JPS60120503A - Metallic oxide magnetic material and magnetic film - Google Patents

Metallic oxide magnetic material and magnetic film

Info

Publication number
JPS60120503A
JPS60120503A JP22965683A JP22965683A JPS60120503A JP S60120503 A JPS60120503 A JP S60120503A JP 22965683 A JP22965683 A JP 22965683A JP 22965683 A JP22965683 A JP 22965683A JP S60120503 A JPS60120503 A JP S60120503A
Authority
JP
Japan
Prior art keywords
magnetic
film
magneto
magnetic film
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22965683A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
均 中村
Noriyuki Koinuma
宣之 鯉沼
Motoharu Tanaka
元治 田中
Atsuyuki Watada
篤行 和多田
Fumiya Omi
文也 近江
Hajime Machida
元 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22965683A priority Critical patent/JPS60120503A/en
Priority to US06/676,007 priority patent/US4670322A/en
Priority to DE19843444351 priority patent/DE3444351A1/en
Publication of JPS60120503A publication Critical patent/JPS60120503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the material for an optomagnetic recording medium having high recording sensitivity and good oxidative-corrosion resistance and light-transmitting properties by using a metallic oxide magnetic material consisting of a specific composition. CONSTITUTION:A part of Fe atoms in a metallic ompound of hyxagonal system expressed by MeO.n[Fe2O3] is substituted by Al or In atoms and the composition is changed into that expressed by MeO.n[Alx.InyFe2-(x+y)O3] wherein Me= Ba or Sr, O<X<=0.8, 0<Y<0.6, 5<=n<=6. Thus, recording and reproduction by a semiconductor laser beam by reducing Curie temperature with a properly high coercive force required for a memory.

Description

【発明の詳細な説明】 基生公団 本発明は新規な金属酸化物磁性体及びそれよりなる磁性
膜に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel metal oxide magnetic material and a magnetic film made of the same.

梗米且米 近年、半導体レーザー光により磁気記録を行なう光磁気
記録媒体が高密度記録用として研究開発されている。従
来、光磁気記録媒体に用いられる磁性体としては希土類
金属と遷移金属との非晶質合金からなるものが多い。こ
のような非晶質合金磁性体を用いて光磁気記録媒体を作
るには一般にガラス板のような基板上に前記磁性体、例
えばTb −Fe合金を真空蒸着、スパッタリング等の
方法で厚さ0.1〜1μrn程度にイ」着させて磁性膜
を形成している。こうして得ら汎る光磁気記録媒体への
記録、再生は次のようにして行なわれる。即ち記録は磁
性膜のキュリ一温度又は補償温度近傍における温度変化
に対応した保磁力の急激な変化特性を利用して2値信号
で変調されたレーザー光を磁性膜に照射加熱して磁化の
向きを反転させることにより行なわれる。また再生はこ
うして反転記録された磁性膜の磁気光学効果の差を利用
して読出ずことにより行なわれる。前述のような非晶質
合金磁性体を用いた光磁気記録媒体は記録感度が高いた
め、半導体レーザー光によって高速度(周波数I M 
If zにおいて)で記録できるという利点はあるが、
非晶質合金磁性体、特に遷移金属成分は酸化腐食を受け
易いので、経時と共に磁性膜の磁気光学特性が劣化する
という大きな欠点がある。これを防止するため、非晶質
磁性膜上にSin’。
In recent years, magneto-optical recording media that perform magnetic recording using semiconductor laser light have been researched and developed for high-density recording. Conventionally, magnetic materials used in magneto-optical recording media are often made of amorphous alloys of rare earth metals and transition metals. To make a magneto-optical recording medium using such an amorphous alloy magnetic material, the magnetic material, for example, a Tb-Fe alloy, is generally deposited on a substrate such as a glass plate to a thickness of 0 by vacuum deposition, sputtering, etc. A magnetic film is formed by depositing the magnetic film to a thickness of about .1 to 1 μrn. Recording and reproduction on the magneto-optical recording medium obtained in this way is carried out as follows. That is, recording is performed by heating the magnetic film by irradiating laser light modulated with a binary signal to change the direction of magnetization, taking advantage of the property of rapid changes in coercive force corresponding to temperature changes near the Curie temperature or compensation temperature of the magnetic film. This is done by reversing the . Further, reproduction is performed without reading by utilizing the difference in the magneto-optical effect of the magnetic film recorded in this way. Magneto-optical recording media using amorphous alloy magnetic materials as described above have high recording sensitivity, so they can be recorded at high speeds (frequency I M
Although it has the advantage of being able to record with
Since amorphous alloy magnetic materials, particularly transition metal components, are susceptible to oxidative corrosion, there is a major drawback in that the magneto-optical properties of the magnetic film deteriorate over time. To prevent this, Sin' is deposited on the amorphous magnetic film.

5in2等の保護膜を設ける(形成法は磁性膜の場合と
同様、真空蒸着、スパッタリング等による)ことも知ら
れているが、磁性膜或いは保護膜の形成時、真空中に残
存する02、基板面に吸着された02.H2O等及び合
金磁性体のターゲット中に含まれる02,820等によ
り経時と共に磁性膜が酸化腐食される上、記録時の光及
び熱により更にこの酸化腐食は促進される。また非結晶
質磁性体は熱によって結晶化され易く、そのために磁気
特性の劣化を来たし易いという欠点を有する。更に再生
出力を向上するための再生方式として磁性膜をできるだ
け厚くし、その上にCu、Aff、Pt、Au等の反射
膜を設け、レーザー光を磁性膜に照射透過させた後、反
射膜で反射させ、この反射光を検出する反射型ファラデ
一方式は高S/Nの信号が得られるという点で有利であ
るが、従来の非晶質磁性膜は透光性に欠けるため、この
方式に用いることができないものであった。
It is also known to provide a protective film such as 5in2 (forming method is by vacuum evaporation, sputtering, etc. as in the case of the magnetic film), but when forming the magnetic film or protective film, the 02 remaining in the vacuum, the substrate 02. adsorbed on the surface. The magnetic film is oxidized and corroded over time by H2O, etc. and 02, 820, etc. contained in the alloy magnetic target, and this oxidative corrosion is further accelerated by light and heat during recording. In addition, amorphous magnetic materials have the disadvantage that they are easily crystallized by heat, which tends to cause deterioration of their magnetic properties. Furthermore, as a reproduction method to improve the reproduction output, the magnetic film is made as thick as possible, a reflective film of Cu, Aff, Pt, Au, etc. is provided on top of it, and after the laser beam is irradiated and transmitted through the magnetic film, the reflective film is The reflective Faraday method, which reflects the reflected light and detects the reflected light, is advantageous in that it can obtain a signal with a high S/N ratio, but conventional amorphous magnetic films lack translucency, so this method is It was unusable.

目 的 本発明の目的は記録感度が高<、シかも耐酸化腐食性及
び透光性に優れた、光磁気記録媒体用材料として特に好
適な新規な金属化物磁性体及びこの金属酸化物磁性体よ
りなる磁性膜を提供することである。
Purpose The purpose of the present invention is to provide a novel metallized magnetic material which has high recording sensitivity, excellent oxidation corrosion resistance, and light transmission properties and is particularly suitable as a material for magneto-optical recording media, and this metal oxide magnetic material. An object of the present invention is to provide a magnetic film consisting of the following.

盈−一部 本発明の金属酸化物磁性体は一般式(1)%式%) ) で示されるものであり、また磁性膜は前記一般式の金属
化物磁性体よりなるものである。
In part, the metal oxide magnetic material of the present invention is represented by the general formula (1) (%), and the magnetic film is made of the metal oxide magnetic material of the general formula.

光磁気記録媒体に用いられる磁性体又は磁性膜には半導
体レーザー光によって記録、再生可能な磁気光学特性(
適正なキュリ一温度、保磁力等)を備えていなければな
らないが、特に高い記録感度些得るためにキュリ一温度
T’ cが低いこと及び記録したメモリーを安定に維持
するだめに保磁力Hcが適度に高いことが必要である。
The magnetic material or magnetic film used in magneto-optical recording media has magneto-optical properties (
In order to obtain high recording sensitivity, the Curie temperature T'c must be low, and the coercive force Hc must be low to maintain the recorded memory stably. It needs to be moderately high.

一般にこの]c及びHr、の適正範囲はTcについては
100〜350℃、 Hcについては300〜6000
エルステツドと考えられる。これはTcが100℃以下
では記録したメモリーが再生時のレーザー光によって不
安定になって再生特性の劣化原因となり、また、350
°C以上では半導体レーザー光による記録が困難であり
、一方、llcが300エルステツド以下ではメモリー
が不安定となって消失する可能性があり、また6000
エルステツ1〜以」二では記録時の磁化反転に必要なレ
ーザー出力や外部磁界が大きくなり、好ましくないから
である。
In general, the appropriate ranges for c and Hr are 100 to 350°C for Tc and 300 to 6000 for Hc.
It is thought to be Ersted. This is because when Tc is below 100°C, the recorded memory becomes unstable due to the laser beam during playback, causing deterioration of playback characteristics.
It is difficult to record with a semiconductor laser beam at temperatures above 300 °C, and on the other hand, if the llc is below 300 oersted, the memory may become unstable and disappear;
This is because in Erstets 1 to 2, the laser output and external magnetic field required for magnetization reversal during recording become large, which is undesirable.

一方、従来より磁気バブル打着として六方晶形及びスピ
ネル形の金属酸化物磁性体が研究されている。このうち
六方晶形のものでは例えば一般式(2) %式%] (但しMe、nは一般式(1)に同じ)で示されるもの
が知られている。本発明者らはこの種の磁性体がそれ自
体、酸化物であるため。
On the other hand, hexagonal and spinel metal oxide magnetic materials have been studied for magnetic bubble impingement. Among these hexagonal crystals, for example, those represented by the general formula (2) % formula %] (where Me and n are the same as in the general formula (1)) are known. The present inventors discovered that this type of magnetic material is itself an oxide.

酸化劣化の恐れがなく、しかも膜厚10μとしても透光
性を備えていることに注目した。しかしこれらはキュリ
一温度Tcが450℃以上と高いため、前述のように半
導体レーザー光による記録は困難であり、そのままでは
光磁気記録媒体用材料として適用できない。そこで本発
明者らは種々検討したところ、一般式(2)の中のF 
e原子の一部をAQ又はIn原子で置換すると、Ga置
換、In置換のいずれの場合もTcが低下することを見
出した。同時に1−1 cについてはAQ置換の場合は
増大するが、Inl[換の場合゛は低下することを見出
した。例えばAn又はIn置換体Ba0−M7.L’e
 −z O(MはΔa又は1.n、ZはAR又はInの
置換数を表わす。)はTcについては第1図(図中、a
はAβ置換体、bはIn置換体を表わす。)のような傾
向を示し、またHcについては第2図(図中、a′はA
Q置換体、b′はI I+置換休を表わす。)のような
傾向を示した。そこで本発明者らはこのようなAQ及び
Inの置換効果に着目し、更に光磁気記録媒体用の磁性
体又は磁性膜に要求されるTc及びHeの前記適正範囲
を考慮して一般式(2)のFeの一部をAQ及びInの
2種の金属で種々の割合で置換した結果、一般式(1)
の金属酸化物V柱体が光磁気記録媒体として優れた特性
を与えることを見出し、本発明に到達した。
We focused on the fact that there is no fear of oxidative deterioration and that it has translucency even at a film thickness of 10 μm. However, since the Curie temperature Tc of these materials is as high as 450° C. or higher, recording with semiconductor laser light is difficult as described above, and they cannot be used as materials for magneto-optical recording media. Therefore, the present inventors conducted various studies and found that F in general formula (2)
It has been found that when a part of e atoms are replaced with AQ or In atoms, Tc decreases in both cases of Ga substitution and In substitution. At the same time, it was found that 1-1c increased in the case of AQ substitution, but decreased in the case of Inl substitution. For example, An or In substituted Ba0-M7. L'e
-z O (M represents Δa or 1.n, Z represents the number of substitutions of AR or In) is as shown in Figure 1 (a in the figure) for Tc.
represents an Aβ-substituted product, and b represents an In-substituted product. ), and Hc shows a tendency as shown in Figure 2 (in the figure, a' is A
Q substituent, b' represents I I+substituted rest. ). Therefore, the present inventors focused on the substitution effect of AQ and In, and further considered the above-mentioned appropriate ranges of Tc and He required for the magnetic material or magnetic film for magneto-optical recording media, and developed the general formula (2 ) as a result of replacing a part of Fe with two metals, AQ and In, in various ratios, the general formula (1)
The inventors have discovered that the metal oxide V-columns provide excellent properties as a magneto-optical recording medium, and have arrived at the present invention.

このように本発明は、特にキュリ一温度が高いため、光
磁気記録媒体用材料として顧みられなかった一般式(2
)の金属化合物中のFe原子の一部をAQ及びIn原子
で置換することによって、メモリーに要求される適度に
高い保磁力を維持しながら、キュリ一温度を低下せしめ
て半導体レーザー光による記録、再生を可能にし、こう
して光磁気記録媒体用材料として適用できるようにした
ものである。
In this way, the present invention solves the problem of the general formula (2
) By substituting some of the Fe atoms in the metal compound with AQ and In atoms, the Curie temperature can be lowered while maintaining the moderately high coercive force required for memory, and recording by semiconductor laser light can be achieved. It enables reproduction and thus can be applied as a material for magneto-optical recording media.

以上の説明から判るように本発明の金属酸化物磁性体は
光磁気記録媒体用材料として要求される適正キュリ一温
度範囲及び適正保磁力範囲を満足するものである。
As can be seen from the above description, the metal oxide magnetic material of the present invention satisfies the appropriate Curie temperature range and appropriate coercive force range required as a material for magneto-optical recording media.

例えばB ao・A、Qx’ Iny’ FeI+、2
− t x’ +y’ 、Oft、2(但しX′はAQ
置換数、Y′はIn置換数)ではTcは第3図(図中、
CはAQの置換数X′が2.05の場合、 dは同しく
x’ が4,1の場合、eは同じくX′が1.03の場
合を表わす。)に示すように、線C1即ちAQの置換数
X′が2,05で、且つInの置換数Y′が2.0の時
、180℃であり、またH cは第4図(図中C′はA
 nの置換数X′が2.05の場合、e′は同じ<x’
 が1.03の場合を表わす。)に示すように、線C′
、即ちAQの置換数X′が2.05で、且っTnの置換
数Y′が2.0の時、2.9にエルステッドである。
For example, B ao・A, Qx'Iny' FeI+, 2
−t x'+y' , Of, 2 (X' is AQ
number of substitutions, Y' is the number of In substitutions), Tc is as shown in Figure 3 (in the figure,
C represents the case where the substitution number X' of AQ is 2.05, d represents the case where x' is 4.1, and e represents the case where X' is 1.03. ), when the number of substitutions X' in line C1, that is, AQ, is 2.05, and the number Y' of substitutions in In is 2.0, the temperature is 180°C, and H c is C' is A
When the number of substitutions X' for n is 2.05, e' is the same <x'
represents the case where is 1.03. ), the line C'
That is, when the number of substitutions X' of AQ is 2.05 and the number of substitutions Y' of Tn is 2.0, the Oersted is 2.9.

これらのTc及びHc特性により本発明の金属酸化物磁
性体又は磁性膜は半導体レーザー光により記録、再生を
行なう光磁気記録媒体用材料として適用できることは勿
論、キュリ一温度が低いため、記録感度が高い」二、耐
酸化腐食性及び透光性を備えている等の特長を持ってい
る。
Due to these Tc and Hc properties, the metal oxide magnetic material or magnetic film of the present invention can be applied as a material for magneto-optical recording media that performs recording and reproduction using semiconductor laser light. It has the following characteristics: high oxidation corrosion resistance and translucency.

本発明の金属酸化物磁性体を作るには夫々所定量のBa
C0,又は5rCO,とFe2O3と、IMl、03と
In2O,とを混合粉砕し、これを適当な形状の金型に
入れて成型後、1200〜1400℃の温度で焼結すれ
ばよい。
To make the metal oxide magnetic material of the present invention, a predetermined amount of Ba is required.
C0 or 5rCO, Fe2O3, IMl,03, and In2O are mixed and ground, placed in a mold of an appropriate shape, molded, and then sintered at a temperature of 1200 to 1400°C.

以上のようにして得られる本発明の金属酸化物磁性体の
具体例としては Bad・5 (A Da7. In、、 Ver、r 
03 )l BaO’6 (A flax In、、、
 Fe7.5 O3)Ba()6(Alla>yIna
iaFe4nOい、Da()5.6(A L、t In
。3 Ver、t Oa )SrO・5(A Ra、 
Ino、 Fe、、503)、SrO・6(A Q、、
 In、、3 Fe1.603 )SrO・6 (A 
Qo、25 In、、 Fe(、B OJ ) r S
rO・5.6 (A QelIn、jFe2.g 03
 )等が挙げられる。
A specific example of the metal oxide magnetic material of the present invention obtained as described above is Bad.5 (A Da7. In, Ver, r
03)l BaO'6 (A flax In,...
Fe7.5 O3)Ba()6(Alla>yIna
iaFe4nO, Da()5.6(A L,t In
. 3 Ver, t Oa ) SrO・5(A Ra,
Ino, Fe, 503), SrO・6(AQ, ,
In,,3Fe1.603)SrO・6(A
Qo, 25 In,, Fe(, B OJ) r S
rO・5.6 (A QelIn, jFe2.g 03
) etc.

なお以上のような金属酸化物磁性体にはファラデー回転
角を更に増大して磁気光学特性を改善するためにGo、
B i+ V、La、y、’yb。
In addition, in order to further increase the Faraday rotation angle and improve the magneto-optical properties, the metal oxide magnetic material described above may contain Go,
B i+ V, La, y, 'yb.

Sm、、Tlz Dy+ Gd等の金属を添加すること
ができる。
Metals such as Sm, TlzDy+Gd, etc. can be added.

本発明の金属酸化物磁性体を用いて磁性膜を作るには、
基板の種類にもよるが、一般に基板」二にこの磁性体を
ターゲラ1へとして基板温度500〜600℃で真空蒸
着、スパッタリング、イオンブレーティング等の方法で
膜厚0,1〜10μm程度に付着させればよい。こうし
て第5図に示すように基板1上に、垂直磁化された磁性
膜2を有する光磁気記録媒体が得られる。なお場合によ
っては磁性膜の形成は基板温度500℃未満で行なうこ
ともできる。但しこの場合は磁性膜形成後、これに50
0〜700℃の熱処理を、場合により磁界を印加しなが
ら1行なって垂直磁化させる必要がある。ここで基板の
材料とし一部は一般にアルミニウムのような耐熱性金属
;石英ガラス; GGG ;サファイヤ;リチウムタン
タレート;結晶化透明ガラス;パイレックスガラス;表
面を酸化処理し又は処理しない単結晶シリコン:AQ2
0g+ AQ20a ’ MgO+Mg0I−iF、Y
20++ ・LiF+ BeatZrO2・Y2O3,
ThO2・CaO等の透明セラミック材;無機シリコン
材(例えは東芝シリコン社製1−スガード、住人化学社
製スミセラムP)等の無機材料或いはアクリル樹脂、ボ
リカーボネー1−樹脂、ポリエステル樹脂等の有機材料
が使用できる。
To make a magnetic film using the metal oxide magnetic material of the present invention,
Although it depends on the type of substrate, in general, this magnetic material is attached to the substrate as a target layer 1 to a film thickness of about 0.1 to 10 μm using methods such as vacuum evaporation, sputtering, and ion blasting at a substrate temperature of 500 to 600°C. Just let it happen. In this way, as shown in FIG. 5, a magneto-optical recording medium having a perpendicularly magnetized magnetic film 2 on a substrate 1 is obtained. In some cases, the magnetic film may be formed at a substrate temperature of less than 500°C. However, in this case, after forming the magnetic film, it is
It is necessary to carry out one heat treatment at 0 to 700° C., applying a magnetic field as the case may be, to achieve perpendicular magnetization. Here, some of the substrate materials are generally heat-resistant metals such as aluminum; quartz glass; GGG; sapphire; lithium tantalate; crystallized transparent glass; Pyrex glass; single-crystal silicon with or without surface oxidation treatment: AQ2
0g+ AQ20a' MgO+Mg0I-iF, Y
20++ ・LiF+ BeatZrO2・Y2O3,
Transparent ceramic materials such as ThO2 and CaO; inorganic materials such as inorganic silicon materials (for example, 1-Sgard manufactured by Toshiba Silicon Co., Ltd. and Sumiceram P manufactured by Sumitomo Chemical Co., Ltd.), or organic materials such as acrylic resin, polycarbonate 1-resin, and polyester resin. Can be used.

本発明の磁性膜は第5図のような単層型光磁気記録媒体
に限らず、従来公知のすべての多層型光磁気記録媒体に
適用できる。この種の多層型の例としては第6〜9図に
示すような構成のものが挙げられる。図中、ビはガイド
1へランク付き基板、3は反射膜、4は透明誘電層、5
はガイドトランク層、6は保護膜、7は透明接着層、8
は耐熱層である。ここでガイド斗うックイ4き基板1′
は前述のような有機材料を射出成型、押出成型、フォト
エツチング法等により加工して作られる。なお基板のガ
イドトラックは記録、再生時のレーザー光を案内するも
のである。反射膜3はCu I A Q g A g 
I A u +P t 、 T e Ox 、 T e
 C、S e A s 、 T eΔs。
The magnetic film of the present invention is applicable not only to a single-layer magneto-optical recording medium as shown in FIG. 5, but also to all conventionally known multilayer magneto-optical recording media. Examples of this type of multilayer type include structures shown in FIGS. 6 to 9. In the figure, Bi is a ranked substrate for guide 1, 3 is a reflective film, 4 is a transparent dielectric layer, and 5
is a guide trunk layer, 6 is a protective film, 7 is a transparent adhesive layer, 8
is a heat-resistant layer. Click here to guide the board 1'
is made by processing the above-mentioned organic materials by injection molding, extrusion molding, photoetching, etc. Note that the guide track on the substrate guides the laser beam during recording and reproduction. The reflective film 3 is Cu I A Q g A g
I A u + P t , T e Ox , T e
C, S e As , T eΔs.

T iN + T’ a N + Cr N +シアニ
ン染料、フタロシアニン染料等を真空蒸着、スパッタリ
ング、イオンブレーティング等の方法で対象面に膜厚5
00〜10000人程度に付着させることにより形成さ
れる。なおこの反射膜は、磁性膜を透過したレーザー光
を反射し、再び磁性膜を透過することによるファラデー
効果を増大させる目的で設けられる。透明誘電層4は5
in2.Sin。
T iN + T' a N + Cr N + Cyanine dye, phthalocyanine dye, etc. are deposited on the target surface to a thickness of 5 by vacuum evaporation, sputtering, ion blasting, etc.
It is formed by attaching it to about 00 to 10,000 people. Note that this reflective film is provided for the purpose of increasing the Faraday effect by reflecting the laser light that has passed through the magnetic film and transmitting it through the magnetic film again. The transparent dielectric layer 4 is 5
in2. Sin.

TiO2,Ti○、CeO,HfO2,Bed。TiO2, Ti○, CeO, HfO2, Bed.

Th○、、Si、N4等を前記と同様な方法で対象面に
膜厚約0.05〜0.5μm程度に付着させることによ
り形成される。なおこの透明誘電層はファラデー回転角
を増大させて再生出力を向」−する目的で設けられる。
It is formed by depositing Th○, Si, N4, etc. on the target surface to a thickness of approximately 0.05 to 0.5 μm using the same method as described above. Note that this transparent dielectric layer is provided for the purpose of increasing the Faraday rotation angle and improving the reproduction output.

ガイド1−ランクM5は対象面に紫外線硬化性樹脂を塗
布した後、ガイド溝を有する金型を圧着しながら、紫外
線を照射して前記樹脂を硬化させることにより形成され
る。保護膜6はアクリル樹脂、ポリウレタン樹脂、ポリ
カーボネ−1・樹脂、ポリエーテルスルホン樹脂、ポリ
アミド樹脂、エポキシ樹脂、TiN、 Si3N、 、
 ]’aN、 5in2+ SiO等を樹脂の場合は塗
布法で、その他の場合は真空蒸着、スパッタリング、イ
オンブレーティング等の方法で対象面に膜厚約0.1〜
10μm程度に4=J着させることにより形成される。
Guide 1-rank M5 is formed by applying an ultraviolet curable resin to the target surface, and then applying ultraviolet rays to cure the resin while pressing a mold having a guide groove. The protective film 6 is made of acrylic resin, polyurethane resin, polycarbonate resin, polyether sulfone resin, polyamide resin, epoxy resin, TiN, Si3N, etc.
]'aN, 5in2+ SiO, etc., is applied to the target surface by a coating method in the case of a resin, or by a method such as vacuum evaporation, sputtering, or ion blasting in other cases, to a film thickness of approximately 0.1~
It is formed by depositing 4=J to about 10 μm.

なおこの保護膜は反射膜3を保護する目的で設けられる
。透明接着M7は、反射膜3を設けたガイド1−ラック
付き基板1′の反射膜と磁性膜2を設けた耐熱層8(こ
の層は前記無機材料よりなるので、[磁性膜を設けた耐
熱層」とは前記単層型光磁気記録材料のことである。)
の磁性膜とをエポキシ樹脂、ポリウレタン、ポリアミド
等の樹脂で約2〜100mμ厚程度に接着することによ
り形成される。即ちこの透明接着層は単に基板1′上の
反射膜3と単層型光磁気記録材料の磁性膜2とを接合す
るための層である。なお耐熱層8は前述のような無機材
料よりなるので、基板1に相当するが、ここでは磁性膜
2の耐熱性向上の目的で設けられる。厚さは約10〜5
00mμ程度が適当である。
Note that this protective film is provided for the purpose of protecting the reflective film 3. The transparent adhesive M7 consists of the guide 1 provided with a reflective film 3, the reflective film of the substrate 1' with a rack, and the heat-resistant layer 8 provided with a magnetic film 2 (this layer is made of the above-mentioned inorganic material, so "layer" refers to the single-layer type magneto-optical recording material.)
It is formed by bonding a magnetic film with a thickness of about 2 to 100 μm using a resin such as epoxy resin, polyurethane, or polyamide. That is, this transparent adhesive layer is simply a layer for bonding the reflective film 3 on the substrate 1' and the magnetic film 2 of the single-layer magneto-optical recording material. Note that the heat-resistant layer 8 is made of the above-mentioned inorganic material and thus corresponds to the substrate 1, but is provided here for the purpose of improving the heat resistance of the magnetic film 2. The thickness is about 10-5
Approximately 00 mμ is appropriate.

本発明の磁性膜を用いた以」二のような光磁気記録媒体
への記録、再生は従来と同じく磁性膜又は基板側から変
調又は偏向されたレー→P−光を照射して行なわれる。
Recording and reproduction on the magneto-optical recording medium using the magnetic film of the present invention as described in (2) above is carried out by irradiating modulated or deflected P-light from the magnetic film or substrate side, as in the conventional method.

勤−一二監 本発明の金属酸化物磁性体又は磁性膜は光磁気記録媒体
用月料として適正なTc及び+(cを有し、記録感度が
高いにも拘わらず、従来品にはなかった耐酸化腐食性及
び透明性を備えているので、磁気光学特性の経時劣化が
なく、且つ再生時に透過光も利用でき、このため再生出
力の高いファラデー回転角を利用して再生することがで
きる。
The metal oxide magnetic material or magnetic film of the present invention has Tc and +(c) suitable for use in magneto-optical recording media, and has high recording sensitivity. Because it has excellent oxidation corrosion resistance and transparency, there is no deterioration of magneto-optical properties over time, and transmitted light can also be used during playback, making it possible to play back using the Faraday rotation angle with high playback output. .

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1〜8 下記表に示した組成のターゲラ1−を各々用いて1表面
光学研摩処理した石英基板上にAr分圧2.Onwn 
T o r r、02分圧0.3+nn T o r 
r、放電々力0.35KV、基板温度520〜550℃
の条件で2時間スパッタリングして0.3μ厚の磁性膜
を形成した。これら磁性膜のキュリ一温度Tc及び保磁
力Hcを測定した結果を下表に示す。
Examples 1 to 8 Using Targetera 1- having the composition shown in the table below, Ar partial pressure of 2. Onwn
T o r r, 02 partial pressure 0.3 + nn T o r
r, discharge power 0.35KV, substrate temperature 520-550℃
Sputtering was performed for 2 hours under the following conditions to form a magnetic film with a thickness of 0.3 μm. The results of measuring the Curie temperature Tc and coercive force Hc of these magnetic films are shown in the table below.

次に以上のようにして得られた各光磁気記録媒体を一方
向に磁化させ、この磁化の方向とは逆の0.5エルステ
ツドの磁界を印加しながら、出力20m11の半導体レ
ーザー光を記録媒体表面での強度10mW及び周波数I
MHzのパルスで照射して磁気反転せしめ、記録したと
ころ、いずれもピッ1〜径約1.5μmの記録ピットが
形成された。
Next, each magneto-optical recording medium obtained as described above is magnetized in one direction, and while applying a magnetic field of 0.5 oersted opposite to the direction of magnetization, a semiconductor laser beam with an output of 20 m11 is applied to the recording medium. Intensity 10mW and frequency I at the surface
When recording was performed by irradiating with a MHz pulse to cause magnetic reversal, recording pits with a pitch of 1 to approximately 1.5 μm in diameter were formed in each case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々、金属酸化物磁性体B a O
” M Z F ert、、 −z Org、g (M
はAQ又はI n、ZはAQ又はInの置換数)におけ
るAQ又はI r+の置換数Zと、キュリ一温度T c
及び保磁力Hcとの関係図、第3図及び第4図は夫々、
金属酸化物磁性体 B ao−ADH’ In、’ Fel1.z−[X’
 +y’ 、Ors、t(X’はAnの置換数、Y′は
1. nの置換数)におけるInの置換数Y′と、Tc
及びHcとの関係図、第5〜9図は夫々本発明の磁性体
又は磁性膜を用いた光磁気記録媒体の一例の構成図であ
る。 線a、a’・・・AQ置換体 線す、b’・・In置換
体線c、c’ −x’ =2.05のll[換体線d 
−x’ =4.1のAQ置換体 線e、e’ −=x’ = 1.03のAu[il換体
l・・基 板 1′・・・ガイドトラック層」き基板 2・・・磁性膜 3・・反射膜 4・・・透明誘電層 5・・・ガイドトラック層6・・
・保 護 膜 7・・・透明接着層8・・・耐熱層 特許出願人 株式会社 リ コ − 扇10 10引I疾数Y′ 飛5図 類6冒 懲9図
FIGS. 1 and 2 show metal oxide magnetic material B a O
” M Z F ert,, -z Org, g (M
is the number of substitutions Z for AQ or I r+, and the Curie temperature T c
and the relationship diagrams with coercive force Hc, FIGS. 3 and 4, respectively.
Metal oxide magnetic material B ao-ADH'In,' Fel1. z-[X'
+y', Ors, the number of substitutions Y' of In in t (X' is the number of substitutions of An, Y' is the number of substitutions of 1.n), and Tc
and Hc, and FIGS. 5 to 9 are configuration diagrams of an example of a magneto-optical recording medium using the magnetic material or magnetic film of the present invention, respectively. Lines a, a'...AQ substitution product Lines, b'...In substitution product line c, c' - x' = 2.05 ll [substitution line d
-x' = 4.1 AQ substituent line e, e' - = x' = 1.03 Au[il substitution l...Substrate 1'...Substrate 2 with guide track layer''...magnetic Film 3... Reflective film 4... Transparent dielectric layer 5... Guide track layer 6...
・Protective film 7...Transparent adhesive layer 8...Heat-resistant layer Patent applicant: Ricoh Co., Ltd. - Ougi 10 10 I speed Y' Fly 5 figure Class 6 Blasphemy 9 figure

Claims (1)

【特許請求の範囲】 ■、 一般式 %式%) ) で示される金属酸化物磁性体。 2、一般式 %式% で示される金属酸化物磁性体よりなる磁性膜。[Claims] ■, General formula %formula%) ) A metal oxide magnetic material represented by . 2. General formula %formula% A magnetic film made of a metal oxide magnetic material represented by
JP22965683A 1983-12-05 1983-12-05 Metallic oxide magnetic material and magnetic film Pending JPS60120503A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22965683A JPS60120503A (en) 1983-12-05 1983-12-05 Metallic oxide magnetic material and magnetic film
US06/676,007 US4670322A (en) 1983-12-05 1984-11-29 Metal oxide magnetic substance and a magnetic film consisting thereof and their uses
DE19843444351 DE3444351A1 (en) 1983-12-05 1984-12-05 MAGNETIC METAL OXIDE SUBSTANCE, AN EXISTING MAGNETIC FILM AND THEIR USE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22965683A JPS60120503A (en) 1983-12-05 1983-12-05 Metallic oxide magnetic material and magnetic film

Publications (1)

Publication Number Publication Date
JPS60120503A true JPS60120503A (en) 1985-06-28

Family

ID=16895620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22965683A Pending JPS60120503A (en) 1983-12-05 1983-12-05 Metallic oxide magnetic material and magnetic film

Country Status (1)

Country Link
JP (1) JPS60120503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113250A1 (en) * 2003-06-24 2004-12-29 Murata Manufacturing Co., Ltd. Ferrite ceramic composition for irreversible circuit element, irreversible circuit element, and radio unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113250A1 (en) * 2003-06-24 2004-12-29 Murata Manufacturing Co., Ltd. Ferrite ceramic composition for irreversible circuit element, irreversible circuit element, and radio unit

Similar Documents

Publication Publication Date Title
JPS60120503A (en) Metallic oxide magnetic material and magnetic film
JPS60124901A (en) Metal oxide magnetic material and magnetic film
JPS6189607A (en) Metal oxide magnetic substance and magnetic film
JPS60158604A (en) Metal oxide magnetic substance and magnetic film
JPH0576763B2 (en)
JPS60164303A (en) Magnetic material and magnetic film of metal oxide
JPS60163406A (en) Metallic oxide magnetic material and magnetic film
JPS60121705A (en) Metal oxide magnetic substance and magnetic film
JPS60164302A (en) Magnetic material and magnetic film of metal oxide
JPS60163407A (en) Metallic oxide magnetic material and magnetic film
JPS60220909A (en) Metal oxide magnetic body and magnetic film
JPS60178607A (en) Metallic-oxide magnetic material and magnetic film
JPS60231304A (en) Metallic oxide magnetic material and magnetic film
JPS60133711A (en) Metallic oxide magnetic material and magnetic film
JPS60163408A (en) Metallic oxide magnetic material and magnetic film
JPS60211903A (en) Magnetic substance and magnetic film for photomagnetic recording medium
JPS60115202A (en) Metal oxide magnetic material and magnetic film
JPS60211904A (en) Magnetic substance and magnetic film of metal oxide
JPS6189605A (en) Metal oxide magnetic substance and magnetic film
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JPS60124902A (en) Metal oxide magnetic material and magnetic film
JPS60214506A (en) Metal-oxide magnetic body and magnetic film
JPS60180920A (en) Metallic oxide magnetic body and magnetic film
JPS60151227A (en) Magnetic body of metallic oxide and magnetic film
JPS60201602A (en) Magnetic material and magnetic film of metal oxide