition, amorphous magnetic materials have the disadvantage that they are easily crystallized by heat, which tends to cause deterioration of their magnetic properties. Furthermore, as a reproduction method to improve the reproduction output, the magnetic film is made as thick as possible, and secondly, Cu, AQ, Pt+
The reflective Farade type method, in which a reflective film such as Au is provided, a laser beam is irradiated and transmitted through the magnetic film, and then reflected by the reflective film and the reflected light is detected, has the advantage that a high S/N signal can be obtained. Although advantageous, conventional amorphous magnetic films cannot be used in this method due to their lack of light transmission.

目 的 本発明の目的は記録感度が高く、しかも耐酸化腐食性及
び透光性に優れた、光磁気記録媒体用材料として特に好
適な新規な金属酸化物磁性体及びこの金属酸化物磁性体
よりなる磁性膜を提供することである。
Purpose The purpose of the present invention is to provide a novel metal oxide magnetic material that has high recording sensitivity, excellent oxidation corrosion resistance and light transmission properties, and is particularly suitable as a material for magneto-optical recording media, and a novel metal oxide magnetic material that is particularly suitable as a material for magneto-optical recording media. The purpose of the present invention is to provide a magnetic film having the following properties.

構 成 本発明の金属酸化物磁性体は一般式(1)%式% ) で示されるものであり、また磁性膜は前記一般式の金属
化物磁性体よりなるものである。
Structure The metal oxide magnetic material of the present invention is represented by the general formula (1) (% formula %), and the magnetic film is made of the metal oxide magnetic material of the general formula.

光磁気記録媒体に用いられる磁性体又は磁性膜には半導
体レーザー光によって記録、再生可能な磁気光学特性(
適正なキュリ一温度、保磁力、飽和磁化等)を備えてい
なければならないが、特に高い記録感度を得るためにキ
ュリ一温度Tcが低いこと及び記録したメモリーを安定
に維持するために保磁力1−10が適度に高いことが必
要である。一般にこのTC及びト1 cの適正範囲はT
 r、については100〜400°C,Hcについては
300〜6000エルステツドと考えら、ILる。 こ
れはTcが100°C以下では記録したメモリーが再生
時のレーザー光によって不安定になって再生特性の劣化
原因となり、また、400°C以上では半導体レーザー
光による記録が困難であり、一方、)1cが300エル
ステツド以下ではメモリーが不安定となって消失する可
能性があり、また6000工ルステツド以上では記録時
の磁化反転に必要なレーザー出力や外部磁界が大きくな
り、何ましくないからである。飽和磁化にあっては10
00ガウス以上必要であり、この値以下では再生出力が
小さく磁気記録媒体に適用しえない。
The magnetic material or magnetic film used in magneto-optical recording media has magneto-optical properties (
In particular, in order to obtain high recording sensitivity, the Curie temperature Tc must be low, and in order to maintain the recorded memory stably, the coercive force must be 1. -10 is required to be moderately high. Generally, the appropriate range of this TC and t1c is T
It is assumed that r is 100 to 400°C and Hc is 300 to 6000 oersted. This is because when Tc is below 100°C, the recorded memory becomes unstable due to laser light during playback, causing deterioration of playback characteristics, and when Tc is above 400°C, recording with semiconductor laser light is difficult. ) If 1c is less than 300 oersteds, the memory may become unstable and disappear, and if it is more than 6000 oersteds, the laser output and external magnetic field necessary for magnetization reversal during recording will become large, which may cause some problems. be. 10 for saturation magnetization
00 Gauss or more is required, and below this value the reproduction output is too small to be applied to magnetic recording media.

一方、従来より磁気バブル材料として金属酸化物磁性体
が研究されている。このうち六方晶系のものでは1列え
ば 一般式(2) %式%] (但しMe、nは一般式(1)に同じ)で示されるもの
が知られている。本発明者らはこの種の磁性体がそれ自
体、酸化物であるため、酸化劣化の恐れがなく、しかも
膜厚IOμとしても透光性を備えていることに注目した
。しかし、これらはキュリ一温度Tcが450℃以上と
高いため、前述のように半導体レーザー光による記録は
困難であり、そのままでは光磁気記録媒体用材料として
適用できない。そこで本発明者らは種々検耐したところ
、一般式(2)の中のFe原子の一部をA O,又はZ
n原子で置換すると、AQ置換、Zn置換のいずれの場
合もT cが低下することを見出し、た。同時に保磁力
についてはAQ[換の場合は増大するが、Zn置換の場
合は低下することを見出した。更に飽和磁化については
Zn[換の場合はほとんど変化ないが、AQfil換の
場合は低下することを見出した。例えばA O,又はZ
n置換体BaFe、2−2M7.O,。
On the other hand, metal oxide magnetic materials have been studied as magnetic bubble materials. Among these hexagonal crystals, those represented by the general formula (2) (where Me and n are the same as in the general formula (1)) are known. The inventors of the present invention have focused on the fact that since this type of magnetic material is itself an oxide, there is no fear of oxidative deterioration and, moreover, it has translucency even with a film thickness of IOμ. However, since the Curie temperature Tc of these materials is as high as 450° C. or higher, recording with semiconductor laser light is difficult as described above, and they cannot be used as is as a material for magneto-optical recording media. Therefore, the present inventors conducted various tests and found that some of the Fe atoms in general formula (2) were replaced by A O, or Z
It has been found that when substituted with an n atom, Tc decreases in both cases of AQ substitution and Zn substitution. At the same time, it was found that the coercive force increases in the case of AQ substitution, but decreases in the case of Zn substitution. Furthermore, it has been found that saturation magnetization hardly changes when Zn is used, but it decreases when AQfil is used. For example, A O, or Z
n-substituted BaFe, 2-2M7. O.

(MはAQ又はZn、ZはAQ又は7. nの置換数を
表わす。)はTcについては第1図のような傾向を示し
、またHcについては第2図のような傾向を示し、更に
Msについては第3図のような傾向を示した。そこで本
発明者らはこのようなAQ及びZnの置換効果に着目し
、更に光磁気記録媒体用の磁性体又は磁性膜に要求され
る”rc、Hr、及びMsの前記適正範囲を考慮して一
般式(2)のFeの一部を八〇及び1口の2種の金属で
種々の割合で置換した結果、一般式(1)の金属酸化物
磁性体が光磁気記録媒体として優れた特性を与えること
を見出し、本発明に到達した。
(M represents AQ or Zn, Z represents the number of substitutions of AQ or 7.n) shows a tendency as shown in Figure 1 for Tc, and a tendency as shown in Figure 2 for Hc, and further Regarding Ms, the tendency was shown in Figure 3. Therefore, the present inventors focused on the substitution effect of AQ and Zn, and further considered the appropriate ranges of rc, Hr, and Ms required for the magnetic material or magnetic film for magneto-optical recording media. As a result of replacing a part of Fe in general formula (2) with two types of metals, 80 and 1, in various proportions, the metal oxide magnetic material of general formula (1) has excellent properties as a magneto-optical recording medium. The present invention has been achieved based on the discovery that the following can be achieved.

このように本発明は、特にキュリ一温度が高いため、光
磁気記録媒体用材料とし、て顧みられなかった一般式(
2)の金属化合物中のFe原子の一部をAQ及び7. 
n原子で置換することによって、メモリーに要求される
適度に高い保磁力及び飽和磁化を維持しながら、キュリ
一温度を低下せしめて半導体レーザー光による記録、再
生を可能にし1、こうして光磁気記録媒体用材料として
適用できるようにしたものである。
As described above, the present invention has a particularly high Curie temperature, so it can be used as a material for magneto-optical recording media.
Some of the Fe atoms in the metal compound of 2) are replaced with AQ and 7.
By substituting n atoms, the Curie temperature can be lowered while maintaining the moderately high coercive force and saturation magnetization required for memory, making recording and reproducing using semiconductor laser light possible1, thus creating a magneto-optical recording medium. This material can be used as a material for industrial use.

以上の説明から判るように本発明の金属酸化物磁性体は
光磁気記録媒体用材料として要求される適正キュリ一温
度範囲及び適正保磁力範囲を満足するものである。
As can be seen from the above description, the metal oxide magnetic material of the present invention satisfies the appropriate Curie temperature range and appropriate coercive force range required as a material for magneto-optical recording media.

例えばB aAQX’ Zny’ Fe12− t x
 ’ 、* y ’ + o+q(但しX′はAQ置換
数、Y′はZn置換数)ではTcは第4図に示すように
、AQの置換数X′が2.05で、且つZnの置換数Y
′が2.5の時、218℃であり、またHcは第5図に
示すように、AQの置換数X′が2.05で、且つZn
の置換数Y′が2.5の時、約3.9にエルステッドで
ある。更にMsは第6図に示すように、AQの置換数X
′が2.05で、且つZnの置換数Y′が2.5のとき
、約3150ガウス(4πMsとして)である。これら
のTc、Hc及びMs特性により本発明の金属酸化物磁
性体又は磁性膜は半導体レーザー光により記録、再生を
行なう光磁気記録媒体用材料として適用できることは勿
論、キュリ一温度が低いため、記録感度が高い上、耐酸
化腐食性及び透光性を備えている等の特長を持っている
For example, B aAQX'Zny' Fe12- t x
' , * y ' + o+q (where X' is the number of AQ substitutions and Y' is the number of Zn substitutions), Tc is, as shown in Figure 4, when the number of AQ substitutions X' is 2.05 and the Zn substitution Number Y
When ' is 2.5, the temperature is 218°C, and as shown in Fig. 5, Hc is 218°C when the number of substitutions
When the number of substitutions Y' is 2.5, the Oersted is approximately 3.9. Furthermore, Ms is the number of substitutions X of AQ, as shown in Figure 6.
' is 2.05, and when the number of Zn substitutions Y' is 2.5, it is about 3150 Gauss (as 4πMs). Due to these Tc, Hc, and Ms characteristics, the metal oxide magnetic material or magnetic film of the present invention can be applied as a material for magneto-optical recording media that is recorded and reproduced by semiconductor laser light. It has features such as high sensitivity, oxidation corrosion resistance, and translucency.

本発明の金属酸化物磁性体を作るには夫々所定量のBa
C0,又は5rCO,とFe2O。
To make the metal oxide magnetic material of the present invention, a predetermined amount of Ba is required.
C0, or 5rCO, and Fe2O.

とΔQ、03とZnOとを混合粉砕し、こ4しを適当な
形状の金型に入れて成型後、1200〜1400℃の温
度で焼結すればよい。
ΔQ, 03 and ZnO are mixed and pulverized, the pulverized material is placed in a mold of an appropriate shape, molded, and then sintered at a temperature of 1200 to 1400°C.

以上のようにして得られる本発明の金属酸化物磁性体の
具体例としては Ba0・5.2(AQ Zn Fe 03)。
A specific example of the metal oxide magnetic material of the present invention obtained as described above is Ba0.5.2 (AQ Zn Fe 03).

Ba0・5.4(AQ Zn Fe O,)。Ba0.5.4 (AQ Zn Fe O,).

#l a、g 1I Ba0・5.4 (AQ Zn Fe O,)。#l a,g 1I Ba0.5.4 (AQ Zn Fe O,).

−う −う /、? B a 0 ・5.6 (ΔQ、、 Z n、、、 F
 e、FO、) 。
-U -U /,? B a 0 ・5.6 (ΔQ,, Z n,,, F
e,FO,).

BaO’5.6 (AQ、、Zn、、Fe、、、01)
+B a 0 ・5.6 (A Q、、、 Z n、、
、 F e、、03)。
BaO'5.6 (AQ,,Zn,,Fe,,01)
+B a 0 ・5.6 (A Q, , Z n,,
, F e,,03).

Ba0・5.8 (AQ、、、Zn、、Fe、、Ol)
Ba0・5.8 (AQ, , Zn, , Fe, , Ol)
.

Sr0 ・5.2 (AQ Zn Fe O,l ) 
Sr0 ・5.2 (AQ Zn Fe O,l)
.

S rO・5.6 (AQ、3Zn、、F e、302
 ) +S’r0 ・5.8 (AQ Zn Fe O
,)。
S rO・5.6 (AQ, 3Zn, , Fe, 302
) +S'r0 ・5.8 (AQ Zn Fe O
,).

al #7タ /! 等が挙げられる。al #7ta/! etc.

なお以上のような金属酸化物磁性体にはファラデー回転
角を更に増大して磁気光学特性を改善するためにCot
 Bit V+ La+ Y+ Yb+S1η、Tb、
Dy、Gd等の金属を添加することができる。
Furthermore, in order to further increase the Faraday rotation angle and improve the magneto-optical properties of the metal oxide magnetic material described above, Cot is used.
Bit V+ La+ Y+ Yb+S1η, Tb,
Metals such as Dy and Gd can be added.

本発明の金属酸化物磁性体を用いて磁性膜を作るには、
基板の種類にもよるが、一般に基板上にこの磁性体をタ
ーゲラ1〜として基板温度500〜600℃で真空蒸着
、スパッタリング、イオンブレーティング等の方法で膜
厚0.1〜10μm程度に付着させればよい。こうして
第7図に示すように基板l上に、垂直磁化された磁性膜
2を有する光磁気記録媒体が得られる。なお場合によっ
ては磁性膜の形成は基板温度500℃未満で行なうこと
もできる。但しこの場合は磁性膜形成後、これに500
〜700℃の熱処理を、場合によリ磁界を印加しながら
、行なって垂直磁化させる必要がある。ここで基板の材
料としては一般にアルミニラ12のような耐熱性金属;
石英ガラス; G G c ;サファイヤ;リチウムタ
ンタレート;結晶化透明ガラス;パイレックスガラス;
表面を酸化処理し又は処理しない単結晶シリコン;A9
. O7,Ao、、o、・M g O。
To make a magnetic film using the metal oxide magnetic material of the present invention,
Although it depends on the type of substrate, generally this magnetic material is deposited on the substrate as a target layer 1 to a film thickness of about 0.1 to 10 μm using a method such as vacuum evaporation, sputtering, or ion blasting at a substrate temperature of 500 to 600°C. That's fine. In this way, as shown in FIG. 7, a magneto-optical recording medium having a perpendicularly magnetized magnetic film 2 on a substrate l is obtained. In some cases, the magnetic film may be formed at a substrate temperature of less than 500°C. However, in this case, after forming the magnetic film, 500
It is necessary to perform perpendicular magnetization by heat treatment at ~700° C. while applying a magnetic field if necessary. Here, the substrate material is generally a heat-resistant metal such as Aluminum 12;
Quartz glass; G G c ; Sapphire; Lithium tantalate; Crystallized transparent glass; Pyrex glass;
Single crystal silicon with or without surface oxidation treatment; A9
.. O7,Ao,,o,・M g O.

M g O−L i F + Y 203 ・L i 
F + B e O。
M g O−L i F + Y 203 ・L i
F + B e O.

ZrO,・Y、O7,The、・CaO等の透明セラミ
ック材;無機シリコン材(例えば東進シリコン社製トス
ガート、住人化学社製スミセラムP)等の無機材料或い
はアクリル樹脂、ポリカーボネート樹脂、ポリエステル
樹脂等の有機材料が使用できる。
Transparent ceramic materials such as ZrO, ・Y, O7, The, ・CaO, etc.; inorganic materials such as inorganic silicon materials (for example, Toshin Silicon Co., Ltd.'s Tosugat, Sumitomo Chemical Co., Ltd.'s Sumicelam P), or acrylic resins, polycarbonate resins, polyester resins, etc. Organic materials can be used.

本発明の磁性膜は第7図のような単層型光磁気記録媒体
に限らず、従来公知のすへての多層型光磁気記録媒体に
適用できる。この種の多層型の例としては第8〜11図
に示すような構成のものが挙げられる。図中、1′はガ
イド1−ラック付き基板、3は反射膜、4は透明誘電層
、5はガイドトランク層、6は保護膜、7は透明接着層
、8は耐熱層である。ここでガイドトランク(=Jき基
板1′は前述のような有機材料を射出成型、押出成型、
フオl〜エツチング法等により加工して作られる。なお
基板のガイドトラックは記録、再生時のレーザー光を案
内するものである。反射膜3ばC+i、AIJ+Ag+
ΔIJ 。
The magnetic film of the present invention is applicable not only to a single-layer magneto-optical recording medium as shown in FIG. 7, but also to all conventionally known multilayer magneto-optical recording media. Examples of this type of multilayer type include structures shown in FIGS. 8 to 11. In the figure, 1' is a guide 1 - a substrate with a rack, 3 is a reflective film, 4 is a transparent dielectric layer, 5 is a guide trunk layer, 6 is a protective film, 7 is a transparent adhesive layer, and 8 is a heat-resistant layer. Here, the guide trunk (=J) substrate 1' is formed by injection molding, extrusion molding, or
It is made by processing using photo-etching methods, etc. Note that the guide track on the substrate guides the laser beam during recording and reproduction. Reflective film 3C+i, AIJ+Ag+
ΔIJ.

P t 、 1’ e Ox + T e C、S e
 A s + T e A s +TiN、 ]’aN
、CrN、シアニン染料、フタロシアニン染料等を真空
蒸着、スパッタリング、イオンブレーテインク等の方法
で対象面に膜厚500〜10000人程度に11着させ
ることにより形成される。なおこの反射膜は、磁性膜を
透過したレーザー光を反射し7、再び磁性膜を透過する
ことによるファラデー効果を増大させる目的で設けられ
る。透明誘電層4はS i C12+ S + O。
P t , 1' e Ox + T e C, S e
A s + T e A s + TiN, ]'aN
, CrN, cyanine dye, phthalocyanine dye, etc. are deposited on the target surface by vacuum deposition, sputtering, ion printing, etc. to a thickness of about 500 to 10,000 layers. Note that this reflective film is provided for the purpose of increasing the Faraday effect by reflecting the laser light that has passed through the magnetic film 7 and passing through the magnetic film again. The transparent dielectric layer 4 is S i C12+ S + O.

T iO21T i O+ Ce O+ Hf O2−
B e O。
T iO21T i O+ Ce O+ Hf O2−
B e O.

]’hO2+ S L N、を等を前記と同様な方法で
対象面に膜厚的0.05〜0.5μm程度に付着させる
ことにより形成される。なおこの透明誘電層はファラデ
ー回転角を増大させて再生出力を向上する目的で設けら
れる。ガイドトラック層5は対象面に紫外線硬化性樹脂
を塗布した後、ガイド溝を有する金型を圧着しながら、
紫外線を照射して前記樹脂を硬化させることにより形成
される。保護膜6はアクリル樹脂、ポリウレタン樹脂、
ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポ
リアミド樹脂、エポキシ樹脂、T i N + S i
 N + T a N + Si O2、S i C1
等を樹脂の場合は塗布法で、その他の場合は真空蒸着、
スパッタリング、イオンブレーティング等の方法で対象
面に膜厚的0.1〜10μm1印1度にf;J着させる
ことにより形成される。なおこの保護膜は反射膜3を保
護する目的で設けられる。透明接着層7は、反射@3を
設けたガ、rド1〜うyクイ]き基板ビの反射膜と磁性
膜2を設けた耐熱18(この層は前記無機材料よりなる
ので、[磁性膜を設けた耐熱層」とは前記単層型光磁気
記録材料のことである。)の磁性膜とをエポキシ樹脂、
ポリウレタン、ポリアミド等の樹脂で約2〜1.00μ
■厚程度に接着することにより形成される。即ちこの透
明接着層は単に基板ビ」二の反射膜3と単層型光磁気記
録材料の磁性膜2とを接合するための層である。なお耐
熱層8は前述のような無機材料よりなるので、基板1に
相当するが、ここでは磁性膜2の耐熱性向」−の目的で
設けられる。厚さは約lO〜500μm程度が;内当で
ある。
]'hO2+ S L N, etc. is deposited on the target surface in the same manner as described above to a film thickness of about 0.05 to 0.5 μm. Note that this transparent dielectric layer is provided for the purpose of increasing the Faraday rotation angle and improving the reproduction output. The guide track layer 5 is formed by applying an ultraviolet curable resin to the target surface, and then pressing a mold having a guide groove thereon.
It is formed by curing the resin by irradiating it with ultraviolet rays. The protective film 6 is made of acrylic resin, polyurethane resin,
Polycarbonate resin, polyether sulfone resin, polyamide resin, epoxy resin, T i N + S i
N + T a N + Si O2, Si C1
etc., in the case of resin, by coating method, in other cases, vacuum evaporation,
It is formed by depositing a film of 0.1 to 10 .mu.m in thickness on the target surface at a time, using a method such as sputtering or ion blasting. Note that this protective film is provided for the purpose of protecting the reflective film 3. The transparent adhesive layer 7 is made of a heat-resistant film 18 (this layer is made of the above-mentioned inorganic material, so the transparent adhesive layer 7 is made of the inorganic material described above, "Heat-resistant layer provided with a film" refers to the single-layer type magneto-optical recording material.
Approximately 2 to 1.00μ with resins such as polyurethane and polyamide
■It is formed by adhering it to a certain thickness. That is, this transparent adhesive layer is simply a layer for bonding the reflective film 3 of the substrate vinyl and the magnetic film 2 of the single-layer type magneto-optical recording material. The heat-resistant layer 8 is made of the above-mentioned inorganic material and corresponds to the substrate 1, but is provided here for the purpose of improving the heat resistance of the magnetic film 2. The thickness is approximately 10 to 500 μm.

本発明の磁性膜を用いた以上のような光磁気記録媒体へ
の記録、再生は従来と同しく磁性膜又は基板側から変調
又は偏向されたレーザー光を照射して行なわれる。
Recording and reproduction on the above-described magneto-optical recording medium using the magnetic film of the present invention is carried out by irradiating modulated or deflected laser light from the magnetic film or substrate side, as in the prior art.

効 果 本発明の金属酸化物磁性体又は磁性膜は光磁気記録媒体
用材料として適正なTc、He及びMsを有し、記録感
度が高いにも拘わらず、従来品にはなかった耐酸化腐食
性及び透明性を備えているので、磁気光学特性の経時劣
化がなく、且つ再生時に透過光も利用でき、このため再
生出力の高いファラデー回転角を利用して再生すろこと
かできる9 以下に本発明の実施例を示す。
Effect The metal oxide magnetic material or magnetic film of the present invention has appropriate Tc, He, and Ms as a material for magneto-optical recording media, and although it has high recording sensitivity, it has oxidation and corrosion resistance that conventional products did not have. Since the magneto-optical properties do not deteriorate over time, and transmitted light can also be used during reproduction, it is possible to perform reproduction using the Faraday rotation angle with high reproduction output9. An example of the invention is shown.

実施例1〜lO 下記表に示した組成のターゲットを各々用いて、表面光
学研摩処理した石英基板上にAr分圧2.0nwn T
、 o r r、02分圧0.3+nmT o r r
、放電々力0.35KV、基板温度520〜550℃の
条件で2時間スパッタリングして0.3μ厚の磁性膜を
形成した。これら磁性膜のキュリ一温度Tc及び保磁力
Hcを測定した結果を下表に示す。
Examples 1 to 1O Using each target having the composition shown in the table below, an Ar partial pressure of 2.0 nwn T was applied to a quartz substrate whose surface had been optically polished.
, o r r, 02 partial pressure 0.3 + nmT o r r
A magnetic film having a thickness of 0.3 μm was formed by sputtering for 2 hours at a discharge force of 0.35 KV and a substrate temperature of 520 to 550° C. The results of measuring the Curie temperature Tc and coercive force Hc of these magnetic films are shown in the table below.

次に以上のようにして得られた各光磁気記録媒体を一方
向に磁化させ、この磁化の方向とは逆の0.5エルステ
ツドの磁界を印加しながら、出力20mWの半導体レー
ザー光を記録媒体表面での強度10mW及び周波数IM
IIzのパルスで照射して磁気反転せしめ、記録したと
ころ、いずれもビット径約1.5μmの記録ビットが形
成された。
Next, each magneto-optical recording medium obtained as described above is magnetized in one direction, and a semiconductor laser beam with an output of 20 mW is applied to the recording medium while applying a magnetic field of 0.5 oersted opposite to the direction of magnetization. Intensity 10mW and frequency IM at the surface
When recording was performed by irradiating with a pulse of IIz to cause magnetic reversal, recording bits with a bit diameter of about 1.5 μm were formed in each case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は夫々、金属酸化物磁性体Ba Fe、
2−2M、O,g(MはAQ又はZn、2はA Q、又
はZnの置換数)におけるAQ又はZnの置換数Zと、
キュリ一温度Tc、保磁力Hc及び飽和磁化Msとの関
係図、第4図〜第6図は夫々、金属酸化物磁性体 BaAQX’ Zny’ Fe+2−+ X’ 4−Y
’ + 019 (X’はAρの置換数、Y′はZnの
置換数)におけるZnの置換数Y′と、Tc、+(c及
びMsとの関係図、第7〜11図は夫々本発明の磁性体
又は磁性膜を用いた光磁気記録媒体の一例の構成図であ
る。 l・・・基 板 1′・・・ガイド1〜ラック付き基板 2・・磁 性 膜 3・・・反 射 膜4・・・透明誘
電層 5・・・ガイドトラック層6・・・保 護 股 
7・・・透明接着層8・・・耐熱層 崩1図 2 篤3図 崩7菌 、〒〒〒〒〒實 矩2図 崩4M Y“ 崩8回 箱5図 Y′ 兜9図 崩11図 市6図 Y′ 箇10図 手続補正書 昭和59年 3月マa日 1、事件の表示 昭和59年 特 許 願第6595号 3、補正をする者 事件との関係 特許出願人 東京都大田区中馬込1丁目3番6号 (674)株式会社 リ コ − 代表者 浜 1) 広 4、代理 人 5、補正の対象 明細書の1発明の詳細な説明」の欄 6、 補正の内界 (1) 第3頁4行の「遷移」を1希土類」に補正する
。 (2)第6頁9行の1μ」を「μm」に補正する。 (31第1O頁13行の「500〜600℃」を1so
o〜70 (1℃Jに補正する。 (4)同頁20行の「500〜700°C」を1″50
0〜800℃」に補正する。 (5) 第11頁12〜14行の[無機材料・・・・・
・・・・(中略)・・・・・・・・・使用できる。]を
[無機材料が使用できる。」に補正する。 (6) 第14頁8行の「である。」を「である。−1
に補正する。 (7) 第15員7行ノ「Kv」を[KWJK、1”5
50」を[’700Jに補正する。 181 I’ijl百8行の1μ」を1μm」に補正す
る。 (9)第16貞3行の「05」を[’5ooJに補正す
る。 以上
Figures 1 to 3 show metal oxide magnetic materials Ba Fe,
The number Z of substitutions of AQ or Zn in 2-2M, O, g (M is AQ or Zn, 2 is the number of substitutions of AQ or Zn),
The relationship diagrams of Curie temperature Tc, coercive force Hc, and saturation magnetization Ms, FIGS. 4 to 6, respectively, are for the metal oxide magnetic material BaAQX'Zny' Fe+2-+ X' 4-Y
' + 019 (X' is the number of substitutions of Aρ, Y' is the number of substitutions of Zn) A relationship diagram between the number of substitutions Y' of Zn and Tc, + (c and Ms, Figures 7 to 11 are respectively according to the present invention) 1 is a configuration diagram of an example of a magneto-optical recording medium using a magnetic material or a magnetic film. l... Substrate 1'... Guide 1 - Substrate with rack 2... Magnetic film 3... Reflection Membrane 4...Transparent dielectric layer 5...Guide track layer 6...Protection crotch
7...Transparent adhesive layer 8...Heat-resistant layer 1 figure 2 Atsushi 3 figure 7 bacteria, Figure 6 Figure Y' Clause 10 Procedural amendment written on March 1, 1981, Case indication 1981 Patent application No. 6595 3, Relationship with the person making the amendment Patent applicant Ota, Tokyo Ricoh Co., Ltd., 1-3-6 (674) Nakamagome, Ward - Representative Hama 1) Hiroshi 4, Agent 5, Column 6 of ``Detailed explanation of the invention 1 in the specification subject to amendment'', Inner scope of amendment (1) Correct "transition" in line 4 of page 3 to "1 rare earth". (2) Correct "1μ" on page 6, line 9 to "μm". (31, page 1 O, line 13, “500-600℃” is 1so
o~70 (Corrected to 1℃J. (4) "500~700℃" on line 20 of the same page is 1"50
0-800℃”. (5) Page 11, lines 12-14 [Inorganic materials...
...(omitted) ......Can be used. ] [Inorganic materials can be used. ”. (6) On page 14, line 8, change “deru.” to “deru.-1
Correct to. (7) “Kv” in the 7th line of the 15th member [KWJK, 1”5
50'' is corrected to ['700J. 181 I'ijl 108 lines 1μ'' is corrected to 1μm''. (9) Correct "05" in line 3 of 16th Tei to ['5ooJ. that's all

Claims (1)

【特許請求の範囲】 1、一般式 %式% ) で示される金属酸化物磁性体。 2、一般式 %式%) で示される金属酸化物磁性体よりなる磁性膜。[Claims] 1. General formula %formula% ) A metal oxide magnetic material represented by . 2. General formula %formula%) A magnetic film made of a metal oxide magnetic material represented by
JP659584A 1983-12-05 1984-01-18 Magnetic body of metallic oxide and magnetic film Pending JPS60151225A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP659584A JPS60151225A (en) 1984-01-18 1984-01-18 Magnetic body of metallic oxide and magnetic film
US06/676,007 US4670322A (en) 1983-12-05 1984-11-29 Metal oxide magnetic substance and a magnetic film consisting thereof and their uses
DE19843444351 DE3444351A1 (en) 1983-12-05 1984-12-05 MAGNETIC METAL OXIDE SUBSTANCE, AN EXISTING MAGNETIC FILM AND THEIR USE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP659584A JPS60151225A (en) 1984-01-18 1984-01-18 Magnetic body of metallic oxide and magnetic film

Publications (1)

Publication Number Publication Date
JPS60151225A true JPS60151225A (en) 1985-08-09

Family

ID=11642682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP659584A Pending JPS60151225A (en) 1983-12-05 1984-01-18 Magnetic body of metallic oxide and magnetic film

Country Status (1)

Country Link
JP (1) JPS60151225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166718A (en) * 2005-12-09 2007-06-28 Central Res Inst Of Electric Power Ind Electric field relaxation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166718A (en) * 2005-12-09 2007-06-28 Central Res Inst Of Electric Power Ind Electric field relaxation structure

Similar Documents

Publication Publication Date Title
JPS59168950A (en) Magnetic recording medium
US4670323A (en) Magneto-optic recording medium having a metal oxide recording layer
JPS60151225A (en) Magnetic body of metallic oxide and magnetic film
JPS60124901A (en) Metal oxide magnetic material and magnetic film
JPS60164302A (en) Magnetic material and magnetic film of metal oxide
JPS60133711A (en) Metallic oxide magnetic material and magnetic film
JPS6189607A (en) Metal oxide magnetic substance and magnetic film
JPS60220909A (en) Metal oxide magnetic body and magnetic film
JPH0576763B2 (en)
JPS60163406A (en) Metallic oxide magnetic material and magnetic film
JPS60158604A (en) Metal oxide magnetic substance and magnetic film
JPS60214506A (en) Metal-oxide magnetic body and magnetic film
JPS60121705A (en) Metal oxide magnetic substance and magnetic film
JPS60164303A (en) Magnetic material and magnetic film of metal oxide
JPS60201604A (en) Magnetic material and magnetic film of metal oxide
JPS60178607A (en) Metallic-oxide magnetic material and magnetic film
JPS60201603A (en) Magnetic material and magnetic film of metal oxide
JPS60231304A (en) Metallic oxide magnetic material and magnetic film
JPS60201602A (en) Magnetic material and magnetic film of metal oxide
JPS60180920A (en) Metallic oxide magnetic body and magnetic film
JPS60166233A (en) Magnetic material of metal oxide and magnetic film
JPS60151222A (en) Magnetic body of metallic oxide and magnetic film
JPS60211904A (en) Magnetic substance and magnetic film of metal oxide
JPS60115202A (en) Metal oxide magnetic material and magnetic film
JPS60120503A (en) Metallic oxide magnetic material and magnetic film