WO2004113250A1 - Ferrite ceramic composition for irreversible circuit element, irreversible circuit element, and radio unit - Google Patents

Ferrite ceramic composition for irreversible circuit element, irreversible circuit element, and radio unit Download PDF

Info

Publication number
WO2004113250A1
WO2004113250A1 PCT/JP2004/005826 JP2004005826W WO2004113250A1 WO 2004113250 A1 WO2004113250 A1 WO 2004113250A1 JP 2004005826 W JP2004005826 W JP 2004005826W WO 2004113250 A1 WO2004113250 A1 WO 2004113250A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
ghz
component
magnetic
magnetic field
Prior art date
Application number
PCT/JP2004/005826
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Marusawa
Yutaka Ishiura
Tatsuya Matsunaga
Terunobu Ishikawa
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2005507185A priority Critical patent/JPWO2004113250A1/en
Publication of WO2004113250A1 publication Critical patent/WO2004113250A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/387Strip line circulators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Definitions

  • Ferrite porcelain composition for non-reciprocal circuit device, non-reciprocal circuit device, and wireless device Ferrite porcelain composition for non-reciprocal circuit device, non-reciprocal circuit device, and wireless device
  • the present invention relates to a ferrite porcelain composition for a nonreciprocal circuit device, a nonreciprocal circuit device, and a wireless device.
  • the present invention relates to a microwave / millimeter wave band (hereinafter simply referred to as “microwave band”) having a frequency of several GHz to several tens GHz.
  • microwave band a microwave / millimeter wave band
  • Ferrite porcelain composition for non-reciprocal circuit elements suitable for use in the above non-reciprocal circuit elements such as isolators and circulators formed using the ferrite porcelain composition, and the non-reciprocal circuit elements Wireless device.
  • non-reciprocal circuit device used in a microwave band such as a mobile phone and a millimeter-wave radar
  • a non-reciprocal circuit device in which a permanent magnet applies a DC magnetic field has been known.
  • the non-reciprocal circuit element uses a ganet ferrite represented by yttrium iron garnet YgF esC ⁇ 2 (hereinafter referred to as “YIG”) or a spinel ferrite represented by Mg ferrite or NiCuZn ferrite.
  • YIG yttrium iron garnet YgF esC ⁇ 2
  • Mg ferrite Mg ferrite
  • NiCuZn ferrite NiCuZn ferrite
  • a permanent magnet such as a rare earth magnet or Sr ferrite magnet applies a DC magnetic field to drive the magnet.
  • the irreversible circuit element usually uses garnet-based ferrite in the ultra-high frequency / microphone mouthband of several hundred MHz to several GHz, and spinel-based ferrite in the microwave band of several tens of GHz.
  • garnet-based ferrite has a large magnetic loss peak on the low magnetic field side in the ultra-high frequency or microwave band of several hundred MHz to several GHz, so that an irreversible circuit element with low magnetic loss cannot be obtained. It is driven on the higher magnetic field side than the ferromagnetic resonance peak.
  • spinel ferrite is used in the microwave band of several tens of GHz, and is generally driven at a lower magnetic field than the ferromagnetic resonance peak. That is, in the microphone mouthband of several 10 GHz, since the ferromagnetic resonance peak and the low magnetic field loss peak are sufficiently separated, a nonreciprocal circuit having a sufficiently low magnetic loss even when driven at a low magnetic field. It is difficult to sufficiently saturate the spinel ferrite (saturation magnetization of about 0.4 T) with a permanent magnet, and it is driven at a lower magnetic field than the ferromagnetic resonance peak. .
  • a non-reciprocal circuit element is realized by utilizing such properties, which are different for circularly polarized waves and negatively circularly polarized waves.
  • the complex permeability ⁇ of ferrite is expressed by equation (1), the real part ⁇ 'represents the response of magnetization, and the imaginary part ⁇ ⁇ represents magnetic loss.
  • garnet-based ferrite requires a permanent magnet to apply a DC magnetic field, and thus limits the reduction in height, size, and cost of nonreciprocal circuit devices.
  • small wireless LANs with non-reciprocal circuit elements are expected to be used, such as millimeter-wave radars.
  • spinel ferrite is used for the non-reciprocal circuit elements.
  • permanent magnets are required as in the case of garnet-based ferrite, and there are limits to the reduction in height, size, and cost of nonreciprocal circuit devices.
  • the irreversible circuit element of the self-bias operation type for example, B a ferrite, 1. Have 4 0 X 1 0 6 AZM anisotropy field H a, also, S r ferrite, 1. 5 4 since it has an anisotropic magnetic field H a of X 1 0 6 a / m, and with the driven magnetic anisotropy field H a without requiring a permanent magnet to generate a magnetic field.
  • the self-biasing operation type nonreciprocal circuit element using magnetoplumbite ferrite does not require a permanent magnet for applying a magnetic field such as garnet ferrite / spinel ferrite. Taller and smaller size-Promising in terms of cost reduction.
  • an isolator non-reciprocal circuit device
  • a semiconductor chip in a microwave integrated circuit or a microwave circuit module in a surface mount format.
  • a technology has been proposed (Japanese Patent Laid-Open No. 11-17408).
  • Figure 1 is positive negative circularly polarized magnetic permeability ⁇ each permeability components ⁇ of S r ferrite as an example of a magnetoplumbite ferrite ⁇ ,, H- ', shows the frequency characteristic.
  • the horizontal axis represents the frequency (GHz;), and the vertical axis represents the magnetic permeability components of the positive and negative circular polarization magnetic permeability ⁇ ', ⁇ + , li-.
  • FIG. 2 shows the magnetic permeability difference ⁇ ⁇ when Sr ferrite is used for a self-biased nonreciprocal circuit device.
  • the horizontal axis is frequency (GHz), and the vertical axis is magnetic permeability difference.
  • the imaginary part / of the circularly polarized magnetic permeability greatly increases from the threshold value of 0.05.
  • the magnetic loss increases, and a low-loss nonreciprocal circuit device cannot be obtained.
  • the permeability difference ⁇ is as small as less than 0.1, so that desired irreversibility cannot be obtained.
  • the conventional self-biased irreversible circuit element cannot obtain the desired irreversibility in the microwave band of 10 GHz or less, while the magnetic loss increases in the microphone mouthband of 30 to 60 GHz. There was a problem.
  • the present invention has been made in view of such a problem, and it is possible to obtain sufficient irreversibility even when used in a microphone mouthband of 10 GHz or less or 30 to 60 GHz. It is another object of the present invention to provide a ferrite porcelain composition for a nonreciprocal circuit element capable of reducing magnetic loss, a self-biased nonreciprocal circuit element manufactured using the ferrite porcelain composition, and a wireless device. And Disclosure of the invention
  • the present inventors have made intensive studies to achieve the above object, a portion of the F e 3 + contained in Magunetopura Nbaito type hexagonal ferrite by a child substituted with I n 3+, anisotropic
  • the magnetic field Ha can be controlled in a decreasing direction, thereby improving the irreversibility of the ferrite porcelain composition in a microwave band of 10 GHz or less, and further reducing the frequency of the ferromagnetic resonance peak to a low frequency. It has been found that it is possible to suppress the magnetic loss in the microphone mouthband of 30 to 60 GHz.
  • the ferrite ceramic composition for a non-reciprocal circuit element according to the present invention (hereinafter, simply referred to as "ferrite ceramic composition") of the general formula ⁇ (S r ,. x B a x) ⁇ ⁇ ⁇ (F e ,. , it contains a. z I n y) 2 0 3 ⁇ (0 ⁇ x ⁇ 1. 00, 5. 00 ⁇ n ⁇ 6. 00, 0 ⁇ y ⁇ 0. main component represented by 3 0) It is characterized by:
  • the present inventors have conducted intensive studies and found that the anisotropic magnetic field Ha can be controlled in the increasing direction by substituting a part of the above-mentioned F e 3 + with A 13 +. As a result, the frequency of the ferromagnetic resonance peak can be shifted to the higher frequency side, and as a result, it has been found that the magnetic loss can be suppressed without impairing the irreversibility even in the microwave band of 30 to 60 GHz. .
  • the ferrite ceramic composition according to the present invention have the general formula ⁇ (S r ,. x B a x) O • n (F e, _ z A 1 z) 2 0 3 ⁇ (0 ⁇ x ⁇ 1. 00 , 5.00 ⁇ n ⁇ 6.00, 0 ⁇ z ⁇ 0.30).
  • the ferrite ceramic composition according to the present invention have the general formula ⁇ (S r ,. x B a x) ⁇ • n (FI n y A 1 z) 2 0 3 ⁇ (0 ⁇ x ⁇ 1. 00, 5 It is characterized by containing the main components represented by .00 ⁇ n ⁇ 6.00, 0 ⁇ y ⁇ 0.30, 0 ⁇ z ⁇ 0.30).
  • the saturation magnetization Ms can be varied while suppressing the variation of the anisotropic magnetic field Ha.This makes it possible to control the ferromagnetic resonance peak and the difference in magnetic permeability. Even with desired irreversibility and low magnetic loss The ferrite porcelain composition can be easily obtained.
  • the shorter the distance between the permanent magnet and the ferrite porcelain composition the worse the transmission characteristics due to the influence of the eddy current loss generated in the permanent magnet.
  • This eddy current is more likely to be generated as the resistivity P of the permanent magnet is smaller.
  • the effect of the eddy current loss is very large because the ferrite ceramic composition itself generates a magnetic field. Therefore, it is necessary to reduce the eddy current loss in order to avoid the deterioration of the transmission characteristics in the self-biased irreversible circuit element, and it is necessary to increase the resistivity / 0 of the ferrite porcelain composition. .
  • 0 It has been found that it can be increased.
  • the ferrite porcelain composition of the present invention contains at least one of the Ca component and the Co component as an accessory component, and the content of the Ca component and the Co component is less than 1 mol of the main component.
  • the content of the Ca component and the Co component is less than 1 mol of the main component.
  • it is characterized in that it is contained in a total amount of 0.001 to 0.8 mol, and contains at least one of the Mn component and the Zr component as a sub-component, It is characterized in that the content of the Zr component is less than or equal to 1.5% by weight (not including 0% by weight) in terms of oxides.
  • a non-reciprocal circuit device is characterized by including a ferrite member formed of the ferrite porcelain composition.
  • a wireless device includes the non-reciprocal circuit device.
  • the wireless device since the above-mentioned irreversible circuit element is provided, the magnetic loss is small in the microwave band of several GHz to several 10 GHz, the desired irreversibility is obtained, and Miniaturization equipped with a self-bias type nonreciprocal circuit element with low loss tan ⁇ and high specific resistivity ⁇ ⁇ To obtain wireless devices such as mobile phones and millimeter-wave radars with reduced height and cost becomes possible. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing frequency characteristics of each magnetic permeability component of the complex magnetic permeability of a conventional Sr ferrite.
  • FIG. 2 is a diagram showing a frequency characteristic of a permeability difference ⁇ of a conventional Sr ferrite.
  • FIG. 3 is a diagram schematically showing a frequency characteristic of a magnetic permeability difference of the ferrite porcelain composition according to the present invention.
  • FIG. 4 is a diagram showing the half-width of magnetic resonance of the ferrite porcelain composition according to the present invention.
  • FIG. 5 is a perspective view showing a first embodiment of the nonreciprocal circuit device according to the present invention.
  • FIG. 6 is a front view (a) and a plan view (A-A view) of a main part of a nonreciprocal circuit device according to a second embodiment of the present invention.
  • FIG. 7 is a perspective view showing a third embodiment of the nonreciprocal circuit device according to the present invention.
  • FIG. 8 is a perspective view showing a fourth embodiment of the nonreciprocal circuit device according to the present invention.
  • FIG. 9 is a perspective view showing a fifth embodiment of the nonreciprocal circuit device according to the present invention.
  • FIG. 10 is a perspective view showing a sixth embodiment of the nonreciprocal circuit device according to the present invention.
  • FIG. 11 is a plan view showing a seventh embodiment of the nonreciprocal circuit device according to the present invention.
  • FIG. 12 is a perspective view showing an eighth embodiment of the nonreciprocal circuit device according to the present invention.
  • FIG. 13 is a perspective view showing a ninth embodiment of the non-reciprocal circuit device according to the present invention.
  • FIG. 14 is a system configuration diagram showing an embodiment of the wireless device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the ferrite porcelain composition according to the first embodiment of the present invention is represented by the following general formula [A].
  • x is 0 ⁇ x ⁇ l.
  • n is 5.00 ⁇ n ⁇ 6.00
  • y is 0 and y ⁇ 0.30.
  • the ferrite ceramic composition of the first embodiment the general formula (S ⁇ ,., ⁇ , ) ⁇ ⁇ nF e 2 ⁇ 3 (and ⁇ , 0 ⁇ 1. 0) magnet represented by In the pravant-type ferrite, part of Fe 3 + was replaced with In 3+ .
  • the anisotropic magnetic field Ha can be controlled in the decreasing direction. For example, if the Fe component of the magnetoplumbite-type Ba ferrite is replaced by the In component, the anisotropic magnetic field Ha becomes the anisotropic magnetic field of Ba ferrite itself (1.40 X 10 6 (A / m )). At this time, the saturation magnetization Ms also fluctuates in the decreasing direction.
  • N is a demagnetizing field coefficient
  • Ms is a saturation magnetic field (T)
  • the frequency ⁇ of the ferromagnetic resonance peak also varies according to the equation (3).
  • the decrease in the anisotropic magnetic field Ha reduces the frequency of the ferromagnetic resonance peak.
  • fluctuates, and as a result, as shown in FIG. 3, the frequency characteristic of the magnetic permeability difference ⁇ between the real part of the circular polarization and the negative circular polarization is
  • the characteristics can be changed to those shown by the solid line, and a ferrite porcelain composition having sufficient irreversibility can be obtained even when used in a microwave band of 10 GHz or less.
  • the imaginary part ⁇ + "indicating the magnetic loss becomes a mono-Lentz distribution curve with respect to the internal magnetic field H in ( ⁇ / ⁇ ) as shown in FIG.
  • the half-width ⁇ ⁇ of the magnetic resonance peak can be reduced, and at the same time, the frequency ⁇ of the ferromagnetic resonance peak can be shifted to a lower frequency side, and as a result, the imaginary part can be reduced. It is possible to suppress the magnetic loss at 30 to 60 GHz.
  • y is set to 0 ⁇ y ⁇ 0.30.
  • y exceeds 0.30, the content of In becomes excessive while the content of Fe becomes large. This is because the amount becomes too small to show magnetic anisotropy and cannot be used as a non-magnetic material.
  • n is set to 5.00 ⁇ n ⁇ 6.00 because when n is out of this range, no magnetic anisotropy is exhibited, and a different phase is precipitated or This is because it becomes difficult to obtain a sufficient saturation magnetization Ms and the resistivity p decreases.
  • the said ferrite porcelain composition is manufactured as follows.
  • a barium compound, a strontium compound, an iron compound, and an indium compound as a ferrite raw material are appropriately weighed and mixed so that the component composition of the final product, a ferrite porcelain composition, has a predetermined molar ratio, and the mixture is prepared using a pole mill.
  • the mixture is calcined in the air, and then wet pulverized to produce a calcined powder.
  • This calcined powder is kneaded with a binder resin to form a slurry, dehydrated and formed in a magnetic field, and then fired in the air, thereby producing a ferrite porcelain composition represented by the general formula (A). .
  • Ferrite ceramic composition thus first embodiment, since the F e 3 + part of magnetoplumbite pi preparative ferrite is substituted with I n 3+, of 10 GHz or 30 to 60 GHz In the microwave band, a ferrite porcelain composition having desired irreversibility, small magnetic loss and suitable for irreversible circuit elements can be obtained.
  • the ferrite porcelain composition according to the second embodiment is represented by the following general formula [B].
  • x is 0 ⁇ x ⁇ l.
  • n is 5.00 ⁇ n ⁇ 6.00
  • z is 0 ⁇ z ⁇ 0.30.
  • the ferrite ceramic composition of the second embodiment the general formula (S r x B a x) O ⁇ nF e 2 ⁇ 3 (however, 0 ⁇ 1. 0) magnet Prabang preparative represented by In the type ferrite, part of Fe 3 + is replaced with A 13 + .
  • conventional magnetoplumbite-type ferrites such as Br ferrite and Sr ferrite can satisfy irreversibility in the microwave band of 30 to 60 GHz, but have the disadvantage of large magnetic loss.
  • part of F e 3 + By substituting part of F e 3 + with A 13 + , it is possible to suppress magnetic loss even in the microwave band of 3060 GHz, and achieve both irreversibility and low magnetic loss.
  • a ferrite porcelain composition can be obtained.
  • z is set to 0 and z ⁇ 0.30 because when z exceeds 0.30, the content of A 1 becomes excessive while the content of Fe becomes Is too small to exhibit magnetic anisotropy and cannot be used as a non-magnetic material.
  • the ferrite porcelain composition of the second embodiment also uses an aluminum compound instead of an indium compound for the ferrite raw material, and uses the above general formula by a method and procedure substantially similar to those of the first embodiment.
  • the ferrite porcelain composition represented by [B] can be easily produced.
  • the ferrite porcelain composition according to the third embodiment is represented by the following general formula [C].
  • x is 0 ⁇ x ⁇ l.
  • 0 n is 5.00 ⁇ n ⁇ 6.00.
  • y and z are respectively 0 ⁇ y ⁇ 0.30 and 0 ⁇ z ⁇ 0.30.
  • F e 3+ by replacing I n 3+, can be controlled anisotropy field H a, as described above, A 1 part of F e 3+ In addition to this By replacing with 3+ , it is possible to change the saturation magnetization M s while suppressing the fluctuation of the controlled anisotropic magnetic field Ha, thereby making it possible to change the ferromagnetic resonance peak dependent on the saturation magnetization Ms. It is easy to fine-tune the frequency ⁇ (see the above formulas (2) and (3)) and the magnetic permeability difference ⁇ //, so that the desired irreversibility and It becomes easy to obtain a ferrite porcelain composition having low magnetic loss.
  • y and z are respectively set to 0 ⁇ y ⁇ 0.30 and 0 ⁇ z ⁇ 0.30, because when y and z both exceed 0.30, In and This is because while the content of A 1 is excessive, the content of Fe is too small, so that it does not show magnetic anisotropy and cannot be used as a non-magnetic material.
  • the ferrite porcelain composition of the third embodiment also uses a barium compound, a strontium compound, an iron compound, an indium compound, and an aluminum compound as a ferrite raw material, and is substantially the same as the method of the first embodiment.
  • the ferrite porcelain composition represented by the general formula [C] can be easily produced by the procedure. As described above, in this third embodiment, since the F e 3 + part of magnetoplumbite ferrite are replaced with I n 3+ and A 1 3+, micro 100112 Ya 30 to 60 GHz In the wave band, a ferrite porcelain composition having desired irreversibility, small magnetic loss, and suitable for irreversible circuit elements can be obtained.
  • impurities such as Mn, Cl, Ni, Zn, Mg, S, Ca, Cr, and Bi may be mixed at less than 0.4% by weight.
  • impurities such as Zr and Si may be mixed at less than 0.8% by weight, but this does not affect the characteristics of the present invention.
  • the ferrite porcelain composition of the present invention is not limited to the above embodiment, and at least one of the Ca component and the Co component is represented by the general formulas (A) to (C). It is also preferable that the total amount is 0.001 to 0.8 mole per 1 mole of the main component.
  • the ferrite porcelain composition is represented by the following general formulas [D] to [F].
  • the total amount of ⁇ and the molar amount of the Ca component and the Co component per 1 mol of the main component is less than 0.001 mol, the addition of the Ca component and / or the Co component is performed. This is because the effect of increasing the specific resistance P cannot be obtained, the signal transmission loss is large, and the transmission characteristics are degraded.
  • the total molar amounts of the Ca component and the Co component and ⁇ If it exceeds 0.8 mol, the specific resistivity ⁇ tends to decrease, the signal transmission loss increases, and the transmission characteristics may be deteriorated.
  • the content of the Mn component and the Zr component is 1.5% by weight or less (including 0% by weight) in terms of oxide.
  • the specific resistance p can be increased and the dielectric loss tan ⁇ can be reduced.
  • the content of the Mn component and the Zr component is adjusted to be 1.5% by weight or less (not including 0% by weight), whereby the Ca component is obtained. It is possible to obtain a larger resistivity p in combination with the effect of adding the Co component and the Co component.
  • the Mn component may be contained in the sintered body that is the main component, or the Mn compound may be added to the sintered body.
  • the Mn component and Zr component in the ferrite porcelain composition must be less than 1.5% by weight (excluding 0% by weight) in terms of oxides.
  • Mn has a plurality of valences per element, it is possible to adjust the charge balance, and it is particularly preferable to obtain a high-resistance magnetoplumbite ferrite.
  • the dielectric loss tan ⁇ 5 or the specific resistivity ⁇ may be reduced.
  • FIG. 5 is a perspective view schematically showing a lumped constant type circuit as one embodiment (first embodiment) of the non-reciprocal circuit device according to the present invention.
  • the lumped constant type circuit is formed such that the microstrip lines 1a, lb, and lc cross each other at an interval of 120 ° C., and these microstrip lines 1a, 1b
  • the upper and lower surfaces of 1 c are in contact with a ferrite substrate 3 formed of the ferrite ceramic composition via an insulator layer 2.
  • a capacitor (not shown) is attached to the terminal portions 1 & ', lb', and lc 'of the microstrip lines la, lb, 1 (, and the resonance frequency is determined by the inductance of the ferrite substrate 3 and the capacitor. I am adjusting.
  • the microwave ferrite 3 is formed of the above ferrite porcelain composition, the magnetic loss is small in a microwave band of 10 GHz or less or 30 to 60 GHz and has sufficient irreversibility. You will be able to get a night out.
  • the ferrite porcelain composition is driven by the anisotropic magnetic field Ha, it is possible to reduce the size, height, and cost of the circulator without using an external magnetic field such as a permanent magnet. Can be.
  • FIG. 6 (a) shows a strip line Y connection as a second embodiment of the nonreciprocal circuit device.
  • Fig. 6 (b) is a view along arrow A-A in Fig. 6 (a).
  • the branch paths 4a, 4b, and 4c of the strip line 4 are joined in a Y-shape at a circular center 4d, and the branch paths 4a, 4b , 4c are provided with correction capacitor sections 5a, 5b, 5c.
  • Ferrite substrates 6 are provided on both upper and lower surfaces of the center portion 4d, and external conductors are provided on upper and lower surfaces of the branch paths 4a, 4b, 4c so that the ferrite substrate 6 is sandwiched. 7a and 7b are provided.
  • the high-frequency magnetic field input to the branch path 4a rotates the polarization plane as shown by the arrow when passing through the ferrite substrate 6, and is output only to the branch path 4b.
  • the ferrite substrate 6 is formed of the ferrite porcelain composition, the magnetic loss is small enough in a microwave band of 10 GHz or less or 30 to 60 GHz. It will be possible to obtain an irreversible compact and low-profile and low-cost Sirki Yure overnight.
  • FIG. 7 shows a ferrite substrate circulator as a third embodiment of a non-reciprocal circuit device.
  • a Y-shaped strip line 10 is formed on the surface of a ferrite substrate 9.
  • TM ⁇ as in the second embodiment.
  • the high-frequency magnetic field input to the branch 10a rotates on the ferrite substrate 9 and is output only to the branch 10b to form a short circuit.
  • the ferrite substrate 9 is formed of the above-described ferrite porcelain composition, the magnetic loss is small in a microwave band of 10 GHz or less or 30 to 60 GHz, and sufficient It is possible to obtain a reversible, compact, low-profile and low-cost circuit.
  • FIG. 8 is a perspective view schematically showing a waveguide circulator as a fourth embodiment of the nonreciprocal circuit device.
  • a Y-shaped waveguide 1 is used.
  • a cylindrical pillar 12 is inserted into the center of the Y-branch of FIG. 1, and operates in substantially the same manner as in the second and third embodiments to form a circuit. Since the ferrite column 12 is formed of the above ferrite porcelain composition, the In the lower and 30 to 60 GHz microwave bands, it is possible to obtain a compact, low-profile and low-cost circuit that has a small magnetic loss and sufficient irreversibility.
  • 9) is a perspective view schematically showing a non-radiative dielectric line Y-type circuit as a fifth embodiment of the non-reciprocal circuit device.
  • FIG. 9 (b) is a perspective view of FIG. 9 (a). It is B sectional drawing.
  • a pair of upper and lower metal plates is omitted.
  • the dielectric strips 13a, 13b, and 13c are 120 at regular intervals.
  • a pair of disk-shaped ferrite substrates 14a, 14b are sandwiched by one end of the dielectric strips 13a, 13b, 13c, and further, the dielectric strips 13a, 13b , 13c and the ferrite substrates 14a, 14b are provided with flat metal plates 15a, 15b on both upper and lower surfaces.
  • a resonator is constituted by the ferrite substrates 14a and 14b , and resonates in the ⁇ 11 ⁇ mode.
  • the ferrite substrates 14a and 14b are formed of the above-described ferrite ceramic composition, the magnetic loss is small and sufficiently irreversible in the microwave band of 10 GHz or less or 30 to 60 GHz. It is possible to obtain a circulator with a small size and a low profile and low cost.
  • FIG. 10 is a perspective view schematically showing a Faraday rotary isolator as a sixth embodiment of a non-reciprocal circuit device, wherein the Faraday rotary isolator is a ferrite rod inserted through a supporting dielectric 16. 17 and resistor plates 18 a and 18 b are accommodated in a waveguide 19.
  • the input signal of the TE 10 mode from the direction of arrow C is converted to TEu mode by square one circular transducer 20 a. Since the electric field of the input signal is perpendicular to the resistance plate 18a, it is not absorbed and reaches the ferrite rod 17 and is decomposed into positive and negative circularly polarized waves, and the magnetic permeability difference ⁇ between the positive and negative circularly polarized waves ⁇ Is the difference in the phase constants, and the plane of polarization rotates by an angle 0. As a result, the input signal that has passed through the ferrite rod 17 becomes parallel to the resistor plate 18b, and the input signal is absorbed.
  • the input signal of the TE 1Q mode from the direction of arrow D is converted to the TE ⁇ mode by the square-circular converter 20b.
  • the electric field of the input signal is perpendicular to the resistance plate 18b. Therefore, it reaches the ferrite rod 17 without being absorbed, and is decomposed into positive and negative circularly polarized waves, and the plane of polarization rotates by an angle of 0.
  • the input signal that has passed through the ferrite rod 17 is perpendicular to the resistor plate 18a and is output from the waveguide 19, thereby forming an isolation in the direction of arrow D.
  • the ferrite rod 17 is formed of the ferrite porcelain composition, the magnetic loss in the microwave band of 10 GHz or less or 30 to 60 GHz is reduced. It is possible to obtain a small, low-profile and low-cost isolator having a small enough irreversibility.
  • FIG. 11 is a perspective view schematically showing a peripheral mode type isolation as a seventh embodiment of the nonreciprocal circuit device.
  • the seventh embodiment is characterized in that the ferrite porcelain composition
  • a substantially trapezoidal strip line 22 is formed on the surface of the ferrite substrate 21 made of a material, and a resistance is further applied to the surface of the ferrite substrate 21 so that a part of the strip line 22 overlaps the end of the strip line 22.
  • the body 23 is formed.
  • the ferrite substrate 21 is formed of the ferrite porcelain composition, the magnetic loss is small in the microwave band of 10 GHz or less or 30 to 60 GHz. It is possible to obtain a compact, low-profile and low-cost isolator with sufficient irreversibility.
  • 12 (a) and 12 (b) are perspective views schematically showing a waveguide resonant isolator as an eighth embodiment of the nonreciprocal circuit device, wherein the ferrite rods 26a to 26c are The rectangular waveguide 25 is inserted at a predetermined position.
  • Circular polarization includes positive circular polarization and negative circular polarization.
  • positive circular polarization acts as a large magnetic loss
  • negative Circularly polarized wave is attenuated Pass without.
  • an isolator can be formed by inserting ferrite rods 26a to 26c at specific positions where circular polarization occurs.
  • the ferrite rods 26a to 26c are formed of the above ferrite porcelain composition, the magnetic loss is small and sufficiently irreversible in the microwave band of 10 GHz or less or 30 to 60 GHz. It is possible to obtain an isolator that has small size, low profile, and low cost.
  • FIG. 13 shows a cross strip line resonance type isolator as a ninth embodiment of the nonreciprocal circuit device.
  • the ground conductors 27a and 27b are formed on one surface of the dielectrics 29a and 29b, and a cylindrical ferrite column 28 is provided at a substantially central portion of the dielectric 29. It is buried, and the strip line 30 is sandwiched between the dielectrics 29a and 29b.
  • the strip line 30 has a matching capacitor portion 31 and a ⁇ / 4 resonator 32 is formed on the strip line 30 so as to be able to contact the ferrite column 28.
  • a circularly polarized wave is generated at the intersection of the strip line 30 and the ⁇ / 4 resonator 32, so that an isolator is formed according to the same operation principle as in FIG.
  • the ferrite column 28 is formed of the above ferrite porcelain composition, the magnetic loss is small in the microwave band of 10 GHz or less or 30 to 60 GHz, and sufficient irreversibility is obtained. It is possible to obtain an isolator having a small size, a low profile, and a low cost.
  • FIG. 14 is a system configuration diagram showing one embodiment of the wireless device according to the present invention, in which 31 is the isolator shown in FIGS. 10 to 13, and 32 is the circuit device shown in FIGS. One night.
  • the modulated signal is input to the voltage controlled signal (Voltage Controlled 0 scillator: VCO) 33
  • the wireless signal is input to the power bra 34 via the isolator 31, and the modulated signal is
  • the modulated signal is divided into one night 32 and the mixer 36, and the modulated signal input to the circuit 32 is transmitted from the antenna 35.
  • the received signal input to the antenna 35 is input to the mixer 36 via the circulator 32, and is mixed with the modulated signal from the power bra 34, and the reception frequency is lowered to obtain an IF signal (Intermediate Frequency).
  • IF signal Intermediate Frequency
  • the above-described isolator and circuit are used, even in a mobile phone used in several GHz band or a wireless LAN / millimeter wave radar used in several tens GHz band, magnetic loss is reduced. It is possible to obtain a wireless device that is small and has sufficient irreversibility and that can be reduced in size and height and cost.
  • the calcined powder is kneaded with a butyl acetate-based binder to form a slurry.
  • the slurry is subjected to dehydration molding in a magnetic field, and then fired in the air to produce a sintered body, which is represented by the general formula (SrO'n ( The ferrite ceramic compositions of sample numbers 1 to 6 represented by F e ,. y Iny ) 2 ⁇ 3 ⁇ were obtained.
  • the saturation magnetization Ms and the anisotropic magnetic field Ha of each of these samples were measured, and the relationship between frequency and complex permeability was simulated based on the measured saturation magnetization Ms and the anisotropic magnetic field Ha.
  • the permeability difference (irreversibility) at 10 GHz and 10 GHz and the imaginary part of the circularly polarized complex permeability (magnetic loss) were determined.
  • the saturation magnetization Ms was measured with a VSM (sample vibration type magnetometer).
  • 0 was measured by a four-terminal method using a high resistance measuring instrument.
  • Table 1 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the specific resistance p, the permeability difference ⁇ , and the imaginary part ⁇ ′.
  • Sample No. 1 is a conventionally used Sr ferrite (anisotropic magnetic field Ha: 1536 kAZm).
  • the magnetic permeability difference ⁇ is as small as 0.05 «0.1. Irreversibility cannot be obtained.
  • the imaginary part is 0.96 ( ⁇ 0.05), indicating high magnetic loss.
  • sample numbers 2 to 5 since y is 0, y ⁇ 0.30, and n is 5.50, the anisotropic magnetic field Ha is lower than that of the conventional Sr ferrite (sample number 1). As a result, the absolute magnetic permeability difference II becomes at least 0.1 at 10 GHz and / or 40 GHz to obtain a desired irreversibility, and the imaginary part ⁇ ′ is also 0. It becomes less than 05, and magnetic loss can be reduced.
  • the imaginary part ⁇ + ⁇ was 0.19 at 40 GHz, which was 0.05 or more, and the magnetic loss was large.However, at 10 GHz, the imaginary part 'was 0 and the magnetic loss was 0. At 10 GHz, the absolute permeability difference II is 0.14 (> 0.1), and the desired irreversibility can be obtained.
  • the imaginary part ⁇ is 0.41 and is not less than 0.05 at 10 GHz, so the magnetic loss is large.However, at 40 GHz, the imaginary part t + ⁇ is 0 and the magnetic loss is 0. Does not occur, and at this 40 GHz, the absolute permeability difference II is also 0.55 (> 0.1), so that desired irreversibility can be obtained.
  • the calcined powder is kneaded with a vinyl acetate-based binder to form a slurry.
  • the slurry is subjected to dehydration molding in a magnetic field, and then fired in the air to produce a sintered body.
  • was obtained a 1 z) 2 0 3 ferrite ceramic composition of sample No. 1 1-15 represented by ⁇ .
  • the saturation magnetization Ms, the anisotropic magnetic field Ha, and the resistivity p were measured in the same manner as in [Example 1], and based on the measured saturation magnetization Ms and the anisotropic magnetic field Ha, each was measured.
  • the permeability difference ⁇ (irreversibility) at 10 GHz and 4 OGHz of the sample and the imaginary part (magnetic loss) of the circularly polarized complex permeability were determined.
  • Table 2 shows the composition of each sample number, saturation magnetization Ms, anisotropic magnetic field Ha, resistivity ⁇ ), permeability difference ⁇ ⁇ , and imaginary part ⁇ '.
  • Sample No. 11 is a Sr ferrite (anisotropic magnetic field Ha: 1 536 kA / m) that has been used conventionally, as in Sample No. 1 (Example Table 1). The difference is as small as 0.05 (0.1), and the desired irreversibility cannot be obtained. At 40 GHz, the imaginary part is 0.96 ( ⁇ 0.05), and the magnetic loss is large.
  • Sample No. 15 has z of 0.31, which exceeds 0.30, and therefore the content of Fe is too small, so that the anisotropic magnetic field becomes ⁇ 0 '', indicating irreversibility. It is gone.
  • sample Nos. 12 to 14 since z is 0 ⁇ z ⁇ 0.30, the anisotropic magnetic field Ha can be increased compared to the conventional Sr-fluorite (sample No. 11). However, the frequency of the ferromagnetic resonance peak shifts to the high frequency side, and as a result, the imaginary part ⁇ + ⁇ ⁇ becomes zero.
  • the absolute magnetic permeability difference II is less than 0.1 and irreversibility cannot be obtained, but at 40 GHz, the absolute magnetic permeability difference I ⁇ I is 0.1 or more, indicating that there is no sufficient non-reversibility. Reversibility can be obtained. That is, in the microwave band of 40 GHz, a ferrite porcelain composition having good irreversibility and no magnetic loss was obtained.
  • S r C0 3 as ferrite raw materials (strontium carbonate), B aC ⁇ 3 (barium carbonate), F e 2 ⁇ 3 (iron oxide), I n 2 ⁇ 3 (indium oxide), A 1 2 ⁇ 3 ( Aluminum oxide), and prepare these ferrite raw materials, 0 ⁇ 1.00, 0.000 ⁇ y ⁇ 0.31, 0.000 ⁇ z ⁇ 0.31, 4.90 ⁇ n ⁇
  • the mixture was weighed so as to be 6.00, wet-mixed with a pole mill, calcined in the air, and then wet-pulverized to produce a calcined powder having a specific surface area of about 5 m 2 Zg.
  • the calcined powder is kneaded with a vinyl acetate-based binder to form a slurry.
  • the slurry is subjected to dehydration molding in a magnetic field, and then fired in the air to produce a sintered body, which has the general formula ⁇ (Sr ,. x B a x) ⁇ ⁇ n (FI n y A 1 z) 2 ⁇ 3 ⁇ sample No. 21 represented by ⁇ 38 ferrite porcelain compositions were obtained.
  • the saturation magnetization Ms, the anisotropic magnetic field Ha, and the resistivity ⁇ o were measured in the same manner as in [Example 1], and based on the measured saturation magnetization Ms and the anisotropic magnetic field Ha.
  • the permeability difference ⁇ a (irreversibility) at 10 GHz and 40 GHz of each sample, and the imaginary part ⁇ ′ (magnetic loss) of the circularly polarized complex permeability were determined.
  • Table 3 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the specific resistivity ⁇ , the magnetic permeability difference ⁇ ; and the imaginary part ⁇ .
  • Sample No. 21 is a conventionally used Sr ferrite (anisotropic magnetic field Ha: 1536 kAZm).
  • the magnetic permeability difference ⁇ is as small as 0.05 050.1) and the desired non- No reversibility can be obtained.
  • the imaginary part ' is 0.96 ( ⁇ 0.05), and the magnetic loss is large.
  • y and z are 0 ⁇ y ⁇ 0.30, 0 ⁇ z ⁇ 0.30, and n is 5.00 ⁇ n ⁇ 6, respectively. Since the absolute magnetic permeability difference II is 0.1 or more in at least one of 10 GHz and 40 GHz, the desired irreversibility can be obtained, and the imaginary part + "is also less than 0.05. As a result, the magnetic loss can be reduced.
  • the desired irreversibility can be obtained because the absolute magnetic permeability difference I ⁇ I is 0.1 or more at both 10 GHz and 40 GHz. Since the imaginary part / ⁇ ′ is also less than 0.05, the magnetic loss is small, and it is possible to obtain a non-reciprocal circuit element that can be used in both microphone mouthbands.
  • the absolute permeability difference II was less than 0.1 at 10 GHz, and the desired irreversibility could not be obtained.However, the absolute permeability difference II was 0.1 at 40 GHz. As described above, it can be seen that desired irreversibility can be obtained, and that the imaginary part also becomes 0 and no magnetic loss occurs.
  • each sample was mounted on the non-radiative dielectric line Y-type circuit shown in Fig. 7, and the signal transmission loss (insertion loss I. L) was measured using a network analyzer.
  • Table 4 shows the composition of each sample, the saturation magnetization Ms, the anisotropic magnetic field Ha, the permeability difference ⁇ , the imaginary part + ⁇ , the specific resistivity / ⁇ , and the insertion loss IL.
  • the absolute irreversibility can be obtained by the absolute magnetic permeability difference II being 0.1 or more.
  • the imaginary part + is also less than 0.05, so that the magnetic loss can be reduced.
  • sample numbers 43 to 47, 50 to 55, 57 to 59, 61 to 63, and 66 to 68 have ( ⁇ +) 3) values of 0, Since it is within the range of 0.80, the specific resistance P is 4.5 ⁇ 10 1 (up to 1.8 ⁇ 10 13 ⁇ cm, and the input loss I.L. 46 to 0.99 dB, and it is possible to obtain a ferrite porcelain composition capable of increasing the specific resistance p and reducing the insertion loss IL.
  • a ferrite porcelain composition to which Ca and Co were not added was prepared.
  • Example 2 the saturation magnetization Ms of each sample, the anisotropy field Ha, the permeability difference ⁇ (irreversibility) at 10 GHz and 4 O GHz, and the circularly polarized complex transmittance
  • the imaginary part of magnetic susceptibility ⁇ '(magnetic loss) and resistivity p were determined.
  • Table 5 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the magnetic permeability difference ⁇ , the imaginary part ′, and the specific resistivity 0.
  • the Ca component and the Co component were added to the conventional Sr ferrite, and at 10 GHz, the absolute permeability difference II was as small as 0.04, and the desired irreversibility could not be obtained. .
  • the imaginary part 0 is 0.97 ( ⁇ 0.05), and the magnetic loss increases.
  • a ferrite porcelain composition to which Ca and Co were not added was prepared.
  • Table 6 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the magnetic permeability difference ⁇ , the imaginary part '′, and the specific resistance p.
  • Sample No. 81 was obtained by adding Ca and Co components to a conventional Sr ferrite, and at 10 GHz, the absolute magnetic permeability difference I ⁇ I was as small as 0.04, indicating the desired irreversibility. I can't get it. At 40 GHz, the imaginary part 4. is 4.97 ( ⁇ 0.05), and the magnetic loss increases.
  • a ferrite porcelain composition to which Ca and Co were not added was prepared.
  • Table 7 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the magnetic permeability difference ⁇ , the imaginary part, and the specific resistivity ⁇ .
  • Sample No. 91 is obtained by adding the Ca component and the Co component to the conventional Sr ferrite.At 10 GHz, the absolute magnetic permeability difference I ⁇ I is as small as 0.04, and the desired irreversibility can be obtained. Can not. At 40 GHz, the imaginary part 4. is 4.98 ( ⁇ 0.05), and the magnetic loss increases.
  • both y and z are 0.31, and since it exceeds 0.30, the content of Fe is too small, and the anisotropic magnetic field is also “0”, which is irreversible. Will not be shown.
  • n was 4.9 or 6.0, and the value of n was out of the range of 5.0 ⁇ n ⁇ 6.0. Disappears.
  • the mixture was wet-mixed with a pole mill and calcined in the air.
  • the Mn O and Z r 0 2 was added a predetermined amount of the calcined product, the specific surface area by wet grinding to prepare a calcined powder of about 5 m 2 Zg.
  • the calcined powder was kneaded with a vinyl acetate-based binder to form a slurry.
  • the slurry was dehydrated and formed in a magnetic field, and then fired in the air to produce a sintered body.
  • formula containing components ⁇ (S ri _ x B a x) ⁇ ⁇ ⁇ (F e,. y . z I n y a 1 ⁇ ) was obtained 2 0 3 ferrite ceramic composition of Sample No. 1 1 1-122 represented by ⁇ .
  • Table 8 shows the composition of each sample number, the magnetic permeability difference ⁇ , the imaginary part ', the dielectric loss tan ⁇ , and the specific resistivity ⁇ .
  • Sample No. 116 the total content of Mn component and Z r component 1. Ri 52 wt% Dea, because it exceeds 1. 50% by weight, the dielectric loss tan0 is as large as 25 X 10- 4, The specific resistivity io is also as small as 6.5 ⁇ 10 6 ⁇ ⁇ cm.
  • the total content of Mn component and Z r component is 1.68% by weight, because it exceeds 1. 50% by weight, the dielectric loss tan0 as large as 30 X 10 one 4, Also, the specific resistance p is as small as 5.5 ⁇ 10 6 ⁇ ⁇ cm.
  • Table 9 shows the composition of each sample, the magnetic permeability difference ⁇ , the imaginary part + ”, and the specific resistivity p.
  • the absolute irreversibility can be obtained by obtaining an absolute magnetic permeability difference II of 0.1 or more, and an imaginary part ⁇ 'Is also less than 0.05, so that the magnetic loss can be reduced.
  • the ferrite porcelain composition of the present invention can obtain sufficient irreversibility even when used in a microwave band of 10 GHz or less or 30 to 60 GHz, and can reduce magnetic loss. Since it can be used, it is useful for circulators and isolators used in these microwave bands, and for wireless devices equipped with these circulators and isolators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)

Abstract

A ferrite ceramic composition having a principal component represented by a general formula (Sr1-xBax)O n(Fe1-yIny)2O3 (0≤x≤1.0, 5.00<n≤6.00, 0<y≤0.30), or a general formula (Sr1-xBax)O n(Fe1-zAlz)2O3 (0≤x≤1.0, 5.00<n≤6.00, 0<z≤0.30), or a general formula (Sr1-xBax)O n(Fe1-y-zInyAlz)2O3 (0≤x≤1.0, 5.00<n≤6.00, 0<y≤0.30, 0<z≤0.30). An irreversible circuit element obtained using this composition can exhibit an adequate irreversibility even if it is operated at 10 GHz or less or in a microwave/millimeter wave band of 30-60 GHz while reducing magnetic loss and is suitably employed in a radio unit operating in a microwave/millimeter wave band.

Description

明 細 書  Specification
非可逆回路素子用フェライト磁器組成物、 非可逆回路素子、 及び無線装置 技術分野  Ferrite porcelain composition for non-reciprocal circuit device, non-reciprocal circuit device, and wireless device
本発明は非可逆回路素子用フェライト磁器組成物、 非可逆回路素子、 及び無線 装置に関し、 特に、 周波数が数 GHz〜数 10 GHzのマイクロ波 ·ミリ波帯 ( 以下、単に、 「マイクロ波帯」 という)での使用に好適な非可逆回路素子用フェラ ィト磁器組成物、 該フェライト磁器組成物を使用して形成されたアイソレータや サーキュレー夕等の非可逆回路素子、 及び該非可逆回路素子を備えた無線装置に 関する。 背景技術  The present invention relates to a ferrite porcelain composition for a nonreciprocal circuit device, a nonreciprocal circuit device, and a wireless device. In particular, the present invention relates to a microwave / millimeter wave band (hereinafter simply referred to as “microwave band”) having a frequency of several GHz to several tens GHz. Ferrite porcelain composition for non-reciprocal circuit elements suitable for use in the above), non-reciprocal circuit elements such as isolators and circulators formed using the ferrite porcelain composition, and the non-reciprocal circuit elements Wireless device. Background art
携帯電話やミリ波レーダ等のマイクロ波帯に使用される非可逆回路素子として は、 従来より、 永久磁石で直流磁界を印加する非可逆回路素子が知られている。 該非可逆回路素子は、 イットリウム鉄ガーネット YgF esC^ 2 (以下、 「Y I G」 という) に代表されるガ一ネット系フェライトや、 Mgフェライトや N i C uZnフェライトに代表されるスピネル系フェライトを使用し、 希土類磁石や S rフェライト磁石等の永久磁石で直流磁界を印加し、 駆動させている。 As a non-reciprocal circuit device used in a microwave band such as a mobile phone and a millimeter-wave radar, a non-reciprocal circuit device in which a permanent magnet applies a DC magnetic field has been known. The non-reciprocal circuit element uses a ganet ferrite represented by yttrium iron garnet YgF esC ^ 2 (hereinafter referred to as “YIG”) or a spinel ferrite represented by Mg ferrite or NiCuZn ferrite. A permanent magnet such as a rare earth magnet or Sr ferrite magnet applies a DC magnetic field to drive the magnet.
上記非可逆回路素子は、 通常、 数 100 MHz〜数 GHzの極超短波 ·マイク 口波帯ではガーネット系フェライトが使用され、 数 10GHzのマイクロ波帯で はスピネル系フェライトが使用されている。  The irreversible circuit element usually uses garnet-based ferrite in the ultra-high frequency / microphone mouthband of several hundred MHz to several GHz, and spinel-based ferrite in the microwave band of several tens of GHz.
すなわち、 ガーネット系フェライトは、 数 100MHz〜数 GHzの極超短波 又はマイクロ波帯域では低磁界側で大きな磁気損失のピークがあるため、 低磁気 損失の非可逆回路素子を得ることができず、 このため、 強磁性共鳴ピークよりも 高磁界側で駆動させている。  In other words, garnet-based ferrite has a large magnetic loss peak on the low magnetic field side in the ultra-high frequency or microwave band of several hundred MHz to several GHz, so that an irreversible circuit element with low magnetic loss cannot be obtained. It is driven on the higher magnetic field side than the ferromagnetic resonance peak.
一方、 スピネル系フェライトは、 数 10 GHzのマイクロ波帯で使用され、 強 磁性共鳴ピークよりも低磁界側で駆動させるのが一般的である。 すなわち、 数 1 0GHzのマイク口波帯では、 強磁性共鳴ピークと低磁界損失ピークとが十分に 離れているため、 低磁界で駆動させても十分に低い磁気損失を有する非可逆回路 素子を得ることができ、 また永久磁石ではスピネル系フェライト (飽和磁化約 0 . 4 T) を十分に飽和させるのが困難であることから、 強磁性共鳴ピークよりも 低磁界側で駆動させている。 そして、 磁場が発生すると、 高周波磁界は直流磁界 の方向に向かって右回りに旋回する正円偏波と左回りに旋回する負円偏波とが生 じるが、 該フェライトの複素透磁率 は正円偏波と負円偏波とで異なり、 このよ うな性質を利用して非可逆回路素子を実現している。 On the other hand, spinel ferrite is used in the microwave band of several tens of GHz, and is generally driven at a lower magnetic field than the ferromagnetic resonance peak. That is, in the microphone mouthband of several 10 GHz, since the ferromagnetic resonance peak and the low magnetic field loss peak are sufficiently separated, a nonreciprocal circuit having a sufficiently low magnetic loss even when driven at a low magnetic field. It is difficult to sufficiently saturate the spinel ferrite (saturation magnetization of about 0.4 T) with a permanent magnet, and it is driven at a lower magnetic field than the ferromagnetic resonance peak. . Then, when a magnetic field is generated, the high-frequency magnetic field generates a right-handed circularly polarized wave and a left-handed negative circularly polarized wave in the direction of the DC magnetic field. A non-reciprocal circuit element is realized by utilizing such properties, which are different for circularly polarized waves and negatively circularly polarized waves.
すなわち、 フェライトの複素透磁率 ^は、 数式 (1 ) で表され、 実数部^ ' は 磁化の応答、 虚数部^〃 は磁気損失を示している。  That is, the complex permeability ^ of ferrite is expressed by equation (1), the real part ^ 'represents the response of magnetization, and the imaginary part ^ 〃 represents magnetic loss.
11 = ― L … ( 1 )  11 = ― L… (1)
複素透磁率 の実数部 ' は磁化の応答を示すことから、 正円偏波透磁率 + の実数部^ と負円偏波透磁率^—の実数部 ノ との透磁率差 Δ / (= 一 ) の絶対値 (以下、 「絶対透磁率差 I I」 という) は非可逆性を示し、 したがって、 フェライトの特性は絶対透磁率差 I I及び正円偏波透磁率 + の虚数部 +" で評価することができる。  Since the real part 'of the complex permeability shows the response of magnetization, the permeability difference Δ / (= 1) between the real part ^ of the circular polarization permeability + and the real part of the negative circular polarization ^ ) Is irreversible. Therefore, the properties of ferrite are evaluated by the absolute permeability difference II and the imaginary part of circularly polarized permeability +. be able to.
ところで、 数 GH zのマイクロ波帯域で使用される携帯電話では、 機器の更な る低背化、 小型化、 低コスト化が要請されており、 これに伴い非可逆回路素子の 低背化、 小型化、 低コスト化が要求されてきている。  By the way, in mobile phones used in the microwave band of several GHz, there is a demand for further reduction in the height, size, and cost of devices. Miniaturization and cost reduction are being demanded.
しかしながら、 ガーネット系フェライトでは、 直流磁界を印加するための永久 磁石が必要となるため、 非可逆回路素子の低背化、 小型化、 低コスト化には限界 がある。  However, garnet-based ferrite requires a permanent magnet to apply a DC magnetic field, and thus limits the reduction in height, size, and cost of nonreciprocal circuit devices.
また、 数 1 0 GH zのマイクロ波帯域では、 非可逆回路素子を搭載した小型の 無線 L ANゃミリ波レーダ等の無線装置が期待されるが、 非可逆回路素子にスピ ネル系フェライトを使用した場合は、 ガーネット系フェライトの場合と同様、 永 久磁石が必要となるため、 非可逆回路素子の低背化、 小型化、 低コスト化には限 界がある。  In the microwave band of several 10 GHz, small wireless LANs with non-reciprocal circuit elements are expected to be used, such as millimeter-wave radars.However, spinel ferrite is used for the non-reciprocal circuit elements. In this case, permanent magnets are required as in the case of garnet-based ferrite, and there are limits to the reduction in height, size, and cost of nonreciprocal circuit devices.
一方、 一軸的な磁気異方性を有する B aフェライト (B a O, 6 F e 203) や S rフェライト (S r O · 6 F e 23) 等の六方晶系のマグネトプランバイト型 フェライトを使用した自己パイァス動作形の非可逆回路素子も従来から知られて いる。 該自己バイアス動作形の非可逆回路素子では、 例えば、 B aフェライトは、 1 . 4 0 X 1 0 6 AZmの異方性磁界 H aを有し、 また、 S rフェライトは、 1 . 5 4 X 1 0 6 A/mの異方性磁界 H aを有していることから、 永久磁石を要する ことなく前記異方性磁界 H aを駆動させて磁場を発生させている。 On the other hand, B a Ferrite (B a O, 6 F e 2 0 3) and S r ferrite (S r O · 6 F e 2 〇 3) or the like hexagonal magnetoplumbite of having uniaxial magnetic anisotropy Non-reciprocal circuit elements of the self-piase type using byte ferrites have also been known. The irreversible circuit element of the self-bias operation type, for example, B a ferrite, 1. Have 4 0 X 1 0 6 AZM anisotropy field H a, also, S r ferrite, 1. 5 4 since it has an anisotropic magnetic field H a of X 1 0 6 a / m, and with the driven magnetic anisotropy field H a without requiring a permanent magnet to generate a magnetic field.
このようにマグネトプランバイト型フェライトを使用した自己バイアス動作形 非可逆回路素子は、 ガーネット系フェライトゃスピネル系フェライトのような磁 場印加用の永久磁石が不要であるため、 非可逆回路素子の低背化 ·小型化ゃ低コ スト化の観点から有望視されている。  As described above, the self-biasing operation type nonreciprocal circuit element using magnetoplumbite ferrite does not require a permanent magnet for applying a magnetic field such as garnet ferrite / spinel ferrite. Taller and smaller size-Promising in terms of cost reduction.
そして、 このような永久磁石を必要としない自己バイアス動作形の非可逆回路 素子として、 アイソレータ (非可逆回路素子) を半導体チップと共にマイクロ波 集積回路又はマイクロ波回路モジュール内に表面実装形式で実装した技術が提案 されている (特開平 1 1— 1 7 4 0 8号公報)。  As such a self-biased non-reciprocal circuit device that does not require a permanent magnet, an isolator (non-reciprocal circuit device) is mounted together with a semiconductor chip in a microwave integrated circuit or a microwave circuit module in a surface mount format. A technology has been proposed (Japanese Patent Laid-Open No. 11-17408).
しかしながら、 従来の自己バイアス動作形の非可逆回路素子では、 1 0 GH z 以下のマイク口波帯では十分な非可逆性を得ることができず、 また 3 0〜6 0 G H zのマイクロ波帯では磁気損失が大きいため、 これらのマイクロ波帯での使用 には適さないという問題点があった。  However, conventional irreversible circuit elements of self-biased operation cannot obtain sufficient irreversibility in the microphone mouthband below 10 GHz, and in the microwave band of 30 to 60 GHz. However, due to the large magnetic loss, there was a problem that it was not suitable for use in these microwave bands.
図 1はマグネトプランバイト型フェライトの一例としての S rフェライトの正 負円偏波透磁率^ ±の各透磁率成分^ 、 、 H— ' 、 の周波数特性を 示している。 横軸は周波数 (GH z;)、 縦軸は正負円偏波透磁率 ±の透磁率成分 + ' 、 β + 、 、 li— である。 Figure 1 is positive negative circularly polarized magnetic permeability ^ each permeability components ± of S r ferrite as an example of a magnetoplumbite ferrite ^,, H- ', shows the frequency characteristic. The horizontal axis represents the frequency (GHz;), and the vertical axis represents the magnetic permeability components of the positive and negative circular polarization magnetic permeability ± ', β + , li-.
また、 図 2は S rフェライトを自己バイアス動作形非可逆回路素子に使用した 場合の透磁率差 Δ ^を示している。横軸は周波数(GH z )、縦軸は透磁率差 である。  FIG. 2 shows the magnetic permeability difference Δ ^ when Sr ferrite is used for a self-biased nonreciprocal circuit device. The horizontal axis is frequency (GHz), and the vertical axis is magnetic permeability difference.
この図 1及び図 2から明らかなように、 1 0〜3 0 GH zのマイクロ波帯域で は強磁性共鳴ピークより高磁界側で駆動させることが可能であり、 6 0〜 2 0 0 GH zのマイク口波帯域では強磁性共鳴ピークより低磁界側で駆動させることが 可能である。  As is clear from FIGS. 1 and 2, in the microwave band of 10 to 30 GHz, it is possible to drive on the higher magnetic field side than the ferromagnetic resonance peak, and 60 to 200 GHz. In the microphone mouthband, it can be driven on the lower magnetic field side than the ferromagnetic resonance peak.
しかしながら、 図 1に示すように、 3 0〜 6 0 GH zのマイクロ波帯域では、 正円偏波透磁率の虚数部/ が、 その閾値とされる 0 . 0 5から大幅に増大し て磁気損失が大きくなり、 低損失な非可逆回路素子が得られなくなる。 However, as shown in FIG. 1, in the microwave band of 30 to 60 GHz, the imaginary part / of the circularly polarized magnetic permeability greatly increases from the threshold value of 0.05. As a result, the magnetic loss increases, and a low-loss nonreciprocal circuit device cannot be obtained.
一方、 図 2に示すように、 10 GHz以下のマイクロ波帯域では、 透磁率差△ が 0. 1未満と小さく、 所望の非可逆性を得ることができなくなる。  On the other hand, as shown in FIG. 2, in the microwave band of 10 GHz or less, the permeability difference Δ is as small as less than 0.1, so that desired irreversibility cannot be obtained.
すなわち、 従来の自己バイアス動作形非可逆回路素子では、 10GHz以下の マイクロ波帯では所望の非可逆性を得ることができなくなり、 一方 30〜60G H zのマイク口波帯では磁気損失が大きくなるという問題点があった。  That is, the conventional self-biased irreversible circuit element cannot obtain the desired irreversibility in the microwave band of 10 GHz or less, while the magnetic loss increases in the microphone mouthband of 30 to 60 GHz. There was a problem.
本発明はこのような問題点に鑑みなされたものであって、 10 GHz以下や 3 0〜 60 GH zのマイク口波帯で使用しても十分な非可逆性を得ることが可能で あり、 また磁気損失を小さくすることが可能な非可逆回路素子用フェライト磁器 組成物、 該フヱライト磁器組成物を使用して製造された自己バイアス形の非可逆 回路素子、 及び無線装置を提供することを目的とする。 発明の開示  The present invention has been made in view of such a problem, and it is possible to obtain sufficient irreversibility even when used in a microphone mouthband of 10 GHz or less or 30 to 60 GHz. It is another object of the present invention to provide a ferrite porcelain composition for a nonreciprocal circuit element capable of reducing magnetic loss, a self-biased nonreciprocal circuit element manufactured using the ferrite porcelain composition, and a wireless device. And Disclosure of the invention
本発明者らは、 上記目的を達成するために鋭意研究したところ、 マグネトプラ ンバイト型六方晶フェライトに含有される F e3 +の一部を I n3+で置換するこ とにより、 異方性磁界 Haを低下方向に制御することができ、 これにより 10G H z以下のマイクロ波帯でのフェライト磁器組成物の非可逆性を向上させること ができ、 さらには強磁性共鳴ピークの周波数を低周波側にシフトさせることがで き、 これにより 30〜 60GHzのマイク口波帯での磁気損失を抑制することが できるという知見を得た。 The present inventors have made intensive studies to achieve the above object, a portion of the F e 3 + contained in Magunetopura Nbaito type hexagonal ferrite by a child substituted with I n 3+, anisotropic The magnetic field Ha can be controlled in a decreasing direction, thereby improving the irreversibility of the ferrite porcelain composition in a microwave band of 10 GHz or less, and further reducing the frequency of the ferromagnetic resonance peak to a low frequency. It has been found that it is possible to suppress the magnetic loss in the microphone mouthband of 30 to 60 GHz.
すなわち、 本発明に係る非可逆回路素子用フェライト磁器組成物 (以下、 単に 「フェライト磁器組成物」 という) は、 一般式 { (S r,.xB ax) 〇 · η (F e,.,. z I ny) 203} (0≤x≤ 1. 00、 5. 00≤n<6. 00、 0<y≤0. 3 0) で表される主成分を含有していることを特徴としている。 That is, the ferrite ceramic composition for a non-reciprocal circuit element according to the present invention (hereinafter, simply referred to as "ferrite ceramic composition") of the general formula {(S r ,. x B a x) 〇 · η (F e ,. , it contains a. z I n y) 2 0 3} (0≤x≤ 1. 00, 5. 00≤n <6. 00, 0 <y≤0. main component represented by 3 0) It is characterized by:
上記フェライト磁器組成物によれば、 一般式 { (S r,.xB ax) 〇 · n (FAccording to the ferrite ceramic composition formula {(S r ,. x B a x) 〇 · n (F
I ny) 23} (0≤x≤ 1. 00、 5. 00≤n<6. 00、 0<y≤ 0. 30 ) で表される主成分を含有しているので、 10 GH z以下や 30〜 60 GHzの マイク口波帯でも所望の非可逆性を得ることができ、 磁気損失の小さなフェライ 卜磁器組成物を得ることが可能となる。 また、 従来より、 30〜 60 GHzのマイクロ波帯では、 非可逆性は良好であ るが (図 1、 図 2参照)、 磁気損失が大きいという欠点があった。 I n y ) 23 } (0≤x≤1.00, 5.00≤n <6.00, 0 <y≤0.30), so 10 GH The desired irreversibility can be obtained even in a microphone mouthband of 30 GHz or less or 30 to 60 GHz, and a ferrite porcelain composition with small magnetic loss can be obtained. In the microwave band of 30 to 60 GHz, irreversibility has been good (see Fig. 1 and Fig. 2), but there has been a drawback that the magnetic loss is large.
そこで、 本発明者らが鋭意研究を行ったところ、 上述した F e3 +の一部を A 1 3+で置換することにより、 異方性磁界 Haを増加方向に制御することができ、 こ れにより強磁性共鳴ピークの周波数を高周波側にシフトさせることができ、 その 結果、 30〜60 GHzのマイクロ波帯でも非可逆性を損なうことなく磁気損失 を抑制することができるという知見を得た。 Therefore, the present inventors have conducted intensive studies and found that the anisotropic magnetic field Ha can be controlled in the increasing direction by substituting a part of the above-mentioned F e 3 + with A 13 +. As a result, the frequency of the ferromagnetic resonance peak can be shifted to the higher frequency side, and as a result, it has been found that the magnetic loss can be suppressed without impairing the irreversibility even in the microwave band of 30 to 60 GHz. .
すなわち、 本発明に係るフェライト磁器組成物は、 一般式 { (S r,.xB ax) O • n (F e,_zA 1 z) 203} (0≤x≤ 1. 00、 5. 00≤n<6. 00、 0< z≤0. 30) で表される主成分を含有していることを特徴としている。 That is, the ferrite ceramic composition according to the present invention have the general formula {(S r ,. x B a x) O • n (F e, _ z A 1 z) 2 0 3} (0≤x≤ 1. 00 , 5.00≤n <6.00, 0 <z≤0.30).
上記フェライト磁器組成物によれば、 一般式 { (S r,.xB ax) 〇 · η (F e(.z A 1 z) 203} (0≤x≤ 1. 00、 5. 00≤n<6. 00、 0<z≤ 0. 30 ) で表される主成分を含有しているので、 30〜60 GHzのマイクロ波帯でも 磁気損失を低減することができ、 斯かる周波数帯でも非可逆性が良好で低磁気損 失のフェライト磁器組成物を得ることができる。 According to the ferrite ceramic composition formula {(S r ,. x B a x) 〇 · η (F e (. Z A 1 z) 2 0 3} (0≤x≤ 1. 00, 5. 00≤n <6.00, 0 <z≤0.30), so that magnetic loss can be reduced even in the microwave band of 30 to 60 GHz, and such frequency Even in the band, a ferrite porcelain composition having good irreversibility and low magnetic loss can be obtained.
また、 本発明者らの更なる鋭意研究の結果、 ?63 +のー部を 1113+及び八 13 In addition, as a result of further intensive studies by the present inventors,? 6 3 + part is 111 3 + and 8 1 3
+で置換することにより、 10 GHz以下や 30〜60 GHzのマイクロ波帯で 所望の非可逆性と低磁気損失を有するように調整されたフェライト磁器組成物を 得ることができるという知見を得た。 It has been found that by substituting with +, it is possible to obtain a ferrite porcelain composition tuned to have the desired irreversibility and low magnetic loss in the microwave band of 10 GHz or less or 30 to 60 GHz. .
すなわち、 本発明に係るフェライト磁器組成物は、 一般式 { (S r,.xB ax) 〇 • n (F I nyA 1 z) 203} (0≤x≤ 1. 00、 5. 00≤n<6. 00 、 0<y≤0. 30、 0<z≤0. 30) で表される主成分を含有していること を特徴としている。 That is, the ferrite ceramic composition according to the present invention have the general formula {(S r ,. x B a x) 〇 • n (FI n y A 1 z) 2 0 3} (0≤x≤ 1. 00, 5 It is characterized by containing the main components represented by .00≤n <6.00, 0 <y≤0.30, 0 <z≤0.30).
上記フェライト磁器組成物によれば、 一般式 { (S Γ,.ΧΒ ax) 〇.· n (F e,.y_ ZI nyA 1 z) 23} (0≤x≤ 1. 00、 5. 00≤n<6. 00、 0<y≤ 0 . 30、 0<z≤0. 30) で表される主成分を含有しているので、 上記効果に 加えて、 異方性磁界 Haの変動を抑制しつつ飽和磁化 Msを変動させることがで き、 これにより強磁性共鳴ピークや透磁率差を制御することができ、 10 GHz 以下や 30〜60 GHzのマイクロ波帯でも所望の非可逆性と低磁気損失を有す るフェライト磁器組成物を容易に得ることが可能となる。 According to the ferrite ceramic composition formula {(S Γ ,. Χ Β a x) 〇. · N (F e ,. y _ Z I n y A 1 z) 2 〇 3} (0≤x≤ 1.00, 5.00≤n <6.00, 0 <y≤0.30, 0 <z≤0.30) In addition to the above effects, The saturation magnetization Ms can be varied while suppressing the variation of the anisotropic magnetic field Ha.This makes it possible to control the ferromagnetic resonance peak and the difference in magnetic permeability. Even with desired irreversibility and low magnetic loss The ferrite porcelain composition can be easily obtained.
ところで、 非可逆回路素子では、 永久磁石とフェライト磁器組成物との距離が 短いほど、 永久磁石に発生する渦電流損の影響を受けて伝送特性の悪化を招く。 そしてこの渦電流は永久磁石の比抵抗率 Pが小さいほど発生し易い。 しかも、 自 己バイアス形の非可逆回路素子では、 フェライト磁器組成物自身が磁界を発生す るため、 渦電流損の影響が非常に大きい。 したがって、 自己バイアス形の非可逆 回路素子で伝送特性の悪化を回避するためには渦電流損を低くする必要があり、 そのためにはフェライト磁器組成物の比抵抗率 /0を大きくする必要がある。 そして、 本発明者らが鋭意研究を重ねた結果、 C a成分及び C o成分のうちの 少なくとも一方を、 前記主成分 1モルに対し、 総計で 0 . 0 0 1〜0 . 8モル添 加することにより、 また、 前記フェライト磁器組成物中の M n成分及び Z r成分 の総含有量が、 酸化物換算で 1 . 5重量%以下の範囲で添加することにより、 比 抵抗率 |0を増大させることができるということが知見を得た。  By the way, in non-reciprocal circuit devices, the shorter the distance between the permanent magnet and the ferrite porcelain composition, the worse the transmission characteristics due to the influence of the eddy current loss generated in the permanent magnet. This eddy current is more likely to be generated as the resistivity P of the permanent magnet is smaller. In addition, in the self-bias type non-reciprocal circuit device, the effect of the eddy current loss is very large because the ferrite ceramic composition itself generates a magnetic field. Therefore, it is necessary to reduce the eddy current loss in order to avoid the deterioration of the transmission characteristics in the self-biased irreversible circuit element, and it is necessary to increase the resistivity / 0 of the ferrite porcelain composition. . As a result of extensive studies by the present inventors, at least one of the Ca component and the Co component was added in a total amount of 0.001 to 0.8 mol per 1 mol of the main component. By adding the total content of the Mn component and the Zr component in the ferrite porcelain composition in a range of 1.5% by weight or less in terms of oxide, the specific resistance | 0 It has been found that it can be increased.
すなわち、 本発明のフェライ卜磁器組成物は、 副成分として C a成分及び C o 成分のうちの少なくとも一方を含み、 C a成分及び C o成分の含有量が、 前記前 記主成分 1モルに対し、 総計で 0 . 0 0 1〜0 . 8モル含有されていることを特 徴とし、 また、 副成分として M n成分及び Z r成分のうちの少なくとも一方を含 み、 前記 M n成分及び Z r成分の含有量が、 酸化物換算で、 総計で 1 . 5 0重量 %以下 (0重量%を含まず) であることを特徴としている。  That is, the ferrite porcelain composition of the present invention contains at least one of the Ca component and the Co component as an accessory component, and the content of the Ca component and the Co component is less than 1 mol of the main component. On the other hand, it is characterized in that it is contained in a total amount of 0.001 to 0.8 mol, and contains at least one of the Mn component and the Zr component as a sub-component, It is characterized in that the content of the Zr component is less than or equal to 1.5% by weight (not including 0% by weight) in terms of oxides.
上記フェライト磁器組成物によれば、 前記主成分 1モルに対し、 副成分として の C a成分及び C o成分のうちの少なくとも 1種を 0 . 0 0 1〜0 . 8モル含有 し、 また、 M n成分及び Z r成分のうちの少なくとも 1種を、 酸化物換算で、 総 計で 1 . 5 0重量%以下 (0重量%を含まず) の範囲で含有しているので、 比抵 抗率 10の大きなフェライト磁器組成物を得ることができ、 これにより非可逆回路 素子の永久磁石に発生する渦電流損の影響を小さくすることが可能となり、 良好 な伝送特性を有する自己バイァス形の非可逆回路素子を得ることができる。 本発明に係る非可逆回路素子は、 前記フェライト磁器組成物で形成されたフエ ライト部材を備えていることを特徴としている。  According to the ferrite porcelain composition, 0.001 to 0.8 mol of at least one of the Ca component and the Co component as subcomponents is contained with respect to 1 mol of the main component, Since at least one of the Mn component and the Zr component is contained in a total of not more than 1.5% by weight (excluding 0% by weight) in terms of oxides, specific resistance As a result, it is possible to obtain a ferrite porcelain composition having a large ratio of 10 and thereby reduce the effect of eddy current loss generated in the permanent magnet of the nonreciprocal circuit device. A reversible circuit element can be obtained. A non-reciprocal circuit device according to the present invention is characterized by including a ferrite member formed of the ferrite porcelain composition.
上記非可逆回路素子によれば、 数 GH z〜数 1 0 GH zのマイク口波帯でも所 望の非可逆性を有し、磁気損失の小さく、 かつ誘電損失 tan «5が低く、 比抵抗率 |0 の大きな非可逆回路素子を得ることが可能となる。 しかも、 上記フェライト磁器 組成物は、 異方性磁界 H aを使用して駆動させることができるので、 永久磁石を 必要とせず、 小型化 ·低背化や低コスト化が可能となる。 According to the above irreversible circuit element, even in the microphone mouthband of several GHz to several 10 GHz, It is possible to obtain an irreversible circuit element having desired irreversibility, small magnetic loss, low dielectric loss tan «5, and large specific resistivity | 0. In addition, since the ferrite porcelain composition can be driven by using the anisotropic magnetic field Ha, a permanent magnet is not required, and the size, height, and cost can be reduced.
本発明に係る無線装置は、 上記非可逆回路素子を備えていることを特徴として いる。  A wireless device according to the present invention includes the non-reciprocal circuit device.
上記無線装置によれば、 上述した非可逆回路素子を備えているので、 数 GH z 〜数 1 0 GH zのマイクロ波帯で磁気損失が小さく、 所望の非可逆性を有し、 か つ誘電損失 tan δが低く、比抵抗率 ρの大きな自己バイァス形の非可逆回路素子を 具備した小型化 ·低背化や低コスト化がなされた携帯電話、 ミリ波レーダ等の無 線装置を得ることが可能となる。 図面の簡単な説明  According to the wireless device, since the above-mentioned irreversible circuit element is provided, the magnetic loss is small in the microwave band of several GHz to several 10 GHz, the desired irreversibility is obtained, and Miniaturization equipped with a self-bias type nonreciprocal circuit element with low loss tan δ and high specific resistivity ρ ・ To obtain wireless devices such as mobile phones and millimeter-wave radars with reduced height and cost Becomes possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 従来の S rフェライトの複素透磁率の各透磁率成分の周波数特性を示 す図である。 図 2は、 従来の S rフェライトの透磁率差 Δ の周波数特性を示す 図である。 図 3は、 本発明に係るフェライト磁器組成物の透磁率差 の周波数 特性を模式的に示した図である。 図 4は、 本発明に係るフェライト磁器組成物の 磁気共鳴半値幅を示す図である。 図 5は、 本発明に係る非可逆回路素子の第 1の 実施の形態を示す斜視図である。 図 6は、 本発明に係る非可逆回路素子の第 2の 実施の形態を示す正面図 (a ) 及び要部平面図 (A— A矢視図) である。 図 7は 、 本発明に係る非可逆回路素子の第 3の実施の形態を示す斜視図である。 図 8は 、 本発明に係る非可逆回路素子の第 4の実施の形態を示す斜視図である。 図 9は 、 本発明に係る非可逆回路素子の第 5の実施の形態を示す斜視図である。 図 1 0 は、 本発明に係る非可逆回路素子の第 6の実施の形態を示す斜視図である。 図 1 1は、 本発明に係る非可逆回路素子の第 7の実施の形態を示す平面図である。 図 1 2は、 本発明に係る非可逆回路素子の第 8の実施の形態を示す斜視図である。 図 1 3は、 本発明に係る非可逆回路素子の第 9の実施の形態を示す斜視図である 。 図 1 4は、 本発明に係る無線装置の一実施の形態を示すシステム構成図である 発明を実施するための最良の形態 FIG. 1 is a diagram showing frequency characteristics of each magnetic permeability component of the complex magnetic permeability of a conventional Sr ferrite. FIG. 2 is a diagram showing a frequency characteristic of a permeability difference Δ of a conventional Sr ferrite. FIG. 3 is a diagram schematically showing a frequency characteristic of a magnetic permeability difference of the ferrite porcelain composition according to the present invention. FIG. 4 is a diagram showing the half-width of magnetic resonance of the ferrite porcelain composition according to the present invention. FIG. 5 is a perspective view showing a first embodiment of the nonreciprocal circuit device according to the present invention. FIG. 6 is a front view (a) and a plan view (A-A view) of a main part of a nonreciprocal circuit device according to a second embodiment of the present invention. FIG. 7 is a perspective view showing a third embodiment of the nonreciprocal circuit device according to the present invention. FIG. 8 is a perspective view showing a fourth embodiment of the nonreciprocal circuit device according to the present invention. FIG. 9 is a perspective view showing a fifth embodiment of the nonreciprocal circuit device according to the present invention. FIG. 10 is a perspective view showing a sixth embodiment of the nonreciprocal circuit device according to the present invention. FIG. 11 is a plan view showing a seventh embodiment of the nonreciprocal circuit device according to the present invention. FIG. 12 is a perspective view showing an eighth embodiment of the nonreciprocal circuit device according to the present invention. FIG. 13 is a perspective view showing a ninth embodiment of the non-reciprocal circuit device according to the present invention. FIG. 14 is a system configuration diagram showing an embodiment of the wireless device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施の形態を詳説する。  Next, embodiments of the present invention will be described in detail.
本発明の第 1の実施の形態に係るフェライト磁器組成物は、 下記一般式 〔A〕 で表される。  The ferrite porcelain composition according to the first embodiment of the present invention is represented by the following general formula [A].
(S r !_XB ax) 0 · η (F e^I ny) 203 … 〔A〕 (S r! _ X B a x ) 0 · η (F e ^ I n y ) 2 0 3 … [A]
ただし、 xは 0≤x≤l. 0、 nは 5. 00≤n<6. 00、 yは 0く y≤0 . 30である。  Where x is 0≤x≤l. 0, n is 5.00≤n <6.00, y is 0 and y≤0.30.
すなわち、 第 1の実施の形態のフェライト磁器組成物は、 一般式 (S Γ,.,Β , ) Ο · nF e 23 (伹し、 0≤χ≤1. 0 ) で表されるマグネトプラバント型フ ェライトにおいて、 F e 3 +の一部を I n3+で置換している。 That is, the ferrite ceramic composition of the first embodiment, the general formula (S Γ,., Β, ) Ο · nF e 2 〇 3 (and伹, 0≤χ≤1. 0) magnet represented by In the pravant-type ferrite, part of Fe 3 + was replaced with In 3+ .
このように F e 3 +の一部を I n3+で置換したのは以下の理由による。 The reason why part of Fe 3 + was replaced with In 3+ in this manner is as follows.
マグネトプランバイト型フェライトでは、 異方性磁界 Haを駆動させることに より磁場を発生させているが、 本発明者らの実験結果により、 63 +のー部を 1 n3+で置換することにより、 異方性磁界 Haを低下方向に制御することができる ことが分かった。 例えば、 マグネトプランバイト型である B aフェライトの F e 成分を I n成分で置換すると、 その異方性磁界 Haは B aフェライト自身の異方 性磁界 (1. 40 X 106 (A/m)) よりも減少する。 そして、 この際、 飽和磁 化 Msも低下方向に変動する。 Magneto In ferrite, but it is generating more magnetic fields that drive the anisotropic magnetic field Ha, the experimental result of the present inventors, the replacement of over portion of 6 3 + in 1 n 3+ As a result, it was found that the anisotropic magnetic field Ha can be controlled in the decreasing direction. For example, if the Fe component of the magnetoplumbite-type Ba ferrite is replaced by the In component, the anisotropic magnetic field Ha becomes the anisotropic magnetic field of Ba ferrite itself (1.40 X 10 6 (A / m )). At this time, the saturation magnetization Ms also fluctuates in the decreasing direction.
一方、 内部磁界 Hinは、 数式 (2) で表され、 強磁性共鳴ピークの周波数 ω ( =27C f r) は、 数式 (3) で表される。  On the other hand, the internal magnetic field Hin is expressed by equation (2), and the frequency ω (= 27C fr) of the ferromagnetic resonance peak is expressed by equation (3).
Hin=Ha - NXMs … (2)  Hin = Ha-NXMs… (2)
ω = τ XHin … (3)  ω = τ XHin… (3)
ここで、 Nは反磁界係数、 Msは飽和磁ィ匕 (T)、 ァはジャイロ定数 (=2. 2 1 X 105m/A · s) である。 Here, N is a demagnetizing field coefficient, Ms is a saturation magnetic field (T), and a is a gyro constant (= 2.21 × 10 5 m / A · s).
したがって、 数式 (2) により異方性磁界 Ha及び飽和磁ィ匕 Msの変動により 内部磁界 Hinも適宜変動するため、 数式 (3) により強磁性共鳴ピークの周波数 ωも変動する。  Therefore, since the internal magnetic field Hin also fluctuates appropriately according to the variation of the anisotropic magnetic field Ha and the saturation magnetic field Ms according to the equation (2), the frequency ω of the ferromagnetic resonance peak also varies according to the equation (3).
このように異方性磁界 H aが低下することにより、 強磁性共鳴ピークの周波数 ωが変動し、 その結果、 図 3に示すように、 正円偏波と負円偏波の実数部の透磁 率差 Δ の周波数特性が、 仮想線で示す特性から、 矢印 Xで示すように、 実線で 示す特性に変移させることが可能となり、 10 GHz以下のマイクロ波帯で使用 しても十分な非可逆性を有するフェライト磁器組成物を得ることが可能となる。 また、 磁気損失を示す虚数部^ +" は、 図 4に示すように内部磁界 H in (=ω /Ύ) に対し、 口一レンツ形の分布曲線になることが知られており、 内部磁界 Hi nを変化させることによって磁気共鳴ピークの半値幅 ΔΗを小さくできると同時 に、 強磁性共鳴ピークの周波数 ωを低周波側にシフトさせることができる。 そし てその結果、 虚数部 を低下させることができ、 30〜60 GHzでの磁気 損失を抑制することが可能となる。 The decrease in the anisotropic magnetic field Ha reduces the frequency of the ferromagnetic resonance peak. ω fluctuates, and as a result, as shown in FIG. 3, the frequency characteristic of the magnetic permeability difference Δ between the real part of the circular polarization and the negative circular polarization is In addition, the characteristics can be changed to those shown by the solid line, and a ferrite porcelain composition having sufficient irreversibility can be obtained even when used in a microwave band of 10 GHz or less. It is known that the imaginary part ^ + "indicating the magnetic loss becomes a mono-Lentz distribution curve with respect to the internal magnetic field H in (= ω / Ύ) as shown in FIG. By changing H in, the half-width Δ 値 of the magnetic resonance peak can be reduced, and at the same time, the frequency ω of the ferromagnetic resonance peak can be shifted to a lower frequency side, and as a result, the imaginary part can be reduced. It is possible to suppress the magnetic loss at 30 to 60 GHz.
尚、本発明者らは、 F e 3 +の一部を Sn4+で置換することによつても同様の作 用効果を得ることが可能であることを確認しているが、 F e 3 +の一部を S n 4 + で置換した場合は電荷バランスが崩れるため、 Z n 2+や C u 2+等の 2価の金属元 素で電荷補正する必要があるのに対し、 I nイオンは 3価であるため、 Fe3 +を I n3+で置換しても電荷バランスは崩れず、 したがって 2価の金属元素で電荷補 正する必要はない。 It should be noted that the present invention While we have confirmed that in cowpea to replace a portion of the F e 3 + in Sn 4+ is possible to also obtain the same work for effect, F e 3 + part because if you substituted by S n 4 + collapse charge balance, while it is necessary to charge correcting a divalent metal elemental such Z n 2+ and C u 2+, I n since ions are trivalent, Fe 3 + a is also not collapse the charge balance substituted with I n 3+, thus there is no need to charge compensation divalent metal element.
尚、 上記一般式 〔A〕 で、 yを 0<y≤0. 30としたのは、 yが 0. 30を 超えると、 I nの含有量が過剰となる一方で、 Feの含有量が過少となって磁気 異方性を示さなくなり、 非磁性体となって使用することができなくなるからであ る。  In the above general formula (A), y is set to 0 <y≤0.30. When y exceeds 0.30, the content of In becomes excessive while the content of Fe becomes large. This is because the amount becomes too small to show magnetic anisotropy and cannot be used as a non-magnetic material.
また、 上記一般式 〔A〕 で、 nを 5. 00≤n<6. 00としたのは、 nがこ の範囲外になると磁気異方性を示さなくなり、 また異相が析出したり、 焼結しに くくなり、 更には十分な飽和磁化 Msが得られなり、 また比抵抗率 pも小さくな るからである。  Also, in the above general formula [A], n is set to 5.00≤n <6.00 because when n is out of this range, no magnetic anisotropy is exhibited, and a different phase is precipitated or This is because it becomes difficult to obtain a sufficient saturation magnetization Ms and the resistivity p decreases.
そして、 上記フェライト磁器組成物は以下のようにして製造される。  And the said ferrite porcelain composition is manufactured as follows.
すなわち、 最終生成物であるフェライト磁器組成物の成分組成が所定モル比と なるように、 フェライト素原料としてのバリウム化合物、 ストロンチウム化合物 、 鉄化合物、 及びインジウム化合物を適宜秤量して調合し、 ポールミルで湿式混 合した後、 大気中で仮焼し、 その後湿式粉砕して仮焼粉末を作製する。 次いで、 この仮焼粉末をバインダ樹脂と混練させてスラリー化し、 磁場中で脱水成形した 後、 大気中で焼成し、 これにより、 上記一般式 〔A〕 で表されるフェライ卜磁器 組成物が製造される。 That is, a barium compound, a strontium compound, an iron compound, and an indium compound as a ferrite raw material are appropriately weighed and mixed so that the component composition of the final product, a ferrite porcelain composition, has a predetermined molar ratio, and the mixture is prepared using a pole mill. After wet mixing, the mixture is calcined in the air, and then wet pulverized to produce a calcined powder. Then This calcined powder is kneaded with a binder resin to form a slurry, dehydrated and formed in a magnetic field, and then fired in the air, thereby producing a ferrite porcelain composition represented by the general formula (A). .
このように第 1の実施の形態のフェライト磁器組成物は、 マグネトプランパイ ト型フェライトの F e 3 +の一部を I n3+で置換しているので、 10 GHzや 30 〜60 GHzのマイクロ波帯域において、 所望の非可逆性を有し、 磁気損失が小 さく、 非可逆回路素子に好適なフェライト磁器組成物を得ることができる。 Ferrite ceramic composition thus first embodiment, since the F e 3 + part of magnetoplumbite pi preparative ferrite is substituted with I n 3+, of 10 GHz or 30 to 60 GHz In the microwave band, a ferrite porcelain composition having desired irreversibility, small magnetic loss and suitable for irreversible circuit elements can be obtained.
次に、 本発明の第 2の実施の形態に係るフェライト磁器組成物を詳説する。 第 2の実施の形態に係るフェライト磁器組成物は、 下記一般式 〔B〕 で表され る。  Next, a ferrite porcelain composition according to a second embodiment of the present invention will be described in detail. The ferrite porcelain composition according to the second embodiment is represented by the following general formula [B].
(S rト XB ax) O · n (F e^A 1 z) 23 … 〔B〕 (S r to X B a x ) O · n (F e ^ A 1 z ) 23 … [B]
ただし、 xは 0≤x≤l. 0、 nは 5. 00≤n<6. 00、 zは 0<z≤0 . 30である。  Where x is 0≤x≤l. 0, n is 5.00≤n <6.00, and z is 0 <z≤0.30.
すなわち、 第 2の実施の形態のフェライト磁器組成物は、 一般式 (S r xB ax ) O · nF e 23 (但し、 0≤χ≤1. 0 ) で表されるマグネトプラバント型フ ェライトにおいて、 F e 3 +の一部を A 13+で置換している。 That is, the ferrite ceramic composition of the second embodiment, the general formula (S r x B a x) O · nF e 2 〇 3 (however, 0≤χ≤1. 0) magnet Prabang preparative represented by In the type ferrite, part of Fe 3 + is replaced with A 13 + .
このように F e3 +の一部を A 13+で置換したのは以下の理由による。 The reason why part of F e 3 + was replaced with A 13 + in this manner is as follows.
上述したようにマグネトプランバイト型フェライトでは、 異方性磁界 Haを駆 動させることにより磁場を発生させているが、 本発明者らの実験結果により、 F e3 +の一部を A 13+で置換することにより、強磁性共鳴ピークの周波数 ωを高周 波側にシフトさせることができることが分った。 すなわち、 本第 2の実施の形態 においても、 Fe3 +の一部を A 13 +に置換することにより、上記第 1の実施の形 態と同様、 磁気共鳴ピークの半値幅 ΔΗを小さくすることができると共に、 強磁 性共鳴ピークの周波数 ωを高周波側にシフトさせることができる。 そしてその結 果、 30〜60 GHzのマイクロ波帯での虚数部 〃 を低下させることができ 、 磁気損失を抑制することが可能となる。 The magnetoplumbite-type ferrite as described above, but by generating a magnetic field by driving kinematic anisotropic magnetic field Ha, the experimental result of the present inventors, F e 3 + of the part A 1 3 It was found that the substitution with + can shift the frequency ω of the ferromagnetic resonance peak to a higher frequency side. That is, also in the second embodiment, by replacing a part of Fe 3 + with A 13 + , the half width ΔΗ of the magnetic resonance peak is reduced as in the first embodiment. And the frequency ω of the ferromagnetic resonance peak can be shifted to a higher frequency side. As a result, the imaginary part in the microwave band of 30 to 60 GHz can be reduced, and the magnetic loss can be suppressed.
すなわち、 B rフェライトゃ S rフェライトのような従来のマグネトプランバ ィト型フェライトでは、 30〜60 GHzのマイクロ波帯では非可逆性は満足し 得るものの、磁気損失が大きいという欠点があつたが、本第 2の実施の形態では、 F e 3 +の一部を A 13 +に置換することにより、 30 60 GHzのマイクロ波帯 においても磁気損失の抑制が可能であり、 非可逆性と低磁気損失とを両立させる ことのできるフェライト磁器組成物を得ることが可能となる。 In other words, conventional magnetoplumbite-type ferrites such as Br ferrite and Sr ferrite can satisfy irreversibility in the microwave band of 30 to 60 GHz, but have the disadvantage of large magnetic loss. However, in the second embodiment, By substituting part of F e 3 + with A 13 + , it is possible to suppress magnetic loss even in the microwave band of 3060 GHz, and achieve both irreversibility and low magnetic loss. A ferrite porcelain composition can be obtained.
尚、 上記一般式 〔B〕 で、 zを 0く z≤0. 30としたのは、 zが 0. 30を 超えると、 A 1の含有量が過剰となる一方で、 F eの含有量が過少となって磁気 異方性を示さなくなり、 非磁性体となって使用することができなくなるからであ る。  In the above general formula (B), z is set to 0 and z≤0.30 because when z exceeds 0.30, the content of A 1 becomes excessive while the content of Fe becomes Is too small to exhibit magnetic anisotropy and cannot be used as a non-magnetic material.
そし 、 第 2の実施の形態のフェライ卜磁器組成物も、 フェライト素原料につ いてインジウム化合物に代えてアルミニウム化合物を使用し、 第 1の実施の形態 と略同様の方法,手順で上記一般式 〔B〕 で表されるフェライト磁器組成物を容 易に製造することができる。  The ferrite porcelain composition of the second embodiment also uses an aluminum compound instead of an indium compound for the ferrite raw material, and uses the above general formula by a method and procedure substantially similar to those of the first embodiment. The ferrite porcelain composition represented by [B] can be easily produced.
次に、 本発明の第 3の実施の形態に係るフェライト磁器組成物について詳説す る。  Next, a ferrite porcelain composition according to a third embodiment of the present invention will be described in detail.
第 3の実施の形態に係るフェライト磁器組成物は、 下記一般式 〔C〕 で表され る。  The ferrite porcelain composition according to the third embodiment is represented by the following general formula [C].
(S r XB ax) O · n (F e ,.y.z I nyA 1 z) 23 〔C〕 (S r X B a x) O · n (F e,. Y. Z I n y A 1 z) 2 〇 3 [C]
ただし、 xは 0≤x≤l. 0 nは 5. 00≤n<6. 00である。 また、 y 及び zはそれぞれ 0<y≤ 0. 30 0<z≤0. 30である。  However, x is 0≤x≤l. 0 n is 5.00≤n <6.00. Also, y and z are respectively 0 <y≤0.30 and 0 <z≤0.30.
すなわち、 本第 3の実施の形態では、 63 +のー部を 1113+及び八 13 +の双 方で置換している。 That is, in the third embodiment, and replacing the chromatography of 6 3 + at 111 3+ and eight 1 3 + bi how.
このように F e 3 +の一部を I n3+及び A 13 +の双方で置換することとしたの は以下の理由による。 The reason why a part of F e 3 + is substituted with both In 3+ and A 13 + in this way is as follows.
F e 3+の一部を I n 3+で置換することにより、上述したように異方性磁界 H a を制御することができるが、これに加えて F e 3+の一部を A 13+で置換すること により、 制御された異方性磁界 H aの変動を抑制しつつ、 飽和磁化 M sを変動さ せることが可能となり、 これにより飽和磁化 Msに依存する強磁性共鳴ピークの 周波数 ω (上記数式 (2)、 (3) 参照) や透磁率差 Δ //を微調整することが容易 となり、 10 GH ζ以下や 30 60GHzのマイク口波帯において、 所望の非 可逆性及び低磁気損失のフェライト磁器組成物を得ることが容易となる。 また、 上記一般式 〔C〕 で、 y及び zをそれぞれ 0<y≤0. 30、 0<z≤ 0. 30としたのは、 y及び zが共に 0. 30を超えると、 I n及び A 1の含有 量が過剰となる一方で、 F eの含有量が過少となつて磁気異方性を示さなくなり、 非磁性体となって使用することができなくなるからである。 Some of the F e 3+ by replacing I n 3+, can be controlled anisotropy field H a, as described above, A 1 part of F e 3+ In addition to this By replacing with 3+ , it is possible to change the saturation magnetization M s while suppressing the fluctuation of the controlled anisotropic magnetic field Ha, thereby making it possible to change the ferromagnetic resonance peak dependent on the saturation magnetization Ms. It is easy to fine-tune the frequency ω (see the above formulas (2) and (3)) and the magnetic permeability difference Δ //, so that the desired irreversibility and It becomes easy to obtain a ferrite porcelain composition having low magnetic loss. In the general formula (C), y and z are respectively set to 0 <y≤0.30 and 0 <z≤0.30, because when y and z both exceed 0.30, In and This is because while the content of A 1 is excessive, the content of Fe is too small, so that it does not show magnetic anisotropy and cannot be used as a non-magnetic material.
そして、 第 3の実施の形態のフェライト磁器組成物も、 フェライト素原料とし てバリウム化合物、 ストロンチウム化合物、 鉄化合物、 インジウム化合物、 及び アルミニウム化合物を使用し、 第 1の実施の形態と略同様の方法 ·手順で上記一 般式 〔C〕 で表されるフェライト磁器組成物を容易に製造することができる。 このように本第 3の実施の形態では、 マグネトプランバイト型フェライトの F e 3 +の一部を I n3+及び A 13+で置換しているので、 100112ゃ30〜60 GHzのマイクロ波帯域において、 所望の非可逆性を有し、 磁気損失が小さく、 非可逆回路素子に好適なフェライト磁器組成物を得ることができる。 The ferrite porcelain composition of the third embodiment also uses a barium compound, a strontium compound, an iron compound, an indium compound, and an aluminum compound as a ferrite raw material, and is substantially the same as the method of the first embodiment. · The ferrite porcelain composition represented by the general formula [C] can be easily produced by the procedure. As described above, in this third embodiment, since the F e 3 + part of magnetoplumbite ferrite are replaced with I n 3+ and A 1 3+, micro 100112 Ya 30 to 60 GHz In the wave band, a ferrite porcelain composition having desired irreversibility, small magnetic loss, and suitable for irreversible circuit elements can be obtained.
尚、 上述した製造過程において、 Mn、 C l、 N i、 Zn、 Mg、 S、 Ca、 C r、 B i等の不純物が 0. 4重量%未満で混入することがあり、 また、 湿式混 合時に Z rや S i等の不純物が 0. 8重量%未満で混入することがあるが、 本発 明の特性に影響を与えるものではない。  In the above-described manufacturing process, impurities such as Mn, Cl, Ni, Zn, Mg, S, Ca, Cr, and Bi may be mixed at less than 0.4% by weight. At the time of mixing, impurities such as Zr and Si may be mixed at less than 0.8% by weight, but this does not affect the characteristics of the present invention.
また、 本発明のフェライト磁器組成物は、 上記実施の形態に限定に限定される ことはなく、 C a成分及び Co成分のうちの少なくとも一方が、 一般式 〔A〕 〜 〔C〕 で表される主成分 1モルに対し、 総計で 0. 001〜0. 8モル含有する ようにするのも好ましい。  Further, the ferrite porcelain composition of the present invention is not limited to the above embodiment, and at least one of the Ca component and the Co component is represented by the general formulas (A) to (C). It is also preferable that the total amount is 0.001 to 0.8 mole per 1 mole of the main component.
この場合、 フェライト磁器組成物は、 下記一般式 〔D〕 〜 〔F〕 で表される。 (S rト xB ax) 〇 · η (F eト yI ny) 203+ o; C a + ]3 C o… 〔D〕 In this case, the ferrite porcelain composition is represented by the following general formulas [D] to [F]. (S r preparative x B a x) 〇 · η (F e preparative y I n y) 2 0 3 + o; C a +] 3 C o ... [D]
(S rト xB ax) O - n (F eト ZA 1 Z) 203+o;C a + ]S Co- 〔E〕 (S r preparative x B a x) O - n (F e preparative Z A 1 Z) 2 0 3 + o; C a +] S Co- [E]
(S r ,.XB ax) O ' n (F eト y z I n y A 1 z) 203 + a C a + j8 C o… 〔F〕 ここで、 α、 3は一般式 〔D〕 〜 〔F〕 で表される主成分 1モルに対し、 添加 される C a成分、 及び Co成分のモル数であり、 下記数式 〔G〕 を充足している
Figure imgf000014_0001
(S r,. X B a x ) O 'n (F e yz I n y A 1 z ) 2 0 3 + a C a + j8 C o ... [F] where α and 3 are the general formulas [ It is the number of moles of the added Ca component and Co component with respect to 1 mole of the main component represented by D) to [F], and satisfies the following formula [G]
Figure imgf000014_0001
非可逆回路素子では、 永久磁石とフェライト磁器組成物との距離が短いほど、 永久磁石に発生する渦電流損の影響を受けて伝送特性の悪化を招く。 そしてこの 渦電流は永久磁石の比抵抗率 !0が小さいほど発生し易い。 しかも、 自己バイアス 形の非可逆回路素子では、 フェライト磁器組成物自身が磁界を発生するため、 渦 電流損の影響が非常に大きい。 In non-reciprocal circuit devices, the shorter the distance between the permanent magnet and the ferrite porcelain composition, The transmission characteristics are deteriorated due to the influence of the eddy current loss generated in the permanent magnet. This eddy current is more likely to occur as the specific resistivity! 0 of the permanent magnet decreases. In addition, in the self-bias type non-reciprocal circuit device, since the ferrite porcelain composition itself generates a magnetic field, the influence of eddy current loss is very large.
しかるに、 本発明者らの研究結果により、 上記一般式 〔G〕 を充足するように 所定量の C a成分及び/又は C o成分を添加することにより、 比抵抗率 /0の大き なフェライト磁器組成物を得ることができ、 これにより自己バイアス形の非可逆 回路素子の渦電流損を低くすることができ、 伝送特性の悪化を回避することがで きるということが分かった。  However, according to the research results of the present inventors, by adding a predetermined amount of the Ca component and / or the Co component so as to satisfy the above general formula (G), a ferrite porcelain having a large specific resistivity / 0 can be obtained. It has been found that a composition can be obtained, whereby the eddy current loss of the self-bias type nonreciprocal circuit element can be reduced, and deterioration of the transmission characteristics can be avoided.
ここで、 C a成分及び C o成分の含有モル量ひ、 ]3を上記数式 〔G〕 を充足す るようにしたのは以下の理由による。  Here, the reason why the molar content of the Ca component and the Co component, ie, [3], satisfies the above formula [G] is as follows.
すなわち、 前記主成分 1モルに対し、 C a成分及び C o成分の含有モル量ひ、 βの総計が 0 . 0 0 1モル未満の場合は C a成分及び 又は C ο成分の添加によ る比抵抗率 Pの上昇効果を得ることができず、 信号伝送損失も大きく、 伝送特性 の悪化を招くからであり、 また、 C a成分及び C o成分の含有モル量ひ、 βの総 計が 0 . 8モルを超えると比抵抗率 ρは低下傾向となり、 信号伝送損失も大きく なつて伝送特性の悪化を招くおそれがあるからである。  That is, if the total amount of β and the molar amount of the Ca component and the Co component per 1 mol of the main component is less than 0.001 mol, the addition of the Ca component and / or the Co component is performed. This is because the effect of increasing the specific resistance P cannot be obtained, the signal transmission loss is large, and the transmission characteristics are degraded.In addition, the total molar amounts of the Ca component and the Co component and β If it exceeds 0.8 mol, the specific resistivity ρ tends to decrease, the signal transmission loss increases, and the transmission characteristics may be deteriorated.
また、 上述した一般式 〔Α〕 〜 〔F〕 のフェライト磁器組成物中に、 M n成分 及び Z r成分の含有量が、 酸化物換算で、 1 . 5重量%以下 (0重量%を含まず ) となるように M n成分及び Z r成分を添加することによつても比抵抗率 pを増 大させることができ、 かつ誘電損失 tan δを低下させることができる。特に、一般 式 〔D〕 〜 〔F〕 において、 M n成分及び Z r成分の含有量が 1 . 5重量%以下 ( 0重量%を含まず) となるように調製することにより、 C a成分や C o成分の 添加効果と相俟ってより大きな比抵抗率 pを得ることが可能となる。  Further, in the ferrite porcelain compositions of the above general formulas [] to [F], the content of the Mn component and the Zr component is 1.5% by weight or less (including 0% by weight) in terms of oxide. By adding the Mn component and the Zr component so as to satisfy the above, the specific resistance p can be increased and the dielectric loss tan δ can be reduced. In particular, in the general formulas [D] to [F], the content of the Mn component and the Zr component is adjusted to be 1.5% by weight or less (not including 0% by weight), whereby the Ca component is obtained. It is possible to obtain a larger resistivity p in combination with the effect of adding the Co component and the Co component.
尚、 この場合、 M n成分については主成分である焼結体中に含有されている場 合、 或いは焼結体に M n化合物を添加する場合があり、 また Z r成分については 焼結体に Z r成分を添加する必要があるが、 いずれにしてもフェライト磁器組成 物中の M n成分及び Z r成分が、 酸化物換算で、 1 . 5重量%以下 (0重量%を 含まず) となるように調製することにより、 誘電損失 tan <5が低く、 比抵抗率 ιθの 大きなフェライト磁器組成物を得ることができ、 これにより自己バイアス形の非 可逆回路素子で更なる低渦電流損を図ることができ、 良好な伝送特性を得ること ができる。 In this case, the Mn component may be contained in the sintered body that is the main component, or the Mn compound may be added to the sintered body. In any case, the Mn component and Zr component in the ferrite porcelain composition must be less than 1.5% by weight (excluding 0% by weight) in terms of oxides. By adjusting so that the dielectric loss tan <5 is low, the specific resistivity ιθ A large ferrite porcelain composition can be obtained, whereby further low eddy current loss can be achieved with a self-bias type non-reciprocal circuit device, and good transmission characteristics can be obtained.
特に、 M nは 1元素で複数の価数を有するため、 電荷バランスを調整すること が可能であり、 高抵抗なマグネトプランバイト型フェライトを得る上で特に好ま しい。  In particular, since Mn has a plurality of valences per element, it is possible to adjust the charge balance, and it is particularly preferable to obtain a high-resistance magnetoplumbite ferrite.
尚、 M n成分及び Z r成分の含有量が、 酸化物換算で、 総計 1 . 5重量%を超 えると、却って誘電損失 tan <5や比抵抗率 ί)の低下を招くおそれがあるため、 M n 成分や Z r成分を添加する場合は、 その含有量が総計で 1 . 5重量%以下となる ように制御する必要がある。  If the total content of the Mn component and the Zr component exceeds 1.5% by weight in terms of oxide, the dielectric loss tan <5 or the specific resistivity ί) may be reduced. When adding the Mn component or the Zr component, it is necessary to control the content so that the total content is 1.5% by weight or less.
次に、 上記フェライト磁器組成物を使用した非可逆回路素子について述べる。 図 5は、 本発明に係る非可逆回路素子の一実施の形態 (第 1の実施の形態) と しての集中定数形サ一キユレ一夕を模式的に示した斜視図である。  Next, a nonreciprocal circuit device using the ferrite porcelain composition will be described. FIG. 5 is a perspective view schematically showing a lumped constant type circuit as one embodiment (first embodiment) of the non-reciprocal circuit device according to the present invention.
該集中定数形サ一キユレ一夕は、 マイクロストリップ線路 1 a、 l b、 l cが 互いに 1 2 0 °C間隔となるように交叉状に形成され、 かつ、 これらマイクロスト リップ線路 1 a、 1 b、 1 cの上下両面は絶縁体層 2を介して上記フェライト磁 器組成物で形成されたフェライト基板 3と接触している。 そして、 マイクロスト リップ線路 l a、 l b、 1 ( の端子部1 & ' 、 l b ' 、 l c ' には不図示のコン デンサが取り付けられ、 フェライト基板 3の有するインダクタンスと前記コンデ ンサとで共振周波数を調整している。  The lumped constant type circuit is formed such that the microstrip lines 1a, lb, and lc cross each other at an interval of 120 ° C., and these microstrip lines 1a, 1b The upper and lower surfaces of 1 c are in contact with a ferrite substrate 3 formed of the ferrite ceramic composition via an insulator layer 2. A capacitor (not shown) is attached to the terminal portions 1 & ', lb', and lc 'of the microstrip lines la, lb, 1 (, and the resonance frequency is determined by the inductance of the ferrite substrate 3 and the capacitor. I am adjusting.
本第 1の実施の形態では、 例えば、 マイクロストリツプ線路 1 aに電流を流す と、 フェライト基板 3にはマイクロストリップ線路 1 a、 l b、 l cにより形成 される交叉回路により一様な回転磁界が形成される。 そして、 マイクロ波フェラ ィト 3が上記フェライト磁器組成物で形成されているので、 1 0 GH z以下や 3 0〜6 0 GH zのマイクロ波帯で磁気損失が小さく十分な非可逆性を有するサ一 キユレ一夕を得ることが可能となる。 しかも、 フェライト磁器組成物は、 異方性 磁界 H aにより駆動させているので、 永久磁石等の外部磁界を必要とすることな く、 サーキュレー夕の小型 ·低背化や低コスト化を図ることができる。  In the first embodiment, for example, when a current is applied to the microstrip line 1a, a uniform rotating magnetic field is applied to the ferrite substrate 3 by a cross circuit formed by the microstrip lines 1a, lb, and lc. Is formed. And, since the microwave ferrite 3 is formed of the above ferrite porcelain composition, the magnetic loss is small in a microwave band of 10 GHz or less or 30 to 60 GHz and has sufficient irreversibility. You will be able to get a night out. In addition, since the ferrite porcelain composition is driven by the anisotropic magnetic field Ha, it is possible to reduce the size, height, and cost of the circulator without using an external magnetic field such as a permanent magnet. Can be.
図 6 ( a ) は非可逆回路素子の第 2の実施の形態としてのストリップ線路 Y接 合形サ一キユレ一夕であり、 図 6 (b) は図 6 (a) の A— A矢視図である。 本第 2の実施の形態では、 ストリップ線路 4の分岐路 4 a、 4 b、 4 cが円形 状の中心部 4 dで Y字状に接合されており、 さらに前記分岐路 4 a、 4 b, 4 c には補正用のコンデンサ部 5 a、 5 b、 5 cが形成されている。 そして、 前記中 心部 4 dの上下両面にはフェライト基板 6が設けられると共に、 該フェライト基 板 6が挟持状となるように分岐路 4 a、 4 b、 4 cの上下両面には外部導体 7 a 、 7 bが設けられている。 FIG. 6 (a) shows a strip line Y connection as a second embodiment of the nonreciprocal circuit device. Fig. 6 (b) is a view along arrow A-A in Fig. 6 (a). In the second embodiment, the branch paths 4a, 4b, and 4c of the strip line 4 are joined in a Y-shape at a circular center 4d, and the branch paths 4a, 4b , 4c are provided with correction capacitor sections 5a, 5b, 5c. Ferrite substrates 6 are provided on both upper and lower surfaces of the center portion 4d, and external conductors are provided on upper and lower surfaces of the branch paths 4a, 4b, 4c so that the ferrite substrate 6 is sandwiched. 7a and 7b are provided.
そして、 例えば、 TM 。モードで共振する場合、 分岐路 4 aに入力された高 周波磁界は、 フェライト基板 6を通過する際に矢印で示すように偏波面が回転し 、 分岐路 4 bにのみ出力され、 サーキユレ一夕を形成する。  And, for example, TM. When resonating in the mode, the high-frequency magnetic field input to the branch path 4a rotates the polarization plane as shown by the arrow when passing through the ferrite substrate 6, and is output only to the branch path 4b. To form
本第 2の実施の形態でも、 フェライ卜基板 6が上記フェライト磁器組成物で形 成されているので、 1 0 GHz以下や 3 0〜6 0 GHzのマイクロ波帯で磁気損 失が小さく十分な非可逆性を有する小型 ·低背化や低コスト化がなされたサーキ ユレ一夕を得ることが可能となる。  Also in the second embodiment, since the ferrite substrate 6 is formed of the ferrite porcelain composition, the magnetic loss is small enough in a microwave band of 10 GHz or less or 30 to 60 GHz. It will be possible to obtain an irreversible compact and low-profile and low-cost Sirki Yure overnight.
図 7は非可逆回路素子の第 3の実施の形態としてのフェライト基板サーキュレ 一夕であって、 フェライト基板 9の表面に Y字状のストリップ線路 1 0が形成さ れている。 そして、 本第 3の実施の形態でも、 第 2の実施の形態と同様、 例えば 、 TM^。モードで共振する場合、 分岐路 1 0 aに入力された高周波磁界は、 フ エライト基板 9上を偏波面が回転し、 分岐路 1 0 bにのみ出力され、 サ一キユレ 一夕を形成する。  FIG. 7 shows a ferrite substrate circulator as a third embodiment of a non-reciprocal circuit device. A Y-shaped strip line 10 is formed on the surface of a ferrite substrate 9. Then, in the third embodiment, for example, TM ^ as in the second embodiment. In the case of resonance in the mode, the high-frequency magnetic field input to the branch 10a rotates on the ferrite substrate 9 and is output only to the branch 10b to form a short circuit.
本第 3の実施の形態でも、 フェライト基板 9が上記フェライト磁器組成物で形 成されているので、 1 0 GHz以下や 3 0〜6 0 GHzのマイクロ波帯で磁気損 失が小さく十分な非可逆性を有する小型 ·低背化や低コスト化がなされたサーキ ユレ一夕を得ることが可能となる。  Also in the third embodiment, since the ferrite substrate 9 is formed of the above-described ferrite porcelain composition, the magnetic loss is small in a microwave band of 10 GHz or less or 30 to 60 GHz, and sufficient It is possible to obtain a reversible, compact, low-profile and low-cost circuit.
図 8は非可逆回路素子の第 4の実施の形態としての導波管形サーキュレータを 模式的に示した斜視図であって、 本第 4の実施の形態では、 Y字状の導波管 1 1 の Y分岐の中心部に円柱状のフヱライト柱 1 2が挿入されており、 上記第 2及び 第 3の実施の形態と略同様に動作し、 サーキユレ一夕を形成する。 そして、 フエ ライト柱 1 2が上記フェライト磁器組成物で形成されているので、 1 0 GHz以 下や 30〜60 GHzのマイクロ波帯で磁気損失が小さく十分な非可逆性を有す る小型 ·低背化や低コスト化がなされたサーキユレ一夕を得ることが可能となる 図 9 (a) は非可逆回路素子の第 5の実施の形態としての非放射性誘電体線路 Y型サーキユレ一夕を模式的に示した斜視図であり、 図 9 (b) は図 9 (a) の B— B断面図である。 尚、 図 9 (a) では上下一対の金属板を省略している。 本第 5の実施の形態では、 誘電体ストリップ 13 a、 13 b、 13 cが互いに 等間隔で 120。 に配設されると共に、 一対の円盤状フェライト基板 14 a、 1 4 bが誘電体ストリップ 13 a、 13 b、 13 cの一方の端部により挟持され、 さらに、 誘電体ストリップ 13 a、 13 b、 13 c及びフェライト基板 14 a、 14bの上下両面に平板状の金属板 15 a、 15 bが設けられている。 そして、 フェライト基板 14 a、 14 bにより共振器を構成し、 ΗΕ11δモードで共振す る。 FIG. 8 is a perspective view schematically showing a waveguide circulator as a fourth embodiment of the nonreciprocal circuit device. In the fourth embodiment, a Y-shaped waveguide 1 is used. A cylindrical pillar 12 is inserted into the center of the Y-branch of FIG. 1, and operates in substantially the same manner as in the second and third embodiments to form a circuit. Since the ferrite column 12 is formed of the above ferrite porcelain composition, the In the lower and 30 to 60 GHz microwave bands, it is possible to obtain a compact, low-profile and low-cost circuit that has a small magnetic loss and sufficient irreversibility. 9) is a perspective view schematically showing a non-radiative dielectric line Y-type circuit as a fifth embodiment of the non-reciprocal circuit device. FIG. 9 (b) is a perspective view of FIG. 9 (a). It is B sectional drawing. In FIG. 9A, a pair of upper and lower metal plates is omitted. In the fifth embodiment, the dielectric strips 13a, 13b, and 13c are 120 at regular intervals. And a pair of disk-shaped ferrite substrates 14a, 14b are sandwiched by one end of the dielectric strips 13a, 13b, 13c, and further, the dielectric strips 13a, 13b , 13c and the ferrite substrates 14a, 14b are provided with flat metal plates 15a, 15b on both upper and lower surfaces. Then, a resonator is constituted by the ferrite substrates 14a and 14b , and resonates in the ΗΕ11δ mode.
本第 5の実施の形態でも、 フェライト基板 14 a、 14bが上記フェライト磁 器組成物で形成されているので、 10 GHz以下や 30〜60 GHzのマイクロ 波帯で磁気損失が小さく十分な非可逆性を有する小型 ·低背化や低コスト化がな されたサーキュレー夕を得ることが可能となる。  Also in the fifth embodiment, since the ferrite substrates 14a and 14b are formed of the above-described ferrite ceramic composition, the magnetic loss is small and sufficiently irreversible in the microwave band of 10 GHz or less or 30 to 60 GHz. It is possible to obtain a circulator with a small size and a low profile and low cost.
図 10は非可逆回路素子の第 6の実施の形態としてのファラデー回転形アイソ レータを模式的に示した斜視図であって、 該ファラデー回転形アイソレータは、 支持誘電体 16に挿通されたフェライト棒 17と抵抗板 18 a、 18 bとが導波 管 19内に収容されている。  FIG. 10 is a perspective view schematically showing a Faraday rotary isolator as a sixth embodiment of a non-reciprocal circuit device, wherein the Faraday rotary isolator is a ferrite rod inserted through a supporting dielectric 16. 17 and resistor plates 18 a and 18 b are accommodated in a waveguide 19.
そして、 例えば、 矢印 C方向からの TE10モードの入力信号は方形一円形変換 器 20 aにより TEuモードに変換される。入力信号の電界は抵抗板 18 aに垂 直であるので吸収されずにフェライト棒 17に到達し、 正負の円偏波に分解され 、 正円偏波と負円偏波との透磁率差 Δ が位相定数の差となって偏波面が角度 0 だけ回転する。 そして、 その結果、 フェライト棒 17を通過した入力信号は、 抵 抗板 18 bと平行となり、 入力信号は吸収される。 Then, for example, the input signal of the TE 10 mode from the direction of arrow C is converted to TEu mode by square one circular transducer 20 a. Since the electric field of the input signal is perpendicular to the resistance plate 18a, it is not absorbed and reaches the ferrite rod 17 and is decomposed into positive and negative circularly polarized waves, and the magnetic permeability difference Δ between the positive and negative circularly polarized waves Δ Is the difference in the phase constants, and the plane of polarization rotates by an angle 0. As a result, the input signal that has passed through the ferrite rod 17 becomes parallel to the resistor plate 18b, and the input signal is absorbed.
一方、矢印 D方向からの TE1Qモードの入力信号は方形—円形変換器 20 bに より TE^モードに変換される。 そして、 入力信号の電界は抵抗板 18 bに垂直 であるので吸収されずにフェライト棒 1 7に到達し、 正負の円偏波に分解され、 偏波面が角度 0だけ回転する。 フェライト棒 1 7を通過した入力信号は抵抗板 1 8 aと垂直となり導波管 1 9から出力され、 これにより矢印 D方向へのアイソレ —夕が形成される。 On the other hand, the input signal of the TE 1Q mode from the direction of arrow D is converted to the TE ^ mode by the square-circular converter 20b. And the electric field of the input signal is perpendicular to the resistance plate 18b. Therefore, it reaches the ferrite rod 17 without being absorbed, and is decomposed into positive and negative circularly polarized waves, and the plane of polarization rotates by an angle of 0. The input signal that has passed through the ferrite rod 17 is perpendicular to the resistor plate 18a and is output from the waveguide 19, thereby forming an isolation in the direction of arrow D.
そして、 本第 6の実施の形態でも、 フェライト棒 1 7が上記フェライト磁器組 成物で形成されているので、 1 0 GH z以下や 3 0〜6 0 GH zのマイクロ波帯 で磁気損失が小さく十分な非可逆性を有する小型 ·低背化や低コスト化がなされ たアイソレータを得ることが可能となる。  Also in the sixth embodiment, since the ferrite rod 17 is formed of the ferrite porcelain composition, the magnetic loss in the microwave band of 10 GHz or less or 30 to 60 GHz is reduced. It is possible to obtain a small, low-profile and low-cost isolator having a small enough irreversibility.
図 1 1は非可逆回路素子の第 7の実施の形態としてのペリファリ ·モード形ァ イソレー夕を模式的に示した斜視図であって、 該第 7の実施の形態は、 上記フエ ライト磁器組成物で形成されたフェライト基板 2 1の表面に略台形状のストリツ プ線路 2 2が形成され、 さらに、 一部がストリップ線路 2 2の端部と重畳するよ うにフェライト基板 2 1の表面に抵抗体 2 3が形成されている。  FIG. 11 is a perspective view schematically showing a peripheral mode type isolation as a seventh embodiment of the nonreciprocal circuit device. The seventh embodiment is characterized in that the ferrite porcelain composition A substantially trapezoidal strip line 22 is formed on the surface of the ferrite substrate 21 made of a material, and a resistance is further applied to the surface of the ferrite substrate 21 so that a part of the strip line 22 overlaps the end of the strip line 22. The body 23 is formed.
そして、 端子 2 4 aに高周波信号が入力すると、 高周波磁界はファラデー効果 により矢印 Eに示すように、 ストリップ線路 2 2の一方の端部を伝播して出力側 に進んでゆき、 端子 2 4 bから出力する。 一方、 端子 2 4 bに高周波信号が入力 すると、 抵抗体 2 3の方向に捩れて進行し、 高周波信号は抵抗体 2 3により吸収 され、 これによりアイソレータを形成している。  Then, when a high-frequency signal is input to the terminal 24a, the high-frequency magnetic field propagates through one end of the strip line 22 to the output side as shown by the arrow E due to the Faraday effect, and proceeds to the terminal 24b. Output from On the other hand, when a high-frequency signal is input to the terminal 24b, the high-frequency signal is twisted in the direction of the resistor 23 and proceeds, and the high-frequency signal is absorbed by the resistor 23, thereby forming an isolator.
そして、 本第 7の実施の形態でも、 フェライト基板 2 1が上記フェライト磁器 組成物で形成されているので、 1 0 GH z以下や 3 0〜6 0 GH zのマイクロ波 帯で磁気損失が小さく十分な非可逆性を有する小型 ·低背化や低コスト化がなさ れたアイソレー夕を得ることが可能となる。  Also in the seventh embodiment, since the ferrite substrate 21 is formed of the ferrite porcelain composition, the magnetic loss is small in the microwave band of 10 GHz or less or 30 to 60 GHz. It is possible to obtain a compact, low-profile and low-cost isolator with sufficient irreversibility.
図 1 2 ( a ) ( b )は非可逆回路素子の第 8の実施の形態としての導波管共鳴形 アイソレータを模式的に示す斜視図であって、 フェライト棒 2 6 a〜2 6 cが方 形状の導波管 2 5の所定位置に挿入されている。  12 (a) and 12 (b) are perspective views schematically showing a waveguide resonant isolator as an eighth embodiment of the nonreciprocal circuit device, wherein the ferrite rods 26a to 26c are The rectangular waveguide 25 is inserted at a predetermined position.
本第 8の実施の形態では、 導波管 2 5を基本モード、 すなわち T E 1 Qモードで 伝搬する場合、 特定位置で高周波磁界は回転し、 円偏波となる。 そして円偏波に は正の円偏波と負の円偏波とがあり、 一方の円偏波、 例えば正の円偏波が大きな 磁気損失として作用する場合、 他方の円偏波、 例えば負の円偏波は減衰を受ける ことなく通過する。 This In the eighth embodiment, the fundamental mode of the waveguide 2 5, i.e., when propagating in TE 1 Q mode, the high frequency magnetic field rotating at a specific position, the circularly polarized wave. Circular polarization includes positive circular polarization and negative circular polarization. When one circular polarization, for example, positive circular polarization acts as a large magnetic loss, the other circular polarization, for example, negative Circularly polarized wave is attenuated Pass without.
そこで、 図 12 (a) (b) に示すように、 円偏波が発生する特定位置にフェラ イト棒 26 a〜 26 cを挿入することによってアイソレータを形成することがで さる。  Therefore, as shown in FIGS. 12 (a) and 12 (b), an isolator can be formed by inserting ferrite rods 26a to 26c at specific positions where circular polarization occurs.
本第 8の実施の形態でも、 フェライト棒 26 a〜26 cが上記フェライト磁器 組成物で形成されているので、 10 GHz以下や 30〜60 GHzのマイクロ波 帯で磁気損失が小さく十分な非可逆性を有する小型 ·低背化や低コスト化がなさ れたアイソレ一タを得ることが可能となる。  Also in the eighth embodiment, since the ferrite rods 26a to 26c are formed of the above ferrite porcelain composition, the magnetic loss is small and sufficiently irreversible in the microwave band of 10 GHz or less or 30 to 60 GHz. It is possible to obtain an isolator that has small size, low profile, and low cost.
図 13は非可逆回路素子の第 9の実施の形態としての十字ストリップ線路共鳴 型アイソレー夕である。  FIG. 13 shows a cross strip line resonance type isolator as a ninth embodiment of the nonreciprocal circuit device.
該第 9の実施の形態では、 誘電体 29 a、 29 bの一方の面に接地導体 27 a 、 27 bが形成されると共に、 誘電体 29の略中央部には円柱状のフェライト柱 28が埋設され、 ストリツプ線路 30が誘電体 29 a、 29 bに挟着されている 。 また、 ストリップ線路 30は整合用のコンデンサ部 31を有すると共に、 フエ ライト柱 28と当接可能となるように、 ストリップ線路 30上には λ/4共振器 32が形成されている。 そして、 本第 9の実施の形態では、 ストリップ線路 30 と λ/4共振器 32との交点で円偏波が生じるので、 図 10と同様の動作原理に よりアイソレー夕が形成される。  In the ninth embodiment, the ground conductors 27a and 27b are formed on one surface of the dielectrics 29a and 29b, and a cylindrical ferrite column 28 is provided at a substantially central portion of the dielectric 29. It is buried, and the strip line 30 is sandwiched between the dielectrics 29a and 29b. The strip line 30 has a matching capacitor portion 31 and a λ / 4 resonator 32 is formed on the strip line 30 so as to be able to contact the ferrite column 28. In the ninth embodiment, a circularly polarized wave is generated at the intersection of the strip line 30 and the λ / 4 resonator 32, so that an isolator is formed according to the same operation principle as in FIG.
本第 9の実施の形態でも、 フェライト柱 28が上記フェライト磁器組成物で形 成されているので、 10 GHz以下や 30〜60 GHzのマイクロ波帯で磁気損 失が小さく十分な非可逆性を有する小型 ·低背化や低コスト化がなされたアイソ レ一タを得ることが可能となる。  Also in the ninth embodiment, since the ferrite column 28 is formed of the above ferrite porcelain composition, the magnetic loss is small in the microwave band of 10 GHz or less or 30 to 60 GHz, and sufficient irreversibility is obtained. It is possible to obtain an isolator having a small size, a low profile, and a low cost.
図 14は本発明に係る無線装置の一実施の形態を示すシステム構成図であって 、 31は図 10〜図 13で示されたアイソレータであり、 32は図 5〜図 9で示 されたサーキユレ一夕である。  FIG. 14 is a system configuration diagram showing one embodiment of the wireless device according to the present invention, in which 31 is the isolator shown in FIGS. 10 to 13, and 32 is the circuit device shown in FIGS. One night.
すなわち、 本無線装置は、 変調信号が、 電圧制御信号 (Voltage Controlled 0 scillator: VCO) 33に入力されると、 アイソレ一夕 31を経て力ブラ 34に 入力され、 変調信号は力ブラ 34によりサーキユレ一夕 32とミキサ 36とに分 割され、 サーキユレ一夕 32に入力された変調信号はアンテナ 35から送信され る。 That is, when the modulated signal is input to the voltage controlled signal (Voltage Controlled 0 scillator: VCO) 33, the wireless signal is input to the power bra 34 via the isolator 31, and the modulated signal is The modulated signal is divided into one night 32 and the mixer 36, and the modulated signal input to the circuit 32 is transmitted from the antenna 35. You.
一方、 アンテナ 35に入力された受信信号はサーキュレー夕 32を経てミキサ 36に入力され、 力ブラ 34からの変調信号とミキシングされ、 受信周波数が引 き下げられて I F信号 (Intermediate Frequency:中間周波数) を得ている。 本実施の形態では、 上述したアイソレータ及びサーキユレ一夕を使用している ので、 数 GHz帯で使用される携帯電話や数 10 GHz帯で使用される無線 L A Nゃミリ波レーダにおいても、 磁気損失が小さく十分な非可逆性を有する小型 · 低背化や低コスト化が可能な無線装置を得ることが可能となる。  On the other hand, the received signal input to the antenna 35 is input to the mixer 36 via the circulator 32, and is mixed with the modulated signal from the power bra 34, and the reception frequency is lowered to obtain an IF signal (Intermediate Frequency). Have gained. In the present embodiment, since the above-described isolator and circuit are used, even in a mobile phone used in several GHz band or a wireless LAN / millimeter wave radar used in several tens GHz band, magnetic loss is reduced. It is possible to obtain a wireless device that is small and has sufficient irreversibility and that can be reduced in size and height and cost.
次に、 本発明の実施例を具体的に説明する。  Next, examples of the present invention will be specifically described.
実施例 1  Example 1
表 1の組成を有する一般式 {S r O · n (F e,.yI ny) 203}で表されるフエ ライト磁器組成物を作製した。 The general formula having the composition shown in Table 1 {S r O · n ( F e ,. y I n y) 2 0 3} ferrite ceramic composition represented by was prepared.
すなわち、 フェライト素原料として S r C〇3 (炭酸ストロンチウム)、 F e2 03 (酸化鉄)、 I n203 (酸化インジウム) を用意し、 これらフェライト素原料 を、 0. 00≤y≤0. 31、 n= 5. 50となるように秤量して調合し、 ボー ルミルで湿式混合した後、 大気中で仮焼し、 その後湿式粉碎して、 比表面積が約 5m2Zgの仮焼粉末を作製した。 That, S r C_〇 3 as ferrite raw materials (strontium carbonate), F e 2 0 3 (iron oxide), prepared I n 2 0 3 (indium oxide), these ferrite raw materials, 0. 00≤Y ≤0.31, n = 5.50, weighed and mixed, wet-mixed with a ball mill, calcined in air, and then wet-milled to obtain a temporary surface area of about 5m 2 Zg. Baked powder was prepared.
次いで、 この仮焼粉末を酢酸ビュル系パインダと混練してスラリーとし、 この スラリーを磁場中で脱水成形し、 その後大気中で焼成して焼結体を作製し、 一般 式 {S rO ' n (F e,.yI ny) 23}で表される試料番号 1〜 6のフェライト磁 器組成物を得た。 Next, the calcined powder is kneaded with a butyl acetate-based binder to form a slurry. The slurry is subjected to dehydration molding in a magnetic field, and then fired in the air to produce a sintered body, which is represented by the general formula (SrO'n ( The ferrite ceramic compositions of sample numbers 1 to 6 represented by F e ,. y Iny ) 2 { 3 } were obtained.
次に、 これら各試料の飽和磁化 Ms、 及び異方性磁界 Haを測定し、 測定され た飽和磁化 M s、 及び異方性磁界 H aに基づいて周波数と複素透磁率との関係を シミュレーションし、 10 GHz及び 40 GHzにおける透磁率差 (非可逆 性)、 及び正円偏波複素透磁率の虚数部 ' (磁気損失) を求めた。  Next, the saturation magnetization Ms and the anisotropic magnetic field Ha of each of these samples were measured, and the relationship between frequency and complex permeability was simulated based on the measured saturation magnetization Ms and the anisotropic magnetic field Ha. The permeability difference (irreversibility) at 10 GHz and 10 GHz and the imaginary part of the circularly polarized complex permeability (magnetic loss) were determined.
ここで、 飽和磁化 Msは VSM (試料振動型磁化測定装置) で測定した。  Here, the saturation magnetization Ms was measured with a VSM (sample vibration type magnetometer).
また、 異方性磁界 Haは以下のようにして求めた。 すなわち、 まず、 ネットヮ ークアナライザを使用し、 反磁界係数 Nが既知試料の磁気共鳴周波数 f rを外部 磁界なしで測定し、 数式 (4) に基づいて異方性磁界 Haを算出した。 27T f r = r · (Ha-N · Ms) - (4) The anisotropic magnetic field Ha was determined as follows. That is, first, using a network analyzer, the magnetic resonance frequency fr of a sample having a known demagnetizing factor N was measured without an external magnetic field, and the anisotropic magnetic field Ha was calculated based on Equation (4). 27T fr = r (Ha-NMs)-(4)
ここで、 ァはジャイロ定数 (=2. 21 X 105m/A · s) である。 Where ァ is the gyro constant (= 2.21 X 10 5 m / A · s).
さらに、 高抵抗測定器を用いて四端子法で比抵抗率 |0を測定した。  Furthermore, the specific resistance | 0 was measured by a four-terminal method using a high resistance measuring instrument.
表 1は各試料番号の組成と、 飽和磁化 Ms、 異方性磁界 Ha、 比抵抗率 p、 透 磁率差 Δ 、 虚数部^ ' を示している。  Table 1 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the specific resistance p, the permeability difference Δ, and the imaginary part ^ ′.
(以下余白) (Hereinafter the margin)
SrO-nCFe!-yln gOg 試料 透磁率差 虚数部 SrO-nCFe! -Yln gOg Sample Permeability difference Imaginary part
No. (非可逆性) (磁気損失)  No. (irreversibility) (magnetic loss)
n 飽和磁化 Ms異方性磁界 Ha 比抵抗率 /0 y (T) (kAZm) Δ/i ,' ( Ω . cm)  n Saturated magnetization Ms Anisotropic magnetic field Ha Specific resistivity / 0 y (T) (kAZm) Δ / i, '(Ω.cm)
10GHz 40GHz 10GHz 40GHz  10GHz 40GHz 10GHz 40GHz
1* 0.00 5.5 0.360 1536 4.99 0 0.96 1.2X1010 1 * 0.00 5.5 0.360 1536 4.99 0 0.96 1.2X10 10
2 0.05 5.5 0.350 1200 0. 14 -2.21 0 0. 19 3.5 1010 2 0.05 5.5 0.350 1200 0.14 -2.21 0 0.19 3.5 10 10
3 0. 15 5.5 0.300 570
Figure imgf000023_0001
-0.55 0.41 0 2. 2X1010
3 0.15 5.5 0.300 570
Figure imgf000023_0001
-0.55 0.41 0 2.2 X10 10
4 0.25 5.5 0. 150 310 -0.33 -0.22 0 0 7.5X1010 4 0.25 5.5 0.150 310 -0.33 -0.22 0 0 7.5X10 10
5 0.30 5.5 0. 110 100 -0.22
Figure imgf000023_0002
0 0 5.5X1010
5 0.30 5.5 0.110 100 -0.22
Figure imgf000023_0002
0 0 5.5X10 10
6* 0.31 5.5 0 0 0 0 0 0 6.0X1010 注) *印は本発明範囲外 p 6 * 0.31 5.5 0 0 0 0 0 0 6.0X10 10 Note) * is outside the scope of the present invention p
O  O
試料番号 1は、 従来から使用されている S rフェライト (異方性磁界 Ha : 1 536 kAZm) であり、 10 GH zでは透磁率差△ が 0. 05 «0. 1) と小さく、 所望の非可逆性を得ることができない。 また、 40 GHzでは虚数部 が 0. 96 (≥0. 05) であり、 磁気損失が大きい。 Sample No. 1 is a conventionally used Sr ferrite (anisotropic magnetic field Ha: 1536 kAZm). At 10 GHz, the magnetic permeability difference △ is as small as 0.05 «0.1. Irreversibility cannot be obtained. At 40 GHz, the imaginary part is 0.96 (≥0.05), indicating high magnetic loss.
試料番号 6は、 yが 0. 31であり、 0. 30を超えているため、 F eの含有 量が過少となり、 このため異方性磁界が 「0」 となって非可逆性を示さなくなつ た。  In sample No. 6, since y was 0.31 and exceeded 0.30, the content of Fe was too low, and the anisotropic magnetic field was `` 0 '', indicating no irreversibility. Natsu
これに対して試料番号 2〜 5は、 yが 0く y≤0. 30、 nが 5. 50である ので、 従来の S rフェライト (試料番号 1) に比べて異方性磁界 Haを低下させ ることができ、 これにより 10 GHz及び 40 GHzの少なくともいずれか一方 で絶対透磁率差 I Iが 0. 1以上となって所望の非可逆性を得ることができ 、 虚数部^ ' も 0. 05未満となって磁気損失を低減することができる。  On the other hand, in sample numbers 2 to 5, since y is 0, y≤0.30, and n is 5.50, the anisotropic magnetic field Ha is lower than that of the conventional Sr ferrite (sample number 1). As a result, the absolute magnetic permeability difference II becomes at least 0.1 at 10 GHz and / or 40 GHz to obtain a desired irreversibility, and the imaginary part ^ ′ is also 0. It becomes less than 05, and magnetic loss can be reduced.
すなわち、 試料番号 4、 ' 5は 10 GH ζ及び 40 GHzの双方で絶対透磁率差 I Δ Iが 0. 1以上となって所望の非可逆性を得ることができ、 虚数部 も 0となって磁気損失も生じず、 これら双方のマイクロ波帯で使用できる非可逆 回路素子を得ることが可能となる。  That is, for sample Nos. 4 and '5, the desired irreversibility can be obtained with the absolute permeability difference I ΔI of 0.1 or more at both 10 GHz and 40 GHz, and the imaginary part is also 0. As a result, it is possible to obtain a non-reciprocal circuit device that can be used in both microwave bands without magnetic loss.
また、 試料番号 2は、 40 GHzでは虚数部^ +〃 が 0. 19となって 0. 0 5以上となり、 磁気損失が大きくなるが、 10 GHzでは虚数部 ' が 0とな つて磁気損失が生じず、 また、 この 10 GHzでは絶対透磁率差 I Iも 0. 14 (>0. 1) であり、 所望の非可逆性を得ることができる。  In sample number 2, the imaginary part ^ + 〃 was 0.19 at 40 GHz, which was 0.05 or more, and the magnetic loss was large.However, at 10 GHz, the imaginary part 'was 0 and the magnetic loss was 0. At 10 GHz, the absolute permeability difference II is 0.14 (> 0.1), and the desired irreversibility can be obtained.
また、 試料番号 3は、 10GHzでは虚数部 〃 が 0· 41となって 0. 0 5以上であるため、 磁気損失が大きくなるが、 40 GHzでは虚数部 t +〃 が 0 となって磁気損失が生じず、 また、 この 40 GHzでは絶対透磁率差 I Iも 0. 55 (>0. 1) であり、 所望の非可逆性を得ることができる。  Also, in sample No. 3, the imaginary part 〃 is 0.41 and is not less than 0.05 at 10 GHz, so the magnetic loss is large.However, at 40 GHz, the imaginary part t + 〃 is 0 and the magnetic loss is 0. Does not occur, and at this 40 GHz, the absolute permeability difference II is also 0.55 (> 0.1), so that desired irreversibility can be obtained.
実施例 2  Example 2
〔実施例 1〕 と同様の方法 ·手順で、 表 2に示すような組成を有する一般式 { S rO ' n (F et_zA 1 z) 203}で表されるフェライト磁器組成物を作製した。 すなわち、 フェライト素原料として S r C〇3 (炭酸ストロンチウム)、 F e2 〇。 (酸化鉄)、 A 1203 (酸化アルミニウム) を用意し、 これらフェライト素原 料を、 0. 00≤z≤0. 31、 n= 5. 50となるように抨量して調合し、 ポ —ルミルで湿式混合した後、 大気中で仮焼し、 その後湿式粉砕して、 比表面積が 約 5 m2Z gの仮焼粉末を作製した。 In a similar manner and procedure as Example 1, a ferrite ceramic composition represented by the general formula having the composition shown in Table 2 {S rO 'n (F e t _ z A 1 z) 2 0 3} Object was produced. That, S r C_〇 3 (strontium carbonate) as ferrite raw materials, F e 2 〇. (Iron oxide), prepared A 1 2 0 3 (aluminum oxide), these ferrite MotoHara The ingredients are weighed and mixed so that 0.000≤z≤0.31, n = 5.50, wet-mixed with a pole mill, calcined in air, and then wet-pulverized. A calcined powder having a specific surface area of about 5 m 2 Z g was prepared.
次いで、 この仮焼粉末を酢酸ビニル系バインダと混練してスラリーとし、 この スラリーを磁場中で脱水成形し、 その後大気中で焼成して焼結体を作製し、 一般 式 rO ' n (F e^A 1 z) 203}で表される試料番号 1 1〜 15のフェライ ト磁器組成物を得た。 Next, the calcined powder is kneaded with a vinyl acetate-based binder to form a slurry. The slurry is subjected to dehydration molding in a magnetic field, and then fired in the air to produce a sintered body. ^ was obtained a 1 z) 2 0 3 ferrite ceramic composition of sample No. 1 1-15 represented by}.
次に、 これら各試料について、 〔実施例 1〕 と同様、 飽和磁化 Ms、 異方性磁界 Ha、 及び比抵抗率 pを測定し、 測定された飽和磁化 Ms及び異方性磁界 Haに 基づき各試料の 10 GH z及び 4 OGHzにおける透磁率差 Δ (非可逆性)、正 円偏波複素透磁率の虚数部 (磁気損失) を求めた。  Next, for each of these samples, the saturation magnetization Ms, the anisotropic magnetic field Ha, and the resistivity p were measured in the same manner as in [Example 1], and based on the measured saturation magnetization Ms and the anisotropic magnetic field Ha, each was measured. The permeability difference Δ (irreversibility) at 10 GHz and 4 OGHz of the sample and the imaginary part (magnetic loss) of the circularly polarized complex permeability were determined.
表 2は各試料番号の組成と、 飽和磁化 Ms、 異方性磁界 Ha、 比抵抗率 ί)、 透 磁率差 Δ^、 虚数部^ ' を示している。  Table 2 shows the composition of each sample number, saturation magnetization Ms, anisotropic magnetic field Ha, resistivity ί), permeability difference Δ ^, and imaginary part ^ '.
(以下、 余白) (Hereinafter, margin)
表 2 Table 2
Figure imgf000026_0001
Figure imgf000026_0001
注) *印は本発明範囲外 Note) * is outside the scope of the present invention
試料番号 1 1は、 試料番号 1 (実施例 表 1) と同様、 従来から使用されて いる S rフェライト (異方性磁界 Ha : 1 536 k A/m) であり、 1 0 GHz では透磁率差△ が 0. 0 5 «0. 1) と小さく、 所望の非可逆性を得ること ができない。 また、 40 GHzでは虚数部 が 0. 96 (≥0. 05) であ り、 磁気損失も大きい。 Sample No. 11 is a Sr ferrite (anisotropic magnetic field Ha: 1 536 kA / m) that has been used conventionally, as in Sample No. 1 (Example Table 1). The difference is as small as 0.05 (0.1), and the desired irreversibility cannot be obtained. At 40 GHz, the imaginary part is 0.96 (≥0.05), and the magnetic loss is large.
試料番号 1 5は zが 0. 3 1であり、 0. 30を超えているため、 F eの含有 量が過少となり、 このため異方性磁界が 「0」 となって非可逆性を示さなくなつ た。  Sample No. 15 has z of 0.31, which exceeds 0.30, and therefore the content of Fe is too small, so that the anisotropic magnetic field becomes `` 0 '', indicating irreversibility. It is gone.
これに対して試料番号 1 2〜14は、 zが 0<z≤0. 30であるので、 従来 の S rフヱライト (試料番号 1 1) に比べて異方性磁界 Haを増加させることが でき、 強磁性共鳴ピークの周波数が高周波側にシフトし、 その結果、 虚数部 ^ + 〃 も 0となる。 そして、 1 0 GHzでは絶対透磁率差 I Iが 0. 1未満であ り非可逆性を得ることはできないが、 40 GHzでは絶対透磁率差 I Δ Iは 0 . 1以上であり、 十分な非可逆性を得ることができる。 すなわち、 40GHzの マイクロ波帯では非可逆性が良好で磁気損失の生じないフェライト磁器組成物を 得ることができた。  On the other hand, in sample Nos. 12 to 14, since z is 0 <z≤0.30, the anisotropic magnetic field Ha can be increased compared to the conventional Sr-fluorite (sample No. 11). However, the frequency of the ferromagnetic resonance peak shifts to the high frequency side, and as a result, the imaginary part ^ + な る becomes zero. At 10 GHz, the absolute magnetic permeability difference II is less than 0.1 and irreversibility cannot be obtained, but at 40 GHz, the absolute magnetic permeability difference I ΔI is 0.1 or more, indicating that there is no sufficient non-reversibility. Reversibility can be obtained. That is, in the microwave band of 40 GHz, a ferrite porcelain composition having good irreversibility and no magnetic loss was obtained.
実施例 3  Example 3
〔実施例 1〕 と同様の方法,手順で、 表 3に示すような組成を有する一般式 { (S rト xB ax) 〇 · η (F eト y z I n y A 1 ζ) 23}で表されるフェライト磁器 組成物を作製した。 Method similar to Example 1, the procedure, formula having the composition shown in Table 3 {(S r preparative x B a x) 〇 · η (F e preparative yz I n y A 1 ζ) 2 A ferrite porcelain composition represented by { 3 } was prepared.
すなわち、 フェライト素原料として S r C03 (炭酸ストロンチウム)、 B aC 〇3 (炭酸バリウム)、 F e 23 (酸化鉄)、 I n23 (酸化インジウム)、 A 123 (酸化アルミニウム)、 を用意し、 これらフェライト素原料を、 0≤χ≤1. 00、 0. 00≤y≤0. 3 1、 0. 00≤z≤0. 3 1、 4. 90≤n≤6. 00となるように抨量して調合し、 ポールミルで湿式混合した後、 大気中で仮焼 し、 その後湿式粉砕して、 比表面積が約 5 m2Zgの仮焼粉末を作製した。 That, S r C0 3 as ferrite raw materials (strontium carbonate), B aC 〇 3 (barium carbonate), F e 23 (iron oxide), I n 23 (indium oxide), A 1 23 ( Aluminum oxide), and prepare these ferrite raw materials, 0≤χ≤1.00, 0.000≤y≤0.31, 0.000≤z≤0.31, 4.90≤n≤ The mixture was weighed so as to be 6.00, wet-mixed with a pole mill, calcined in the air, and then wet-pulverized to produce a calcined powder having a specific surface area of about 5 m 2 Zg.
次いで、 この仮焼粉末を酢酸ビニル系バインダと混練してスラリーとし、 この スラリーを磁場中で脱水成形し、 その後大気中で焼成して焼結体を作製し、 一般 式 { (S r,.xB ax) 〇 · n (F I nyA 1 z) 23}で表される試料番号 21 〜38のフェライト磁器組成物を得た。 Next, the calcined powder is kneaded with a vinyl acetate-based binder to form a slurry.The slurry is subjected to dehydration molding in a magnetic field, and then fired in the air to produce a sintered body, which has the general formula {(Sr ,. x B a x)· n (FI n y A 1 z) 2 〇 3} sample No. 21 represented by ~ 38 ferrite porcelain compositions were obtained.
次に、 これら各試料について、 〔実施例 1〕 と同様、 飽和磁化 Ms、 異方性磁界 Ha、 及び比抵抗率 <oを測定し、 測定された飽和磁化 Ms及び異方性磁界 Haに 基づき各試料の 10 GH z及び 40 GHzにおける透磁率差△ a (非可逆性)、正 円偏波複素透磁率の虚数部^ ' (磁気損失) を求めた。  Next, for each of these samples, the saturation magnetization Ms, the anisotropic magnetic field Ha, and the resistivity <o were measured in the same manner as in [Example 1], and based on the measured saturation magnetization Ms and the anisotropic magnetic field Ha. The permeability difference △ a (irreversibility) at 10 GHz and 40 GHz of each sample, and the imaginary part ^ ′ (magnetic loss) of the circularly polarized complex permeability were determined.
表 3は各試料番号の組成と、 飽和磁化 Ms、 異方性磁界 Ha、 比抵抗率 ιθ、 透 磁率差 Δ; 、 虚数部^ を示している。  Table 3 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the specific resistivity ιθ, the magnetic permeability difference Δ; and the imaginary part ^.
(以下、 余白) (Hereinafter, margin)
表 3 Table 3
(Sr-, _xBax) O ' n (Fe―_zInyAlz) 203 (Sr-, _ x Ba x ) O 'n (Fe―_ z In y Al z ) 2 0 3
透磁率差 虚 3 ¾部  Permeability difference imaginary part 3
試料  Sample
No. 飽和磁化 Ms異方性磁界 Ha (非可逆性) (磁気損  No. Saturation magnetization Ms Anisotropic magnetic field Ha (irreversibility) (Magnetic loss
X y z n  X y z n
(T) (kA/m) Δ /H ,失, ) 比抵抗率 jO  (T) (kA / m) Δ / H, loss,) resistivity jO
(Ω. cm) (Ω.cm)
10GHz 40GHz 10GHz 40GHz 10GHz 40GHz 10GHz 40GHz
21* 0 0.00 0.00 5.5 0.360 1536 0.05 4.99 0 0.96 1.2 1010 21 * 0 0.00 0.00 5.5 0.360 1536 0.05 4.99 0 0.96 1.2 10 10
22 0 0.15 0.05 5.5 0.289 930 0.26 -0.73 0.01 0 2.5X1010 22 0 0.15 0.05 5.5 0.289 930 0.26 -0.73 0.01 0 2.5X10 10
23 0 0.15 0.20 5.5 0.113 2002 0.01 0.17 0 0 3.5X101D 23 0 0.15 0.20 5.5 0.113 2002 0.01 0.17 0 0 3.5X10 1D
24 0 0.15 0.30 5.5 0.110 2200 0.01 0.12 0 0 5.0X 1011 24 0 0.15 0.30 5.5 0.110 2200 0.01 0.12 0 0 5.0X 10 11
25* 0 0.15 0.31 5.5 0 0 0 0 0 0 4.5X1011 25 * 0 0.15 0.31 5.5 0 0 0 0 0 0 4.5X10 11
26* 0 0.31 0.31 5.5 0 0 0 0 0 0 3.5X1010 26 * 0 0.31 0.31 5.5 0 0 0 0 0 0 3.5X10 10
27 0. 10 0. 12 0.05 5.5 0.235 810 0.29 - 0.51 0. 01 0 8.1 1010 27 0.10 0.12 0.05 5.5 0.235 810 0.29-0.51 0.01 0 8.1 10 10
28 0. 20 0. 12 0.06 5.5 0.225 800 0.28 - 0.48 0. 01 0 7.0X 1010 28 0.20 0.12 0.06 5.5 0.225 800 0.28-0.48 0.01 0 7.0X 10 10
29 0.40 0.13 0.05 5.5 0.230 820 0.26 -0.50 0.01 0 6.8X1010 29 0.40 0.13 0.05 5.5 0.230 820 0.26 -0.50 0.01 0 6.8X10 10
30 0.80 0.13 0.05 5.5 0.231 800 0.29 - 0.49 0.01 0 5.4X1010 30 0.80 0.13 0.05 5.5 0.231 800 0.29-0.49 0.01 0 5.4X10 10
31 1.00 0.12 0.06 5.5 0.233 790 0.30 - 0.49 0 0 9.2X 1010 31 1.00 0.12 0.06 5.5 0.233 790 0.30-0.49 0 0 9.2X 10 10
32* 0.20 0.30 0.30 4.9 0 0 0 0 0 0 8.5X106 32 * 0.20 0.30 0.30 4.9 0 0 0 0 0 0 8.5X10 6
33 0.20 0.13 0.13 5.5 0.221 770 0.31 - 0.45 0.01 0 7.7X107 33 0.20 0.13 0.13 5.5 0.221 770 0.31-0.45 0.01 0 7.7X10 7
34 0.20 0.12 0.13 5.4 0.226 890 0.21 -0.57 0 0 9.5X107 34 0.20 0.12 0.13 5.4 0.226 890 0.21 -0.57 0 0 9.5X10 7
35 0.20 0.13 0.13 5.5 0.233 900 0.21 - 0.60 0 0 1.0X 1010 35 0.20 0.13 0.13 5.5 0.233 900 0.21-0.60 0 0 1.0X 10 10
36 0.20 0.13 0.12 5.6 0.234 950 0.18 -0.67 0 0.01 2.5X1011 36 0.20 0.13 0.12 5.6 0.234 950 0.18 -0.67 0 0.01 2.5X10 11
37 0. 20 0.13 0. 12 5.9 0.241 810 0.30 - 0.51 0. 01 0. 02 8.1 109 37 0.20 0.13 0.12 5.9 0.241 810 0.30-0.51 0.01 0.02 8.1 10 9
38* 0.20 0.13 0.13 6.0 0.220 600 0.10 一 0.35 0.10 0.12 5.4X106 注) *印は本発明範囲外 38 * 0.20 0.13 0.13 6.0 0.220 600 0.10 one 0.35 0.10 0.12 5.4X10 6 Note) * marked is outside the scope of the present invention
試料番号 21は、 従来から使用されている S rフェライト (異方性磁界 Ha : 1536 kAZm) であり、 10 GH zでは透磁率差△ が 0. 05 «0. 1 ) と小さく、 所望の非可逆性を得ることができない。 また、 40 GHzでは虚数 部 ' が 0. 96 (≥0. 05) であり、 磁気損失も大きい。 Sample No. 21 is a conventionally used Sr ferrite (anisotropic magnetic field Ha: 1536 kAZm). At 10 GHz, the magnetic permeability difference △ is as small as 0.05 050.1) and the desired non- No reversibility can be obtained. At 40 GHz, the imaginary part 'is 0.96 (≥0.05), and the magnetic loss is large.
試料番号 25は yが 0. 31であり、 試料番号 26は、 y及び zが 0. 31で あり、 0. 30を超えているため、 F eの含有量が過少となり、 このため異方性 磁界が 「0」 となって非可逆性を示さなくなった。  In Sample No. 25, y was 0.31, and in Sample No. 26, y and z were 0.31 and exceeded 0.30. The magnetic field became “0” and showed no irreversibility.
また、 試料番号 32は、 nが 4. 90であり、 5. 00未満であるため、 異方 性磁界 Haが 「0」 となって非可逆性を示さなくなり、 また比抵抗率! 0も 8. 5 X 106Ω · cmと小さくなつた。 In sample No. 32, since n was 4.90 and was less than 5.00, the anisotropic magnetic field Ha became “0”, indicating no irreversibility, and the specific resistivity! 5 x 10 6 Ω · cm.
また、 試料番号 38は、 nが 6. 00であるため、 異方性磁界 Haが 「0」 と なって非可逆性を示さなくなり、 また比抵抗率 iOも 5. 4X 106Ω · cmと小 さくなつた。 In sample No. 38, since n was 6.00, the anisotropic magnetic field Ha became “0”, indicating no irreversibility, and the specific resistance iO was 5.4 × 10 6 Ω · cm. It was small.
これに対して試料番号 22〜 24、 27〜31、 及び 33〜37は、 y及び z がそれぞれ 0<y≤0. 30、 0<z≤0. 30、 nが 5. 00≤n<6. 00 であるので、 10 GHz及び 40 GHzの少なくともいずれか一方で絶対透磁率 差 I Iが 0. 1以上となって所望の非可逆性を得ることができ、 虚数部 + " も 0. 05未満となって磁気損失を低減することができる。  On the other hand, in sample numbers 22 to 24, 27 to 31, and 33 to 37, y and z are 0 <y≤0.30, 0 <z≤0.30, and n is 5.00≤n <6, respectively. Since the absolute magnetic permeability difference II is 0.1 or more in at least one of 10 GHz and 40 GHz, the desired irreversibility can be obtained, and the imaginary part + "is also less than 0.05. As a result, the magnetic loss can be reduced.
すなわち、 試料番号 22、 27〜31、 及び 33〜37は、 10 GHz及び 4 0 GHzの双方で絶対透磁率差 I Δ Iが 0. 1以上となって所望の非可逆性を 得ることができ、 虚数部/ ζ ' も 0. 05未満となって磁気損失も小さく、 これ ら双方のマイク口波帯で使用できる非可逆回路素子を得ることが可能となる。 また、 試料番号 23、 24は、 10 GHzでは絶対透磁率差 I Iが 0. 1 未満であり、 所望の非可逆性を得ることができなくなるが、 40 GHzでは絶対 透磁率差 I Iも 0. 1以上であり、 所望の非可逆性を得ることができ、 虚数 部 も 0となつて磁気損失が生じないことが分かる。  In other words, for sample numbers 22, 27 to 31, and 33 to 37, the desired irreversibility can be obtained because the absolute magnetic permeability difference I ΔI is 0.1 or more at both 10 GHz and 40 GHz. Since the imaginary part / ζ ′ is also less than 0.05, the magnetic loss is small, and it is possible to obtain a non-reciprocal circuit element that can be used in both microphone mouthbands. In Sample Nos. 23 and 24, the absolute permeability difference II was less than 0.1 at 10 GHz, and the desired irreversibility could not be obtained.However, the absolute permeability difference II was 0.1 at 40 GHz. As described above, it can be seen that desired irreversibility can be obtained, and that the imaginary part also becomes 0 and no magnetic loss occurs.
そして、 I η3+及び A 13 +の含有モル量、すなわち y及び zを適宜調整するこ とにより、 試料番号 22、 27〜31、 及び 33〜37のように 10 GHz及び 40 GHzの双方で非可逆性と低磁気損失を両立させることのできるフェライト 磁器組成物を得ることができる。 Then, I eta 3+ and A 1 3 + content molar amount of, that is, by a suitably adjusted child y and z, both 10 GHz and 40 GHz as in Sample No. 22, 27-31, and 33-37 Ferrite that can achieve both irreversibility and low magnetic loss A porcelain composition can be obtained.
実施例 4  Example 4
表 4の組成を有する一般式 { (S r,— XB ax) O ' n (F e,.y.zI nyA 1 z) 23 + o;Ca + ^Co}のフェライト磁器組成物を作製した。 Formula having the composition shown in Table 4 {(S r, - X B a x) O 'n (F e ,. y z I n y A 1 z.) 2 〇 3 + o; Ca + ^ Co } ferrite A porcelain composition was prepared.
すなわち、 〔実施例 1〕 と略同様の方法,手順を使用し、 フェライト素原料とし ての S r C〇3 (炭酸ストロンチウム)、 B a C03 (炭酸バリウム)、 F e 23 (酸化鉄)、 I n 203 (酸化インジウム)、 A 1203 (酸化アルミニウム) が x = 0. 2、 n= 5. 5、 y=0. 13、 z = 0. 13となるように抨量して調合し 、 ポールミルを使用して湿式混合した後、 大気中で仮焼し、 一般式 { (S r,.xB a x) 〇 · n (F e^I nyA lz) 203}で表される仮焼粉末を作製した。 That is, substantially the same manner as Example 1, using the procedure, S r C_〇 3 of the ferrite raw materials (strontium carbonate), B a C0 3 (barium carbonate), F e 23 (oxidation iron), I n 2 0 3 (indium oxide), a 1 2 0 3 (as aluminum oxide) is x = 0. 2, n = 5. 5, y = 0. 13, z = 0. 13抨量was formulated, after wet mixing using a ball mill, calcined in the air, the general formula {(S r ,. x B a x) 〇 · n (F e ^ I n y a l z ) to prepare a calcined powder represented by 2 0 3}.
次いで、 この仮焼粉末 (主成分) 1モルに対し、 C aC03 (炭酸カルシウム )、 及び CoO (酸化コバルト) の含有量が、 総計で 0〜0. 9000モルとなる ように添加し、 湿式粉碎し、 比表面積が約 5 m2Zgの仮焼粉砕品を作製した。 次いで、 この仮焼粉砕品を酢酸ビニル系バインダ樹脂と混練させてスラリー化 し、 さらに磁場中で脱水成形機を使用して成形加工を施し、 その後大気中で焼成 処理を施し、 一般式 { (S rト XB ax) 〇 · n (F e^. nyA lz) 23+ cuC a + j3 Co}で表される試料番号 41〜69のフェライト磁器組成物を得た。 Then, to the calcined powder (principal component) 1 mol, C AC0 3 (calcium carbonate), and the content of CoO (cobalt oxide) is then added to a 0 to 0.9000 moles in total, wet This was ground to prepare a calcined and ground product having a specific surface area of about 5 m 2 Zg. Next, the calcined and pulverized product is kneaded with a vinyl acetate-based binder resin to form a slurry. to obtain a S r preparative X B a x) 〇 · n (F e ^. n y a l z) 2 〇 3 + cuC a + j3 ferrite ceramic composition of the sample No. 41-69, represented by Co}.
次に、 〔実施例 1〕 と同様、 各試料の飽和磁化 Ms、 異方性磁界 Ha、 10GH z及び 40GHzにおける透磁率差 Δ (非可逆性)、及び正円偏波複素透磁率の 虚数部 ' (磁気損失)、 比抵抗率 /0を求めた。  Next, as in [Example 1], the saturation magnetization Ms of each sample, the anisotropy field Ha, the permeability difference Δ (irreversibility) at 10 GHz and 40 GHz, and the imaginary part of the circularly polarized complex permeability '(Magnetic loss) and specific resistivity / 0 were determined.
さらに、 各試料を、 図 7に示す非放射性誘電体線路 Y型サーキユレ一夕に実装 し、 ネットワークアナライザを使用して信号伝送損失 (挿入損失 I. L) を測定 した。  Furthermore, each sample was mounted on the non-radiative dielectric line Y-type circuit shown in Fig. 7, and the signal transmission loss (insertion loss I. L) was measured using a network analyzer.
表 4は各試料の組成と、 飽和磁化 Ms、 異方性磁界 Ha、 透磁率差 Δ 、 虚数 部 +〃 、 比抵抗率 /□、 挿入損失 I. L. を示している。 Table 4 shows the composition of each sample, the saturation magnetization Ms, the anisotropic magnetic field Ha, the permeability difference Δ, the imaginary part + 〃, the specific resistivity / □, and the insertion loss IL.
(以下、 余白) 表 4 (Hereinafter, margin) Table 4
Figure imgf000032_0001
Figure imgf000032_0001
各試料番号 4 1〜6 9は、 x、 y、 z、 及び nが本発明範囲内であるので、 絶 対透磁率差 I Iが 0. 1以上となって所望の非可逆性を得ることができ、 虚 数部 +" も 0. 0 5未満となって磁気損失を低減することができる。 In each of sample numbers 41 to 69, since x, y, z, and n are within the range of the present invention, the absolute irreversibility can be obtained by the absolute magnetic permeability difference II being 0.1 or more. The imaginary part + "is also less than 0.05, so that the magnetic loss can be reduced.
しかしながら、 試料番号 4 1、 42、 49、 5 6、 6 5は (α + /3) 値が 0. 0 0 1未満であるため、 比抵抗率! 0が 1. 9 X 1 09〜 2. 8 X 1 010Ω · cm と小さく、 挿入損失 I . L. も 1. 0 6〜: 1. 24 dBと大きくなる。 However, Sample No. 4 1, 42, 49, 5 6, 6 5 (α + / 3) for value of 0.0 0 less than 1, the specific resistivity? 0 1. 9 X 1 0 9 ~ 2 . small as 8 X 1 0 10 Ω · cm , the insertion loss I L. also 1.0 6:. 1. increases the 24 dB.
また、 試料番号 48、 5 5、 6 0、 64、 6 9は ( a + /3 ) 値が 0. 8を超え ているため、 比抵抗率 ιθが 1. 6 X 1 09〜2. 9 X 1 01 ()Ω · cm以下と小さ く、 挿入損失 I . L. も 1. 0 6〜: L. 5 9 dBと大きくなる。 Further, Sample No. 48, 5 5, 6 0, 64, 6-9 (a + / 3) for value exceeds 0.8, the resistivity ratio ιθ is 1. 6 X 1 0 9 to 2. 9 X 10 1 () Ω · cm or less, and the insertion loss I.L. is 1.06 to: L. 59 dB, which is large.
これに対して試料番号 43〜47、 5 0〜5 5、 5 7〜5 9、 6 1〜6 3、 6 6〜6 8は、 (α + )3)値が 0, 0 0 1 0〜0. 8 0 0の範囲内にあるため、 比抵 抗率 Pは 4. 5 X 1 01 (〜 1. 8 X 1 013 Ω · cmであり、 また揷入損失 I . L . が 0. 46〜0. 9 9 dBであり、 比抵抗率 pを増大させて挿入損失 I . L. を低減することのできるフェライト磁器組成物を得ることができる。 In contrast, sample numbers 43 to 47, 50 to 55, 57 to 59, 61 to 63, and 66 to 68 have (α +) 3) values of 0, Since it is within the range of 0.80, the specific resistance P is 4.5 × 10 1 (up to 1.8 × 10 13 Ωcm, and the input loss I.L. 46 to 0.99 dB, and it is possible to obtain a ferrite porcelain composition capable of increasing the specific resistance p and reducing the insertion loss IL.
実施例 5 Example 5
〔実施例 4〕 と同様の方法 ·手順で、 表 5の組成を有する一般式 { (S r^B a χ) 〇 · η (F I ny) 23+ a C a + )3 C o} (x= 0、 n= 5. 5、 0≤y ≤ 0. 3 1、 = β = 0. 2 5) で表される試料番号 7 1〜7 6のフェライト磁 器組成物を作製した。 In a similar manner and procedure as Example 4, the general formula having the composition shown in Table 5 {(S r ^ B a χ) 〇 · η (FI n y) 23 + a C a +) 3 C o } (x = 0, n = 5.5, 0≤y≤0.31, = β = 0.25) Ferrite ceramic compositions of sample numbers 71 to 76 were prepared.
また、 比較例として C a及び C oを添加していないフェライト磁器組成物を作 製した。  Further, as a comparative example, a ferrite porcelain composition to which Ca and Co were not added was prepared.
次に、 〔実施例 1〕 と同様、 各試料の飽和磁化 Ms、 異方性磁界 Ha、 1 0 GH z及び 4 O GHzにおける透磁率差 Δ (非可逆性)、及び正円偏波複素透磁率の 虚数部^ ' (磁気損失)、 比抵抗率 pを求めた。  Next, as in Example 1, the saturation magnetization Ms of each sample, the anisotropy field Ha, the permeability difference Δ (irreversibility) at 10 GHz and 4 O GHz, and the circularly polarized complex transmittance The imaginary part of magnetic susceptibility ^ '(magnetic loss) and resistivity p were determined.
表 5は各試料番号の組成と、 飽和磁化 Ms、 異方性磁界 Ha、 透磁率差 Δ 、 虚数部 ' 、 比抵抗率 0を示している。  Table 5 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the magnetic permeability difference Δ, the imaginary part ′, and the specific resistivity 0.
(以下、 余白) 表 5 (Hereinafter, margin) Table 5
(Srト xBax) 0"n(Fe-, _vIny) z03 + Of Ca+ Co (Sr x Ba x ) 0 "n (Fe-, _ v In y ) z 0 3 + Of Ca + Co
透磁率差 Ajw 虚数部 jt +" 比抵抗率 /0 試料 飽和磁 異方性 (非可逆性) (磁気損失) (Q-cm)  Permeability difference Ajw Imaginary part jt + "Resistivity / 0 sample Saturated magnetic anisotropy (irreversibility) (magnetic loss) (Q-cm)
No. X y n 化 Ms 磁界 Ha  No. Xy n Ms Magnetic field Ha
(T) (kA/m) 10GHz 40GHz 10GHz 40GHz 実施例  (T) (kA / m) 10 GHz 40 GHz 10 GHz 40 GHz Example
比較例 (α = β =0.25)  Comparative example (α = β = 0.25)
71* 0 0.00 5.5 0.346 1525 0.04 4.98 0 0.97 2.1 Χ1013 1.2Χ1010 71 * 0 0.00 5.5 0.346 1525 0.04 4.98 0 0.97 2.1 Χ10 13 1.2Χ10 10
72 0 0.05 5.5 0.336 1180 0.13 2.20 0 0.20 6.2Χ1013 3.5Χ1010 72 0 0.05 5.5 0.336 1180 0.13 2.20 0 0.20 6.2Χ10 13 3.5Χ10 10
73 0 0.15 5.5 0.286 555 2.93 0.55 0.41 0.01 3.7Χ1013 2.2 1010 73 0 0.15 5.5 0.286 555 2.93 0.55 0.41 0.01 3.7Χ10 13 2.2 10 10
74 0 0.25 5.5 0.134 290 0.32 0.21 0 0.01 1.5Χ1014 7.5Χ1010 74 0 0.25 5.5 0.134 290 0.32 0.21 0 0.01 1.5Χ10 14 7.5Χ10 10
75 0 0.30 5.5 0.095 90 0.22 0.13 0 0.01 9.6Χ1013 5.5Χ1010 75 0 0.30 5.5 0.095 90 0.22 0.13 0 0.01 9.6Χ10 13 5.5Χ10 10
76* 0 0.31 5.5 0 0 0 0 0 0.01 1.0Χ1014 6. ΟΧ1010 76 * 0 0.31 5.5 0 0 0 0 0 0.01 1.0Χ10 14 6. 6.10 10
*は本発明範囲外を示す * Indicates outside the scope of the present invention
試料番号 7 1は、 従来の S rフェライトに C a成分及び Co成分を添加したも のであり、 10 GHzでは絶対透磁率差 I Iが 0. 04と小さく所望の非可 逆性を得ることができない。 また 40 GHzでは虚数部 〃 が 0. 97 (≥0 . 05) であり、 磁気損失が大きくなる。 In sample No. 71, the Ca component and the Co component were added to the conventional Sr ferrite, and at 10 GHz, the absolute permeability difference II was as small as 0.04, and the desired irreversibility could not be obtained. . At 40 GHz, the imaginary part 0 is 0.97 (≥0.05), and the magnetic loss increases.
試料番号 76は、 yが 0. 3 1であり、 0. 30を超えているため、 F eの含 有量が過少となり、 このため異方性磁界も 「0」 となって非可逆性を示さなくな る。  In sample No. 76, since y was 0.31 and exceeded 0.30, the content of Fe was too small, and the anisotropic magnetic field was also set to “0”, indicating irreversibility. No longer shown.
また、 各試料番号 7 1〜76から明らかなように、 C a成分及び Co成分を各 0. 25モル添加することにより、 添加しない場合に比べ、 比抵抗率 pが飛躍的 に増大することが分かる。  Also, as is clear from the sample numbers 71 to 76, when 0.25 mol of each of the Ca component and the Co component was added, the specific resistance p was dramatically increased as compared with the case where no Ca component and Co component were added. I understand.
実施例 6  Example 6
〔実施例 4〕 と同様の方法,手順で、 表 6の組成を有する一般式 { (S Γ ι.χΒ a x) 〇 · n (F e,.zA 1 z) 203+ a C a + j8 C o} (x = 0、 n= 5. 5、 0≤ z ≤ 0. 31、 α = β = 0. 25) で表される試料番号 8 1〜85のフェライト磁 器組成物を作製した。 Method similar to Example 4, the procedure, formula having the composition shown in Table 6 {(S Γ ι. Χ Β a x) 〇 · n (F e ,. z A 1 z) 2 0 3 + a C a + j8 Co} (x = 0, n = 5.5, 0 ≤ z ≤ 0.31, α = β = 0.25) Sample No. 8 Ferrite ceramic composition of 1 to 85 Was prepared.
また、 比較例として C a及び Coを添加していないフェライト磁器組成物を作 製した。  As a comparative example, a ferrite porcelain composition to which Ca and Co were not added was prepared.
次に、 〔実施例 4〕 と同様、 各試料の飽和磁化 Ms、 異方性磁界 Ha、 1 0GH z及び 40GHzにおける透磁率差△ a (非可逆性)、及び正円偏波複素透磁率の 虚数部 ' (磁気損失)、 比抵抗率 Pを求めた。  Next, as in [Example 4], the saturation magnetization Ms of each sample, the anisotropy field Ha, the permeability difference △ a at 10 GHz and 40 GHz (irreversibility), and the circularly polarized complex permeability were calculated. The imaginary part '(magnetic loss) and the resistivity P were determined.
表 6は各試料番号の組成と、 飽和磁化 Ms、 異方性磁界 Ha、 透磁率差 Δ 、 虚数部^ ' 、 比抵抗率 pを示している。  Table 6 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the magnetic permeability difference Δ, the imaginary part '′, and the specific resistance p.
(以下、 余白) 表 6
Figure imgf000036_0001
— Alz)203+ (XC + βθο
(Hereinafter, margin) Table 6
Figure imgf000036_0001
— Al z ) 2 0 3 + (XC + βθο
透磁率差厶〃 虚数部 JU+" 比抵抗率 ο  Permeability difference 〃 Imaginary part JU + "Resistivity ο
試料 飽和磁 異方性 (非可逆性) (磁気損失) (Q-cm)  Sample Saturated magnetic anisotropy (irreversible) (magnetic loss) (Q-cm)
No. X z n 化 Ms 磁界 Ha  No. X zn Ms Magnetic field Ha
(T) (kA/m) 10GHz 40GHz 10GHz 40GHz 実施例  (T) (kA / m) 10 GHz 40 GHz 10 GHz 40 GHz Example
ία = β=0.25) 比較例 (ία = β = 0.25) Comparative example
81* 0 0.00 5.5 0.346 1525 0.04 4.98 0 4. 97 2. 1 1013 1.2Χ1010 81 * 0 0.00 5.5 0.346 1525 0.04 4.98 0 4.97 2. 1 10 13 1.2Χ10 10
82 0 0.05 5. 5 0.337 1785 0.06 0.59 0 0.01 5.6x 1013 3.2 1010 82 0 0.05 5.5 5 0.337 1785 0.06 0.59 0 0.01 5.6x 10 13 3.2 10 10
83 0 0. 10 5. 5 0.314 2140 0.03 0.28 0 0.01 5.3Χ1013 3. 1 X 101Q 83 0 0.10 5.5 5 0.314 2140 0.03 0.28 0 0.01 5.3Χ10 13 3.1 X 10 1Q
84 0 0.30 5. 5 0. 117 3030 0.01 0. 10 0 0.01 5.4Χ1013 3. 1 1010 84 0 0.30 5.5 0.117 3030 0.01 0.10 0 0.01 5.4 Χ10 13 3.1 10 10
85* 0 0.31 5.5 0 3885 0 0 0 0.01 6. 5Χ1013 3.8X1010 85 * 0 0.31 5.5 0 3885 0 0 0 0.01 6.5 Χ10 13 3.8X10 10
*は本発明範囲外を示す * Indicates outside the scope of the present invention
試料番号 8 1は、 従来の S rフェライ卜に C a成分と C o成分を添加したもの であり、 1 0 GHzでは絶対透磁率差 I Δ Iが 0. 04と小さく所望の非可逆 性を得ることができない。 また 40 GHzでは虚数部 〃 が 4. 9 7 (≥ 0. 0 5) であり、 磁気損失が大きくなる。 Sample No. 81 was obtained by adding Ca and Co components to a conventional Sr ferrite, and at 10 GHz, the absolute magnetic permeability difference I ΔI was as small as 0.04, indicating the desired irreversibility. I can't get it. At 40 GHz, the imaginary part 4. is 4.97 (≥ 0.05), and the magnetic loss increases.
試料番号 8 5は、 zが 0. 3 1であり、 0. 3 0を超えているため、 F eの含 有量が過少となり、 このため異方性磁界も 「0」 となって非可逆性を示さなくな る。  In sample No. 85, z is 0.31, and since it exceeds 0.30, the content of Fe is too small, and the anisotropic magnetic field is also `` 0 '', which is irreversible. Will not show any sexuality.
また、 試料番号 8 1〜8 5から明らかなように、 C a成分及び C o成分を各 0 . 2 5モル添加することにより、 添加していない比較例に比べ、 比抵抗率 pが飛 躍的に増大することが分かる。  Also, as is clear from Sample Nos. 81 to 85, the specific resistance p was significantly increased by adding 0.25 mol of each of the Ca component and the Co component, as compared with the comparative example in which the Ca component and the Co component were not added. It can be seen that the number increases.
実施例 7  Example 7
〔実施例 4〕 と同様の方法,手順で、 表 6の組成を有する一般式 { (S r^B a χ) 〇 · η (F e,.y.z I nyA 1 z) 203+ a C a + j3 C o} (x= 0、 5. 0≤n≤ 6. 0、 0≤z≤0. 3 1、 0≤z≤0. 3 1、 = = 0. 2 5) で表される 試料番号 9 1〜 1 0 8のフェライト磁器組成物を作製した。 By the same method and procedure as in [Example 4], the general formula having the composition shown in Table 6 ((S r ^ B a χ ) 〇 · η (F e, .y .z I n y A 1 z ) 20 3 + a C a + j3 C o} (x = 0, 5.0 ≤ n ≤ 6.0, 0 ≤ z ≤ 0.31, 0 ≤ z ≤ 0.31, = = 0.25) The ferrite porcelain compositions of sample numbers 91 to 108 represented by are prepared.
また、 比較例として C a及び C oを添加していないフェライト磁器組成物を作 製した。  Further, as a comparative example, a ferrite porcelain composition to which Ca and Co were not added was prepared.
次に、 〔実施例 4〕 と同様、 各試料の飽和磁化 Ms、 異方性磁界 Ha、 1 0 GH z及び 4 O GHzにおける透磁率差 Δ (非可逆性)、及び正円偏波複素透磁率の 虚数部 ' (磁気損失)、 比抵抗率 ρを求めた。  Next, as in [Example 4], the saturation magnetization Ms of each sample, the anisotropy field Ha, the permeability difference Δ (irreversibility) at 10 GHz and 4 O GHz, and the circularly polarized complex permeability The imaginary part of magnetic susceptibility (magnetic loss) and resistivity ρ were determined.
表 7は各試料番号の組成と、 飽和磁化 Ms、 異方性磁界 Ha、 透磁率差 Δ 、 虚数部 、 比抵抗率 ιθを示している。  Table 7 shows the composition of each sample number, the saturation magnetization Ms, the anisotropic magnetic field Ha, the magnetic permeability difference Δ, the imaginary part, and the specific resistivity ιθ.
(以下、 余白) 表 7 (Hereinafter, margin) Table 7
Figure imgf000038_0001
Figure imgf000038_0001
*は本発明範囲外を示す * Indicates outside the scope of the present invention
試料番号 91は、 従来の S rフェライトに C a成分と C o成分を添加したもの であり、 10 GHzでは絶対透磁率差 I Δ ζ Iが 0. 04と小さく所望の非可逆 性を得ることができない。 また 40 GHzでは虚数部 〃 が 4. 98 (≥ 0. 05) であり、 磁気損失が大きくなる。 Sample No. 91 is obtained by adding the Ca component and the Co component to the conventional Sr ferrite.At 10 GHz, the absolute magnetic permeability difference IΔζI is as small as 0.04, and the desired irreversibility can be obtained. Can not. At 40 GHz, the imaginary part 4. is 4.98 (≥ 0.05), and the magnetic loss increases.
試料番号 95は、 zが 0. 31であり、 0. 30を超えているため、 F eの含 有量が過少となり、 このため異方性磁界も 「0」 となって非可逆性を示さなくな る。  In sample No. 95, z was 0.31 and exceeded 0.30, so the Fe content was too low, and the anisotropic magnetic field also became `` 0 '', indicating irreversibility. Disappears.
試料番号 96は、 y及び zが共に 0. 31であり、 0. 30を超えているため 、 F eの含有量が過少となり、 このため異方性磁界も 「0」 となって非可逆性を 示さなくなる。  In sample No. 96, both y and z are 0.31, and since it exceeds 0.30, the content of Fe is too small, and the anisotropic magnetic field is also “0”, which is irreversible. Will not be shown.
また、 試料番号 102、 108は、 nが 4. 9又は 6. 0であり、 5. 0≤n <6. 0の範囲外となるため、 磁気異方性を示さなくなり、 非可逆性を示さなく なる。  In sample numbers 102 and 108, n was 4.9 or 6.0, and the value of n was out of the range of 5.0≤n <6.0. Disappears.
また、 試料番号 91〜108から明らかなように、 Ca成分及び Co成分を各 0. 25モル添加することにより、 添加していない比較例に比べ、 比抵抗率 pが 飛躍的に増大することが分かる。  Also, as is clear from Sample Nos. 91 to 108, when 0.25 mol of each of the Ca component and the Co component was added, the specific resistance p was significantly increased as compared with the comparative example in which no Ca component and Co component were added. I understand.
実施例 8  Example 8
〔実施例 1〕 と同様の方法 ·手順で、 表 8に示すような組成のフェライト磁器 組成物を作製した。  By the same method and procedure as in [Example 1], ferrite porcelain compositions having compositions as shown in Table 8 were produced.
すなわち、 フェライト素原料として S r C〇3 (炭酸ストロンチウム)、 B aC 03 (炭酸バリウム)、 Fe 203 (酸化鉄)、 I n203 (酸化インジウム)、 A 123 (酸化アルミニウム) を使用し、 x=0. 10、 0. 1 l≤y≤0. 13、 0. 04≤z≤0. 06、 5. 50≤n≤ 5. 60となるように枰量して調合し 、 ポールミルで湿式混合した後、 大気中で仮焼した。 次いで、 この仮焼物に Mn O及び Z r 02を所定量添加し、湿式粉砕して比表面積が約 5 m2Zgの仮焼粉末 を作製した。 That, S r C_〇 as ferrite raw materials 3 (strontium carbonate), B aC 0 3 (barium carbonate), Fe 2 0 3 (iron oxide), I n 2 0 3 (indium oxide), A 1 23 ( Aluminum oxide) and weigh so that x = 0.10, 0.1 l≤y≤0.13, 0.04≤z≤0.06, 5.50≤n≤5.60 The mixture was wet-mixed with a pole mill and calcined in the air. Then, the Mn O and Z r 0 2 was added a predetermined amount of the calcined product, the specific surface area by wet grinding to prepare a calcined powder of about 5 m 2 Zg.
次に、 この仮焼粉末を酢酸ビニル系パインダと混練してスラリーとし、 このス ラリーを磁場中で脱水成形し、 その後大気中で焼成して焼結体を作製し、 Mn成 分及び Z r成分を含有した一般式 { (S r i_xB ax) 〇 · η (F e ,.y.z I n y A 1 ζ ) 203}で表される試料番号 1 1 1〜122のフェライト磁器組成物を得た。 次に、 〔実施例 1〕 と同様、 比抵抗率 P、 各試料の 10 GHz及び 40 GHzに おける透磁率差 Δ (非可逆性)、 正円偏波複素透磁率の虚数部^ ' (磁気損失 ) を求め、 さらに誘電損失 tan δを摂動法で測定した。 Next, the calcined powder was kneaded with a vinyl acetate-based binder to form a slurry. The slurry was dehydrated and formed in a magnetic field, and then fired in the air to produce a sintered body. formula containing components {(S ri _ x B a x) 〇 · η (F e,. y . z I n y a 1 ζ ) Was obtained 2 0 3 ferrite ceramic composition of Sample No. 1 1 1-122 represented by}. Next, as in [Example 1], the specific resistivity P, the permeability difference Δ (irreversibility) at 10 GHz and 40 GHz of each sample, and the imaginary part of the circularly polarized complex permeability ^ '(magnetic Loss), and the dielectric loss tan δ was measured by the perturbation method.
表 8は各試料番号の組成と、 透磁率差 Δ 、 虚数部 ' 、 誘電損失 tan δ、 比 抵抗率 Ρを示している。  Table 8 shows the composition of each sample number, the magnetic permeability difference Δ, the imaginary part ', the dielectric loss tan δ, and the specific resistivity Ρ.
(以下、 余白) (Hereinafter, margin)
表 8 Table 8
(Sr— xBax) O■ n (Fe,— y— JnyAlz) 203 (Sr— x Ba x ) O ■ n (Fe, — y — JnyAl z ) 2 0 3
試料 透磁率差 虚数部 Sample Permeability difference Imaginary part
No. Mn Zr Mn+Zr (非可逆性) (磁気損失) 比抵抗率 /0 No. Mn Zr Mn + Zr (irreversible) (magnetic loss) Specific resistivity / 0
X y z n X y z n
d (重量%) (重量%) tano (Ω. cm)  d (% by weight) (% by weight) tano (Ω.cm)
10GHz 40GHz 10GHz 40GHz 10GHz 40GHz 10GHz 40GHz
M C  M C
111 0.1 0.12 0.05 5.50 0.00 0.05 0.05 0.28 -0.50 0.01 0 8 x 10一4 3.6X1011 111 0.1 0.12 0.05 5.50 0.00 0.05 0.05 0.28 -0.50 0.01 0 8 x 10 1-4 3.6X10 11
112 0.1 0.12 0.06 5.50 0.50 0.04 0.54 0.25 -0.46 0.01 0 2 X 10~4 5.8X1011 112 0.1 0.12 0.06 5.50 0.50 0.04 0.54 0.25 -0.46 0.01 0 2 X 10 ~ 4 5.8X10 11
113 0.1 0.13 0.05 5.50 0.90 0.02 0.92 0.26 -0.49 0.01 0 1 10"4 6.8X 10"113 0.1 0.13 0.05 5.50 0.90 0.02 0.92 0.26 -0.49 0.01 0 1 10 " 4 6.8X 10"
114 0. 1 0.13 0.05 C 5I.50 1.10 0.06 1.16
Figure imgf000041_0001
一 0.49 0. 01 0 2X10"4 5.5X1010
114 0.1 0.13 0.05 C 5 I.50 1.10 0.06 1.16
Figure imgf000041_0001
One 0.49 0.01 0 2X10 " 4 5.5X10 10
115 0. 1 0. 12 0.06 5.5 1.47 115 0.1 0.12 0.06 5.5 1.47
o0 0.03 1.50 0.30 -0.48 0 0 9X10—4 8.1 109 o0 0.03 1.50 0.30 -0.48 0 0 9X10-4 8.1 10 9
116 0.1 0.13 0.05 5.50 1.50 0.02 1.52 0.29 -0.46 0 0 25X10— 4 6.5X106 116 0.1 0.13 0.05 5.50 1.50 0.02 1.52 0.29 -0.46 0 0 25X10-- 4 6.5X10 6
117 0.1 0.11 0.04 5.50 0.20 0.01 0.21 0.27 一 0.51 0.01 0 6X10一4 4.5X10"117 0.1 0.11 0.04 5.50 0.20 0.01 0.21 0.27 one 0.51 0.01 0 6 × 10 one 4 4.5 × 10 "
118 0. 1 0.05 5.60 0. 20 0.20 0.40 0.23 -0.45 0 0 2X10一4 5.5X10"118 0. 1 0.05 5.60 0. 20 0.20 0.40 0.23 -0.45 0 0 2X10 one 4 5.5 × 10 "
119 0.1 0.11 0.04 「 119 0.1 0.11 0.04 ``
5.50 0.30 0.マ 60 0.90 0.27 一 0.47 0 0 1 X10—4 4.5X 1011 5.50 0.30 0.60 60 0.90 0.27 one 0.47 0 0 1 X10— 4 4.5X 10 11
O  O
120 0.1 0.13 0.04 5.50 0.20 1.00 1.20 0.26 一 0.50 0.01 0 1 10~4 7.5X1010 120 0.1 0.13 0.04 5.50 0.20 1.00 1.20 0.26 one 0.50 0.01 0 1 10 ~ 4 7.5X10 10
121 0. 1 0. 12 0.06 5.50 0. 02 1. 2 0.29 -0.49 0. 01 0 10X10-4 7.0 109 121 0.1 0.12 0.06 5.50 0.02 1.2 0.29 -0.49 0.01 0 10X10 -4 7.0 10 9
122 0.1 0.12 0.05 0.20 1.48 1.68 0.29 -0.47 0.01 0 30X10— 4 5.5X106 122 0.1 0.12 0.05 0.20 1.48 1.68 0.29 -0.47 0.01 0 30X10-- 4 5.5X10 6
試料番号 116は、 Mn成分と Z r成分の含有量の総計が 1. 52重量%でぁ り、 1. 50重量%を超えているため、 誘電損失 tan0が 25 X 10—4と大きく 、 また、 比抵抗率 ioも 6. 5 X 106Ω · cmと小さくなつている。 Sample No. 116, the total content of Mn component and Z r component 1. Ri 52 wt% Dea, because it exceeds 1. 50% by weight, the dielectric loss tan0 is as large as 25 X 10- 4, The The specific resistivity io is also as small as 6.5 × 10 6 Ω · cm.
また、 試料番号 122も、 Mn成分と Z r成分の含有量の総計が 1. 68重量 %であり、 1. 50重量%を超えているため、 誘電損失 tan0が 30 X 10一4と 大きく、 また、 比抵抗率 pも 5. 5 X 106Ω · cmと小さくなつている。 Further, Sample No. 122, the total content of Mn component and Z r component is 1.68% by weight, because it exceeds 1. 50% by weight, the dielectric loss tan0 as large as 30 X 10 one 4, Also, the specific resistance p is as small as 5.5 × 10 6 Ω · cm.
これに対して試料番号 1 1 1〜1 15、 及び 1 17〜121は、 Mn成分と Z r成分の含有量の総計が 1. 50重量%以下の範囲で Mn成分や Z r成分を添加 しているので、 誘電損失 tanSが 1. 0 X 10— 4以下と小さく、 また、 比抵抗率 ioも 8. 1 X 109〜6. 8 X 10 · cmと大きくなつている。 しかも、 1 0GHz及び 40GHzで、 絶対透磁率差 I Δ Iが 0. 1以上なつて所望の非 可逆性を得ることができ、 また、 虚数部^ ' が 0. 05未満となって磁気損失 を抑制できることが分った。 On the other hand, for sample numbers 11 1 to 115 and 117 to 121, Mn and Zr components were added when the total content of the Mn and Zr components was 1.50% by weight or less. since it is, the dielectric loss tanS is 1. 0 X 10- 4 or less and small, the specific resistivity io also greatly summer and 8. 1 X 10 9 ~6. 8 X 10 · cm. Moreover, at 10 GHz and 40 GHz, the desired irreversibility can be obtained when the absolute magnetic permeability difference I ΔI is 0.1 or more, and the imaginary part ^ ′ is less than 0.05 to reduce magnetic loss. We found that it could be suppressed.
実施例 9  Example 9
〔実施例 4〕 と同様の方法 *手順で、 表 9の組成を有する一般式 { (S r,_xB a χ) 〇 · η (F e,.y.z I nyA 1 z) 203+ a C a + jS C o} (x=0、 5. 0≤n≤ 6. 0、 0≤z≤0. 31、 0≤z≤0. 31、 a = j3 = 0. 25) で表され、 かつ所定量の Mn〇 (酸化マンガン) 及び Z r〇2 (酸化ジルコニウム) を添加 した試料番号 132〜142のフェライト磁器組成物を作製した。 In a similar way * procedure as Example 4, the general formula having the composition shown in Table 9 {(S r, _ x B a χ) 〇 · η (F e ,. y. Z I n y A 1 z) 2 0 3 + a C a + jS C o} (x = 0, 5.0 ≤ n ≤ 6.0, 0 ≤ z ≤ 0.31, 0 ≤ z ≤ 0.31, a = j3 = 0.25 ) is represented by, and to produce a predetermined amount of Mn_〇 (manganese oxide) and Z R_〇 2 (ferrite ceramic composition of the sample No. 132 to 142 with the addition of zirconium oxide).
次に、 〔実施例 4〕 と同様、各試料の 10 GHz及び 40 GHzにおける透磁率 差 Δ (非可逆性)、 及び正円偏波複素透磁率の虚数部 +" (磁気損失)、 比抵 抗率 Pを求めた。  Next, as in [Example 4], the permeability difference Δ (irreversibility) of each sample at 10 GHz and 40 GHz, the imaginary part of the circularly polarized complex permeability + ”(magnetic loss), and the specific resistance The drag ratio P was determined.
表 9は各試料の組成と、 透磁率差 Δ 、 虚数部 +" 、 比抵抗率 pを示してい る。  Table 9 shows the composition of each sample, the magnetic permeability difference Δ, the imaginary part + ”, and the specific resistivity p.
(以下、 余白) 表 9 (Hereinafter, margin) Table 9
Figure imgf000043_0001
Figure imgf000043_0001
試料番号 131〜142は、 x、 y、 z、 及び nが本発明範囲内であるので、 絶対透磁率差 I Iが 0. 1以上となって所望の非可逆性を得ることができ、 虚数部^ ' も 0. 05未満となって磁気損失を低減することができる。 In sample numbers 131 to 142, since x, y, z, and n are within the range of the present invention, the absolute irreversibility can be obtained by obtaining an absolute magnetic permeability difference II of 0.1 or more, and an imaginary part ^ 'Is also less than 0.05, so that the magnetic loss can be reduced.
しかしながら、 試料番号 136、 142は、 Μη成分及び Z r成分の含有量の 総計がそれぞれ 1. 52重量%、 1. 68重量%であり、 1. 50重量%を超え ているので、 比抵抗率 pがそれぞれ 1. l X l O ^Q ' cm, 9. 5 X 109Ω • cmと小さレ^ However, in sample numbers 136 and 142, the total contents of the Μη component and the Zr component were 1.52% by weight and 1.68% by weight, respectively, and exceeded 1.50% by weight. p is 1. l X l O ^ Q 'cm, 9.5 x 10 9 Ω • cm
これに対して試料番号 131〜135、 及び 137〜141は、 C a成分及び Co成分に加え、 Mn成分と Z r成分が、 総計で 1. 50重量%以下の範囲で添 加されているので、 比抵抗率 ιθが 1. 2 X 1 013〜 1. l X 1 015Q ' cmと飛 躍的に増大することが分かった。 産業上の利用可能性 On the other hand, in sample numbers 131 to 135 and 137 to 141, in addition to the Ca component and the Co component, the Mn component and the Zr component were added in a total range of not more than 1.50% by weight. , specific resistance ιθ is 1. was found to increase 2 X 1 0 13 ~ 1. l X 1 0 15 Q 'cm and Fei thermocline manner. Industrial applicability
以上詳述したよう本発明のフェライト磁器組成物は、 10 GHz以下や 30〜 60 GHzのマイクロ波帯で使用しても十分な非可逆性を得ることができ、 また 磁気損失を小さくすることができるので、 これらマイクロ波帯で使用されるサー キュレー夕やアイソレー夕、 及びこれらサ一キュレー夕やアイソレ一夕を搭載し た無線装置に有用である。  As described in detail above, the ferrite porcelain composition of the present invention can obtain sufficient irreversibility even when used in a microwave band of 10 GHz or less or 30 to 60 GHz, and can reduce magnetic loss. Since it can be used, it is useful for circulators and isolators used in these microwave bands, and for wireless devices equipped with these circulators and isolators.

Claims

請求の範囲 The scope of the claims
1. 一般式 { (S r^B ax) 〇 · η (Fe^I ny) 23} (0≤x≤ 1. 00、 5. 00≤n<6. 00、 0<y≤ 0. 30 ) で表される主成分を含有してい ることを特徴とする非可逆回路素子用フェライト磁器組成物。 1. General formula {(S r ^ B a x ) 〇 η (Fe ^ I n y ) 23 } (0≤x≤ 1.00, 5.00≤n <6.00, 0 <y≤ 0.33) A ferrite porcelain composition for a non-reciprocal circuit device, characterized by containing a main component represented by the following formula:
2. 一般式 { (S r,.xB ax) 〇 · n (F e^.A 1 z) 203} (0≤x≤l. 00、 5. 00≤n<6. 00、 0<z≤0. 30 ) で表される主成分を含有してい ることを特徴とする非可逆回路素子用フェライト磁器組成物。 2. General formula {(S r ,. x B a x ) 〇 n (F e ^ .A 1 z ) 2 0 3 } (0≤x≤l. 00, 5.00≤n <6.00, A ferrite porcelain composition for a nonreciprocal circuit device, characterized by containing a main component represented by 0 <z≤0.30).
3. 一般式 { (S r,_xB ax) 〇 · n (F e,„y_zI nyA 1 z) 203} (0≤x≤l. 00、 5. 00≤n<6. 00、 0<y≤ 0. 30、 0<z≤0. 30) で表 される主成分を含有していることを特徴とする非可逆回路素子用フェライト磁 器組成物。 3. General formula {(S r, _ x B a x ) 〇 n (F e, „ y _ z I n y A 1 z ) 2 0 3 } (0≤x≤l. 00, 5.00≤ A ferrite ceramic composition for a non-reciprocal circuit device, comprising a main component represented by n <6.00, 0 <y≤0.30, 0 <z≤0.30).
4. 請求の範囲第 1項乃至請求の範囲第 3項のいずれかに記載の非可逆回路素子 用フェライト磁器組成物において、 副成分として C a成分及び Co成分のうち の少なくとも一方を含み、 前記 C a成分及び Co成分の含有量が、 前記主成分 1モルに対し、 総計で 0. 001 〜0. 8モルであることを特徴とする非可 逆回路素子用フェライト磁器組成物。  4. The ferrite porcelain composition for a non-reciprocal circuit device according to any one of claims 1 to 3, comprising at least one of a Ca component and a Co component as an accessory component, A ferrite porcelain composition for a non-reciprocal circuit device, wherein the total content of the Ca component and the Co component is 0.001 to 0.8 mol per 1 mol of the main component.
5. 請求の範囲第 1項乃至請求の範囲第 4項のいずれかに記載の非可逆回路素子 用フェライト磁器組成物において、 副成分として Mn成分及び Z r成分のうち の少なくとも一方を含み、 前記 Mn成分及び Z r成分の含有量が、 酸化物換算 で、 総計で 1. 50重量%以下 (0重量%を含まず) であることを特徴とする 非可逆回路素子用フェライト磁器組成物。  5. The ferrite porcelain composition for a non-reciprocal circuit device according to any one of claims 1 to 4, comprising at least one of a Mn component and a Zr component as a sub-component, A ferrite porcelain composition for a non-reciprocal circuit device, characterized in that the total content of Mn component and Zr component is not more than 1.50% by weight (not including 0% by weight) in terms of oxide.
6. 請求の範囲第 1項乃至請求の範囲第 5項のいずれかに記載の非可逆回路素子 用フェライト磁器組成物で形成されたフェライト部材を備えていることを特徴 とする非可逆回路素子。  6. A non-reciprocal circuit device comprising a ferrite member formed of the ferrite porcelain composition for a non-reciprocal circuit device according to any one of claims 1 to 5.
7. 請求の範囲第 6項記載の非可逆回路素子を備えていることを特徴とする無線 装置。 7. A wireless device comprising the non-reciprocal circuit device according to claim 6.
PCT/JP2004/005826 2003-06-24 2004-04-22 Ferrite ceramic composition for irreversible circuit element, irreversible circuit element, and radio unit WO2004113250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005507185A JPWO2004113250A1 (en) 2003-06-24 2004-04-22 Ferrite porcelain composition for nonreciprocal circuit element, nonreciprocal circuit element, and wireless device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-179704 2003-06-24
JP2003179704 2003-06-24
JP2004-028299 2004-02-04
JP2004028299 2004-02-04

Publications (1)

Publication Number Publication Date
WO2004113250A1 true WO2004113250A1 (en) 2004-12-29

Family

ID=33543507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005826 WO2004113250A1 (en) 2003-06-24 2004-04-22 Ferrite ceramic composition for irreversible circuit element, irreversible circuit element, and radio unit

Country Status (2)

Country Link
JP (1) JPWO2004113250A1 (en)
WO (1) WO2004113250A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035311A (en) * 2009-08-05 2011-02-17 Murata Mfg Co Ltd Magnetic material and coil component using the same
JP2012190920A (en) * 2011-03-09 2012-10-04 Tdk Corp Magnetic material for antenna, and antenna and wireless communication apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120503A (en) * 1983-12-05 1985-06-28 Ricoh Co Ltd Metallic oxide magnetic material and magnetic film
JPH02263406A (en) * 1988-04-14 1990-10-26 Tokin Corp Oxide magnetic material powder and manufacture thereof
JPH0379001A (en) * 1989-08-22 1991-04-04 Toshiba Glass Co Ltd Hexagonal ferrite magnetic powder
JPH05170450A (en) * 1991-11-14 1993-07-09 Toshiba Glass Co Ltd Magnetic powder for magnetic recording medium and production therefor
JP2003046306A (en) * 2001-07-27 2003-02-14 Matsushita Electric Ind Co Ltd Nonreversible circuit element and radio terminal equipment
JP2003168902A (en) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd Non-reciprocative circuit element, and wireless terminal using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120503A (en) * 1983-12-05 1985-06-28 Ricoh Co Ltd Metallic oxide magnetic material and magnetic film
JPH02263406A (en) * 1988-04-14 1990-10-26 Tokin Corp Oxide magnetic material powder and manufacture thereof
JPH0379001A (en) * 1989-08-22 1991-04-04 Toshiba Glass Co Ltd Hexagonal ferrite magnetic powder
JPH05170450A (en) * 1991-11-14 1993-07-09 Toshiba Glass Co Ltd Magnetic powder for magnetic recording medium and production therefor
JP2003046306A (en) * 2001-07-27 2003-02-14 Matsushita Electric Ind Co Ltd Nonreversible circuit element and radio terminal equipment
JP2003168902A (en) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd Non-reciprocative circuit element, and wireless terminal using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035311A (en) * 2009-08-05 2011-02-17 Murata Mfg Co Ltd Magnetic material and coil component using the same
JP2012190920A (en) * 2011-03-09 2012-10-04 Tdk Corp Magnetic material for antenna, and antenna and wireless communication apparatus

Also Published As

Publication number Publication date
JPWO2004113250A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP6574507B2 (en) Rare earth reduced garnet system and related microwave applications
CN109563640B (en) Temperature insensitive dielectric constant garnet
JP6685643B2 (en) Tunable resonator system, filtering system including tunable resonator system, and method of forming tunable resonator system
US20090321677A1 (en) Low microwave loss ferrite material and manufacturing process
WO2012103020A2 (en) Specialty materials processing techniques for enhanced resonant frequency hexaferrite materials for antenna applications and other electronic devices
Maisnam et al. Frequency dependence of electrical and magnetic properties of Li–Ni–Mn–Co ferrites
JP2009001476A (en) Ferrite sintered magnet, method for producing the same and magnet roll and non-reciprocal circuit element using the same
JP2011073937A (en) Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same
Huo et al. Effects of Zn substitution on high-frequency properties of Ba1. 5Sr1. 5Co2-xZnxFe22O41 hexaferrites
KR100425994B1 (en) Magnetic material for high frequencies and high-frequency circuit component
JP4432482B2 (en) High frequency magnetic material and high frequency circuit components
JP2007145705A (en) Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reciprocal circuit component using the same
JP4803415B2 (en) Ferrite porcelain composition for nonreciprocal circuit element, nonreciprocal circuit element, and wireless device
WO2004113250A1 (en) Ferrite ceramic composition for irreversible circuit element, irreversible circuit element, and radio unit
US7286025B2 (en) Circulator element
JP4470165B2 (en) Ferrite material, non-reciprocal circuit device, and wireless device
Zhang et al. Study on the Magnetically Tunable Filters Based on Mn n+ and Al 3+ Co-Doped YIG Ferrite
JP2005184088A (en) Non-reciprocative circuit element and communication equipment
Huo et al. Microstructure, magnetic, and power loss characteristics of low‐sintered NiCuZn ferrites with La2O3‐Bi2O3 additives
JP2004075503A (en) Magnetic body ceramic for high frequency and high frequency circuit component
JP2006044964A (en) Ferrite material, non-reciprocal circuit element and radio equipment
JP2000001317A (en) Controlling method of intermodulation product of irreversible circuit elements
US6771140B2 (en) High-frequency magnetic ceramic and high-frequency circuit component
JP2000191368A (en) Magnetic material for high-frequency and high-frequency irreversible circuit element using the same
JP2005097044A (en) Garnet ferrite for irreversible circuit element and irreversible circuit element using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507185

Country of ref document: JP

122 Ep: pct application non-entry in european phase