JPS60231304A - Metallic oxide magnetic material and magnetic film - Google Patents

Metallic oxide magnetic material and magnetic film

Info

Publication number
JPS60231304A
JPS60231304A JP8807584A JP8807584A JPS60231304A JP S60231304 A JPS60231304 A JP S60231304A JP 8807584 A JP8807584 A JP 8807584A JP 8807584 A JP8807584 A JP 8807584A JP S60231304 A JPS60231304 A JP S60231304A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
film
magneto
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8807584A
Other languages
Japanese (ja)
Inventor
Nobuyuki Koinuma
鯉沼 宜之
Hitoshi Nakamura
均 中村
Hajime Machida
元 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8807584A priority Critical patent/JPS60231304A/en
Publication of JPS60231304A publication Critical patent/JPS60231304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain the titled material which has high recording sensitivity as well as excellent oxidation resistance and light-transmitting property and is suitably employed as a material particularly for a photomagnetic recording medium, by employing a specific composite metallic oxide. CONSTITUTION:A magnetic material represented by the formula I is employed. In the formula: A represents two or more elements selected from among Ba, Sr and Pb; Me is an element selected from among In, Ti, Sn, Zn, Ta and Ge; m represents the number of Me ion valences; and the conditions of n, x, y and z are 5.0<=n<=6.0, 0<x<=1, 0<y<=1.0, and 0<z<=1.0. This magnetic material is produced by, e.g., mixing together BaCO3 or SrCO3, PbCO3, Fe2O3, Cr2O3, and any one of In2O3, TiO2, SnO2, ZnO, TaO2 and GeO2 by a predetermined amount each, powdering this mixture, molding the powdered material in a mold with an appropriate configuration, and sintering the molded material at 1,200-1,400 deg.C.

Description

【発明の詳細な説明】 ■l■ 本発明は新規な金属酸化物磁性体及びそれよりなる磁性
膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [1] The present invention relates to a novel metal oxide magnetic material and a magnetic film made of the same.

丈米W術− 近年、半導体レーザー光により磁気記録を行なう光磁気
記録媒体が高密度記録用として研究開発されている。従
来、光磁気記録媒体に用いられる磁性体としては希土類
金属と遷移金属との非晶質合金からなるものが多い。こ
のような非晶質合金磁性体を用いて光磁気記録媒体を作
るには一般にガラス板のような基板上に前記磁性体、例
えばTb−Fe合金を真空蒸着、スパッタリング等の方
法で厚さ0.1〜1μm程度に付着させて磁性膜を形成
している。こうして得られる光磁気記録媒体への記録、
再生は次のようにして行なわれる。即ち記録は磁性膜の
キュリ一温度又は補償温度近傍における温度変化に対応
した保磁力の急激な変化特性を利用して2値信号で変調
されたレーザー光を磁性膜に照射加熱して磁化の向きを
反転させることにより行なわれる。また再生はこうして
反転記録された磁性膜の磁気光学効果の差を利用して読
出すことにより行なわれる。前述のような非晶質合金磁
性体を用いた光磁気記録媒体は記録感度が高いため、半
導体レーザー光によって高速度(周波数IMHzにおい
て)で記録できるという利点はあるが、非晶質合金磁性
体、特に希土類金属成分は酸化腐食を受け易いので、経
時と共に磁性膜の磁気光学特性が劣化するという大きな
欠点がある。これを防止するため、非晶質磁性膜上にS
jO,5jO2等の保護膜を設ける(形成法は磁性膜の
場合と同様、真空蒸着、スパッタリング等による)こと
も知られているが、磁性膜或いは保護膜の形成時、真空
中に残存する02、基板面に吸着された02.l−1,
0等及び合金磁性体のターゲット中に含まれるo7.1
−t2o等により経時と共に磁性膜が酸化腐食される−
1−1記録時の光及び熱により更にこの酸化腐食は促進
される。また非結晶質磁性体は熱によって結晶化され易
く、そのために磁気特性の劣化を来たし易いという欠点
を有する。更に再生出力を向」ニするための再生方式と
して磁性膜をできるだけ厚くし、その」二にCu、 A
 Q 、 Pt、 Au等の反射膜を設け、レーザー光
を磁性膜に照射透過させた後、反射膜で反射させ、この
反射光を検出する反射型ファラデ一方式は高S/Nの信
号が得られるという点で有利である7が、従来の非晶質
磁性膜は透光性に欠けるため、この方式に用いることが
できないものであった。
Jōmei W Technique - In recent years, magneto-optical recording media that perform magnetic recording using semiconductor laser light have been researched and developed for high-density recording. Conventionally, magnetic materials used in magneto-optical recording media are often made of amorphous alloys of rare earth metals and transition metals. To make a magneto-optical recording medium using such an amorphous alloy magnetic material, the magnetic material, for example, a Tb-Fe alloy, is generally deposited on a substrate such as a glass plate to a thickness of 0 by vacuum deposition, sputtering, etc. A magnetic film is formed by depositing the magnetic material to a thickness of about .1 to 1 μm. Recording on the magneto-optical recording medium obtained in this way,
Reproduction is performed as follows. That is, recording is performed by heating the magnetic film by irradiating laser light modulated with a binary signal to change the direction of magnetization, taking advantage of the property of rapid changes in coercive force corresponding to temperature changes near the Curie temperature or compensation temperature of the magnetic film. This is done by reversing the . Further, reproduction is performed by reading out using the difference in the magneto-optical effect of the magnetic film recorded in this way. Magneto-optical recording media using amorphous alloy magnetic materials as described above have high recording sensitivity and have the advantage of being able to record at high speeds (at a frequency of IMHz) using semiconductor laser light. In particular, the rare earth metal component is susceptible to oxidative corrosion, so there is a major drawback in that the magneto-optical properties of the magnetic film deteriorate over time. To prevent this, S
It is also known to provide a protective film such as jO, 5jO2 (the formation method is the same as for the magnetic film, such as vacuum evaporation or sputtering), but when forming the magnetic film or the protective film, 02 remains in the vacuum. , 02. adsorbed to the substrate surface. l-1,
o7.1 contained in targets of 0 grade and alloy magnetic materials
-The magnetic film is oxidized and corroded over time due to t2o, etc.-
This oxidative corrosion is further accelerated by light and heat during 1-1 recording. In addition, amorphous magnetic materials have the disadvantage that they are easily crystallized by heat, which tends to cause deterioration of their magnetic properties. Furthermore, as a reproduction method to improve the reproduction output, the magnetic film was made as thick as possible, and secondly, Cu, A
The reflective Faraday type, in which a reflective film of Q, Pt, Au, etc. is provided, a laser beam is irradiated and transmitted through the magnetic film, and then reflected by the reflective film and this reflected light is detected, a signal with a high S/N can be obtained. However, conventional amorphous magnetic films cannot be used in this method because they lack light transmittance.

目 吟 本発明の目的は記録感度が高く、しかも耐酸化腐食性及
び透光性に優れた、光磁気記録媒体用材料として特に好
適な新規な金属酸化物磁性体及びこの金属酸化物磁性体
よりなる磁性膜を提(II−することである。
The purpose of the present invention is to provide a novel metal oxide magnetic material which has high recording sensitivity, excellent oxidation corrosion resistance and light transmission properties, and is particularly suitable as a material for magneto-optical recording media, and a novel metal oxide magnetic material made from this metal oxide magnetic material. The purpose is to provide a magnetic film (II-).

構 成 本発明の金属酸化物磁性体は一般式(+)AxO−n 
[Cry−MezFe+ 2− V−&Z ) 011
 ](但し、AはBa、Sr又はpbの少なくとも3− 2種以上を示し、MeけI n、Tj、 Sn、 Zn
Structure The metal oxide magnetic material of the present invention has the general formula (+)AxO-n
[Cry-MezFe+2-V-&Z) 011
] (However, A represents at least 3 to 2 or more of Ba, Sr, or PB, and Me, In, Tj, Sn, Zn
.

T a 、 G eから選ばれる元素を示し、mはMe
のイオン価数を示し、n+ X+ Y+ zは夫々5.
0≦n≦6.11. (1<x≦1,0〈y≦1.0゜
0 < z≦1.0である。) で示されるものであり、また磁性膜は前記一般式の金属
酸化物磁性体よりなるものである。
Indicates an element selected from Ta, Ge, m is Me
The ion valence of n+ X+ Y+ z is 5.
0≦n≦6.11. (1<x≦1,0<y≦1.0゜0<z≦1.0), and the magnetic film is made of a metal oxide magnetic material having the above general formula. be.

光磁気記録媒体に用いられる磁性体又は磁性膜には半導
体レーザー光によって記録、再生可能な磁気光学特性(
適正なキュリ一温度、保磁力等)を備えていなければな
らないが、特に高い記録感度を得るためにキュ゛り一温
度T cが低いこと及び記録したメモリーを安定に維持
するために保磁力Hcが適度に高いことが必要である。
The magnetic material or magnetic film used in magneto-optical recording media has magneto-optical properties (
In particular, in order to obtain high recording sensitivity, the Curie temperature Tc must be low, and in order to maintain the recorded memory stably, the Coercive force Hc must be low. is required to be moderately high.

一般にこのTc及び+−(cの適正範囲はTcにライて
は100〜350℃、Heについては300〜5000
エルステツドと考えられる。これはTcが100°C以
下では記録したメモリーが再生時のレーザー光によって
不安定になって再生特性の劣化原因となり、 また、3
50℃以−Lでは半導体レーザー光による記録が困難で
あり、一方、Heが300エ4− ルステッド以下ではメモリーが不安定となって消失する
可能性があり、また5000エルステッド以−にでは記
録時の磁化反転に必要なレーザー出力や外部磁界が大き
くなり、好ましくないからである。
In general, the appropriate range for Tc and +-(c is 100 to 350°C for Tc, and 300 to 5000 for He.
It is thought to be Ersted. This is because when Tc is below 100°C, the recorded memory becomes unstable due to the laser light during playback, causing deterioration of playback characteristics.
At temperatures above 50°C, it is difficult to record with semiconductor laser light; on the other hand, when He is below 300 oersteds, the memory becomes unstable and may disappear, and when recording below 5000 oersteds, it is difficult to record with semiconductor laser light. This is because the laser output and external magnetic field required for magnetization reversal become large, which is undesirable.

一方、従来より磁気バブル材料として金属酸化物磁性体
が研究されている。このうち六方晶系のものでは例えば 一般式(2) %式%] (但しA、nは一般式(1)に同じ) で示されるものが知られている。本発明者らはこの種の
磁性体がそれ自体、酸化物であるため、酸化劣化の恐れ
がなく、 しかも膜厚10μmとしても透光性を備えて
いることに注目した。しかしこれらはキュリ一温度Tc
が450℃以上と高いため、前述のように半導体レーザ
ー光による記録は困雅であり、そのままでは光磁気記録
媒体用材料として適用できない。
On the other hand, metal oxide magnetic materials have been studied as magnetic bubble materials. Among these hexagonal crystal systems, for example, those represented by the general formula (2) % formula %] (where A and n are the same as in the general formula (1)) are known. The inventors of the present invention have noted that since this type of magnetic material is itself an oxide, there is no fear of oxidative deterioration and, moreover, it has translucency even with a film thickness of 10 μm. However, these are Curie temperature Tc
Since the temperature is as high as 450° C. or more, recording with semiconductor laser light is difficult as described above, and it cannot be used as is as a material for magneto-optical recording media.

そこで本発明者らは一般式(2)の磁性体を基礎にして
種々検討した。その結果、一般式(2)中のFe原子の
一部をCr又はTn、Tj、Sn、7.n。
Therefore, the present inventors conducted various studies based on the magnetic material of general formula (2). As a result, some of the Fe atoms in general formula (2) were replaced with Cr, Tn, Tj, Sn, 7. n.

Ta及びGe原子で置換することによって、 Tcが低
下することを見い出した。同時にHcについてはCr置
換の場合は増大するが、In、 Ti。
It has been found that Tc is lowered by substitution with Ta and Ge atoms. At the same time, Hc increases with Cr substitution, but with In and Ti.

Sn、Zn、Ta及びGe置換の場合は低下することを
見い出した。また、Ba又はSrの一部をpbで置換す
ると、上記Cr及びIn等の置換効果は同様であるが、
残留磁化を増大できる。例えばSr、、HPb、7. 
Fe、2− = x ’ Mx’ 019 (MはCr
It has been found that Sn, Zn, Ta and Ge substitutions result in a decrease. In addition, when a part of Ba or Sr is replaced with pb, the above-mentioned replacement effect of Cr, In, etc. is the same, but
Residual magnetization can be increased. For example, Sr, HPb, 7.
Fe, 2- = x'Mx' 019 (M is Cr
.

I n、Tj、 Sn、 Zn、Ta及びGeを示し、
y′はMの置換数、mはMのイオン価数を示す。)にお
いて、上記各々の原子で置換した場合、 Tcについて
は第1−1〜第1−6図のような傾向を示した。またH
eについては第2−1〜第2−6図のような傾向を示し
た。図示していないが式中のSrがBaの場合も同様で
あった。なお、ここでCrM換と他の原子置換との差異
を明確にするため、全ての図にCr置換の結果を図示し
た。
Indicates In, Tj, Sn, Zn, Ta and Ge,
y' represents the number of substitutions of M, and m represents the ion valence of M. ), when each of the above atoms was substituted, Tc showed the trends shown in Figures 1-1 to 1-6. Also H
Regarding e, the trends shown in Figures 2-1 to 2-6 were shown. Although not shown, the same was true when Sr in the formula was Ba. Note that in order to clarify the difference between CrM substitution and other atomic substitutions, the results of Cr substitution are illustrated in all the figures.

そこで本発明者らはこのようなCr又はIn。Therefore, the present inventors decided to use such Cr or In.

Tj、 Sn、 7:n、Ta及びGeの置換効果に着
目し、更に光磁気記録媒体用の磁性体又は磁性膜に要求
されるTc及びI−1cの前記適正範囲を考慮して一般
式(2)のFeの一部を、 Crと上記他の6種の原子
の一つとの組み合わせで種々の割合でもって置換した結
果、一般式(1)の金属酸化物磁性体が光磁気記録媒体
として優れた特性を与えることを見い出し本発明に致達
した。
Focusing on the substitution effects of Tj, Sn, 7:n, Ta and Ge, and further considering the appropriate ranges of Tc and I-1c required for the magnetic material or magnetic film for magneto-optical recording media, the general formula ( As a result of replacing a part of Fe in 2) with a combination of Cr and one of the other six types of atoms in various proportions, the metal oxide magnetic material of general formula (1) can be used as a magneto-optical recording medium. The present invention was achieved by discovering that it provides excellent properties.

このように本発明は、特にキュリ一温度が高いため、光
磁気記録媒体用材料として顧みられなかった一般式(2
)の金属酸化物中のFe原子の一部をCr及び上記他の
6種の原子のうちの−っで置換することによって、メモ
リーに要求される適度に高い保磁力を維持しながら、キ
ュリ一度を低下せしめて半導体レーザー光による記録、
再生を可能にし、光磁気記録媒体用材料として適用でき
るようにしたものである。例えばS’z、+tPhg、
71Cry’M82H’FJ2−y’−2さ、z’01
g(但し、MeはI n、Ti、 Sn、 Zn、Ta
及びGeから選ばれる元素を示し、y′はCrの置換数
、Z′7− はMeの置換数、mはMeのイオン価数を示す。)にお
いて置換原子数を種々変えてTc及び)lcへの影響を
調べたところ、第3図及び第4図に示す結果が得られた
。図示していないが、式中のSrがBaの場合も同様で
あった。ここで。
In this way, the present invention solves the problem of the general formula (2
) By substituting some of the Fe atoms in the metal oxide with Cr and - of the other six types of atoms mentioned above, the Curie Recording by semiconductor laser light by reducing the
This material enables reproduction and can be applied as a material for magneto-optical recording media. For example, S'z, +tPhg,
71Cry'M82H'FJ2-y'-2sa,z'01
g (However, Me is In, Ti, Sn, Zn, Ta
and Ge, y' is the number of Cr substitutions, Z'7- is the number of Me substitutions, and m is the ion valence of Me. When the effect on Tc and )lc was investigated by varying the number of substituted atoms in ), the results shown in FIGS. 3 and 4 were obtained. Although not shown, the same was true when Sr in the formula was Ba. here.

Me=Inの場合:第3−1図及び第4−1図Me=T
iの場合:第3−2図及び第4−2図Me=Snの場合
:第3−3図及び第4−3図Me=Znの場合:第3−
4図及び第4−4図M e = T aの場合:第3−
5図及び第4−5図Me=Geの場合:第3−6図及び
第4−6図である。更にMe=Tnの場合を例に説明す
ると、Crの置換数y′が2.24でTnの置換数Z′
が1.0のとき、Tcは第3−1図より250℃であり
When Me=In: Figure 3-1 and Figure 4-1 Me=T
In the case of i: Fig. 3-2 and Fig. 4-2 When Me=Sn: Fig. 3-3 and Fig. 4-3 When Me=Zn: Fig. 3-
Figure 4 and Figure 4-4 When M e = Ta: 3rd-
5 and 4-5. When Me=Ge: FIGS. 3-6 and 4-6. Further, to explain the case where Me=Tn as an example, the number of substitutions y' of Cr is 2.24 and the number of substitutions Z' of Tn
When is 1.0, Tc is 250°C from Figure 3-1.

Hcは第4−1図より9000 eである。MeがTi
Hc is 9000 e from Figure 4-1. Me is Ti
.

S n r Z n r T a及びGeの場合も同様
の傾向を示した。これらのTc及びHc特性により本発
明の金属酸化物磁性体又は磁性膜は半導体レーザー光に
より記録、再生を行なう光磁気記録媒体用材料として適
用できることは勿論、キュリ一温度8− が低いため、記録感度が高い上、耐酸化腐食性及び透光
性を備えている等の特長を持っている。
Similar trends were observed in the cases of S n r Z n r Ta and Ge. Due to these Tc and Hc properties, the metal oxide magnetic material or magnetic film of the present invention can of course be applied as a material for magneto-optical recording media that performs recording and reproduction using semiconductor laser light. It has features such as high sensitivity, oxidation corrosion resistance, and translucency.

本発明の金属酸化物磁性体を作るには夫々所定量のBa
C01]又は5rCO,とPbC0,とFe2O8とC
r2O3と更にTa20.、。
To make the metal oxide magnetic material of the present invention, a predetermined amount of Ba is required.
C01] or 5rCO, and PbC0, and Fe2O8 and C
r2O3 and further Ta20. ,.

TiO2,SnO,、7,nO,TaO2,Gem2の
いずれか一つを混合粉砕し、これを適当な形状の金型に
入れて成型後、 1200〜1400℃の温度で焼結す
ればよい。
Any one of TiO2, SnO, 7,nO, TaO2, and Gem2 may be mixed and pulverized, placed in an appropriately shaped mold, molded, and then sintered at a temperature of 1200 to 1400°C.

以上のようにして得られる本発明の金属酸化物磁性体の
具体例としては B aa、tP b、、ro + 6.0 〔Cr 6
,31. T n 、、rr Fe t、tp Oa 
]BAaf P b (、、po ・6.0 [Cr 
、3p T、] 6.rFF e 1.tt Oa )
Ra(B P b6.10 ・6.OCCro3r T
a6.tr F e tjr O3]Ba、4Pb、、
0 ・6.OCCr、3p Zn 、、/l Fe t
、ti−On )Rqe、t P bc、to ・6−
0 (Cr、、、 Ge 、、2/ F e /、$?
 Os ]B a、、rP bo、FO’ ”−0[:
Cr、j、 sn 、、zl Fe +、470a ]
Sro、hPb6cm0 ’ 6.0 (Cr o、3
(r n 6)g Fe t’l Os ]Sr、)、
−Pbc、io + 6.OCCr、、p Ti 6.
tt Fe Bt On )Ran、ssr、、0 ・
6.OCCr、3p Ti 、rg Fe 7.rf 
Os )Ba、ysr、、O’ 6.0 (Cr、、、
−In、、 Fe 7t、f、o、 ’3が挙げられる
Specific examples of the metal oxide magnetic material of the present invention obtained as described above include B aa, tP b, ro + 6.0 [Cr 6
, 31. T n ,,rr Fe t,tp Oa
] BAaf P b (,, po ・6.0 [Cr
, 3p T, ] 6. rFF e 1. tt Oa)
Ra(B P b6.10 ・6.OCCro3r T
a6. tr Fe tjr O3]Ba, 4Pb,,
0 ・6. OCCr, 3p Zn, /l Fe t
, ti-On ) Rqe, t P bc, to ・6-
0 (Cr, , Ge , 2/ F e /, $?
Os ]B a,, rP bo, FO' ”-0[:
Cr,j,sn,,zlFe+,470a]
Sro, hPb6cm0' 6.0 (Cr o, 3
(r n 6)g Fe t'l Os ]Sr, ),
-Pbc, io + 6. OCCr,, p Ti 6.
tt Fe Bt On) Ran, ssr,, 0 ・
6. OCCr, 3pTi, rgFe7. rf
Os ) Ba, ysr,, O' 6.0 (Cr,,,
-In,, Fe 7t, f, o, '3 are mentioned.

なお以上のような金属酸化物磁性体にはファラデー回転
角を更に増大して磁気光学特性を改善するためにCo、
Bi、V、La、Y、Yb、Sm、T)+。
In order to further increase the Faraday rotation angle and improve the magneto-optical properties, Co,
Bi, V, La, Y, Yb, Sm, T)+.

r)y、Gd等の金属を添加することができる。r) Metals such as y and Gd can be added.

本発明の金属酸化物磁性体を用いて磁性膜を作るには、
基板の種類にもよるが、一般に基板上にこの磁性体をタ
ーゲラ1〜として基板温度500〜700℃で真空蒸着
、スパッタリング、イオンブレーティング等の方法で膜
厚0.1〜10μm程度に付着させればよい。こうして
第5図に示すように基板i上に、垂直磁化された磁性膜
2を有する光磁気配@媒体が得られる。なお場合によっ
ては磁性膜の形成は基板温度500℃未満で行なうこと
もできる。但しこの場合は磁性膜形成後、これに500
〜800℃の熱処理を、場合により磁界を印加しながら
、行なって垂直磁化させる必要がある。ここで基板の材
料としては一般にアルミニウムのような耐熱性金属;石
英ガラス: G G G ;サファイヤ;リチウムタン
タレート;結晶化透明ガラス;パイレックスガラス:バ
イコールガラス;表面を酸化処理し又は処理しない昨結
晶シリコン:AQ203゜ All、03 ・MgO,MgO・LjF、Y2O,・
1、jF+ Beon 7.rO2”I20.J、Th
e、’CaO等の透明セラミック材;無機シリコン材(
例えば東芝シリコン社製トスガード、住友化学社製スミ
セラtz p )等の無機材料が使用できる。
To make a magnetic film using the metal oxide magnetic material of the present invention,
Although it depends on the type of substrate, generally this magnetic material is deposited on the substrate as a target layer 1 to a film thickness of about 0.1 to 10 μm using a method such as vacuum evaporation, sputtering, or ion blasting at a substrate temperature of 500 to 700°C. That's fine. In this way, as shown in FIG. 5, a magneto-optical distribution medium having a perpendicularly magnetized magnetic film 2 on a substrate i is obtained. In some cases, the magnetic film may be formed at a substrate temperature of less than 500°C. However, in this case, after forming the magnetic film, 500
It is necessary to perform perpendicular magnetization by heat treatment at ~800° C. while applying a magnetic field if necessary. Here, the substrate materials are generally heat-resistant metals such as aluminum; quartz glass: GGG; sapphire; lithium tantalate; crystallized transparent glass; Pyrex glass: Vycor glass; Silicon: AQ203゜All, 03 ・MgO, MgO・LjF, Y2O,・
1, jF+ Beon 7. rO2”I20.J, Th
Transparent ceramic materials such as e, 'CaO; inorganic silicon materials (
For example, inorganic materials such as Toshiba Silicon Co., Ltd.'s Toss Guard and Sumitomo Chemical Co., Ltd.'s Sumicella tzp) can be used.

本発明の磁性膜は第5図のような単層型光磁気記録媒体
に限らず、従来公知のすべての多層型光磁気記録媒体に
適用できる。この種の多層型の例としては第6〜9図に
示すような構成のものが挙げられる。図中、1′はガイ
ドトラック付き基板、3は反射膜、4は透明誘電層、5
はガイドトラック層、6は保護膜、7は透明接着層、8
は耐熱層である。ここでガイドトラック付き基板ビは前
述のような有機材料を射出成型、押出成型、フォトエツ
チング法等により一11= 加工して作られる。なお基板のガイドトラックは記録、
再生時のレーザー光を案内するものである。反射膜3は
alll A Q 、 Ag、 Au、 Pl−。
The magnetic film of the present invention is applicable not only to a single-layer magneto-optical recording medium as shown in FIG. 5, but also to all conventionally known multilayer magneto-optical recording media. Examples of this type of multilayer type include structures shown in FIGS. 6 to 9. In the figure, 1' is a substrate with a guide track, 3 is a reflective film, 4 is a transparent dielectric layer, and 5 is a substrate with a guide track.
is a guide track layer, 6 is a protective film, 7 is a transparent adhesive layer, 8
is a heat-resistant layer. Here, the substrate with guide tracks is made by processing the above-mentioned organic material by injection molding, extrusion molding, photo-etching, or the like. Note that the board guide track is recorded.
It guides the laser beam during playback. The reflective film 3 is all AQ, Ag, Au, Pl-.

TeOx、TeC,5eAs、TeΔs、 T jN 
、 TaN 。
TeOx, TeC, 5eAs, TeΔs, T jN
, TaN.

CrN、シアニン染料、フタロシアニン染料等を真空蒸
着、スパッタリング、イオンブレーティング等の方法で
対象面に膜厚500〜10000人程度に付着させるこ
とにより形成される。なおこの反射膜は、磁性膜を透過
したレーザー光を反射し、再び磁性膜を透過することに
よるファラデー効果を増大させる目的で設けられる。透
明誘電層4はSiO2,Sin、TiO2,T−io、
CeO。
It is formed by depositing CrN, cyanine dye, phthalocyanine dye, etc. on the target surface to a thickness of about 500 to 10,000 layers using methods such as vacuum evaporation, sputtering, and ion blasting. Note that this reflective film is provided for the purpose of increasing the Faraday effect by reflecting the laser light that has passed through the magnetic film and transmitting it through the magnetic film again. The transparent dielectric layer 4 is made of SiO2, Sin, TiO2, T-io,
CeO.

HfO2、Bed、The2j 5i9N4等を前記と
同様な方法で対象面に膜厚約0.05〜0.5μm程度
に付着させることにより形成される。なおこの透明誘電
層はファラデー回転角を増大させて再生出力を向上する
目的で設けられる。ガイドトラック層5は対象面に紫外
線硬化性樹脂を塗布した後、ガイド溝を有する金型を圧
着しながら、紫外線を照射して前記樹脂を硬化させるこ
とに12− より形成される。保護膜6はアクリル樹脂、ポリウレタ
ン樹脂、ポリカーボネート樹脂、ポリエーテルスルホン
樹脂、ポリアミド樹脂、エポキシ樹脂、TiN、5j3
N、t + TaN、5jO2゜SiO等を樹脂の場合
は塗布法で、 その他の場合は真空蒸着、スパッタリン
グ、イオンブレーティング等の方法で対象面に膜厚約0
.1〜10μm程度に付着させることにより形成される
。なおこの保護膜は反射膜3を保護する目的で設けられ
る。透明接着層7は、反射膜3を設けたガイドトラック
付き基板1′の反射膜と磁性膜2を設けた耐熱層8(こ
の層は前記無機材料よりなるので、「磁性膜を設けた耐
熱層」とは前記単層型光磁気記録材料のことである。)
の磁性膜とをエポキシ樹脂、ポリウレタン、ポリアミド
等の樹脂で約2〜100μm厚程度に接着することによ
り形成される。即ちこの透明接着層は単に基板1′上の
反射膜3と単層型光磁気記録材料の磁性膜2とを接合す
るための層である。なお耐熱層8は前述のような無機材
料よりなるので、基板1に相当するが、ここでは磁性膜
2の耐熱性向上の目的で設けられる。厚さは約10〜5
00μm程度が適当である。
It is formed by depositing HfO2, Bed, The2j 5i9N4, etc. on the target surface in the same manner as described above to a thickness of about 0.05 to 0.5 μm. Note that this transparent dielectric layer is provided for the purpose of increasing the Faraday rotation angle and improving the reproduction output. The guide track layer 5 is formed by applying ultraviolet curable resin to the target surface and then curing the resin by irradiating ultraviolet rays while pressing a mold having guide grooves thereon. The protective film 6 is made of acrylic resin, polyurethane resin, polycarbonate resin, polyethersulfone resin, polyamide resin, epoxy resin, TiN, 5j3
N, t + TaN, 5jO2゜SiO, etc. are coated on the target surface by a coating method in the case of resin, or by vacuum evaporation, sputtering, ion blasting, etc. on the target surface.
.. It is formed by adhering to a thickness of about 1 to 10 μm. Note that this protective film is provided for the purpose of protecting the reflective film 3. The transparent adhesive layer 7 consists of the reflective film of the substrate 1' with guide tracks provided with the reflective film 3 and the heat-resistant layer 8 provided with the magnetic film 2 (this layer is made of the above-mentioned inorganic material, so the "heat-resistant layer provided with the magnetic film") ” refers to the single-layer magneto-optical recording material.)
It is formed by bonding a magnetic film with a thickness of about 2 to 100 μm using a resin such as epoxy resin, polyurethane, or polyamide. That is, this transparent adhesive layer is simply a layer for bonding the reflective film 3 on the substrate 1' and the magnetic film 2 of the single-layer magneto-optical recording material. Note that the heat-resistant layer 8 is made of the above-mentioned inorganic material and thus corresponds to the substrate 1, but is provided here for the purpose of improving the heat resistance of the magnetic film 2. The thickness is about 10-5
Approximately 00 μm is appropriate.

本発明の磁性膜を用いた以上のような光磁気記録媒体へ
の記録、再生は従来と同じく磁性膜又は基板側から変調
又は偏向されたレーザー光を照射して行なわれる。
Recording and reproduction on the above-described magneto-optical recording medium using the magnetic film of the present invention is carried out by irradiating modulated or deflected laser light from the magnetic film or substrate side, as in the prior art.

効 果 本発明の金属酸化物磁性体又は磁性膜は光磁気記録媒体
用材料として適正なTc及びl−1cを有し、記録感度
が高いにも拘わらず、従来品にはなかった耐酸化腐食性
及び透明性を備えているので、磁気光学特性の経時劣化
がなく、且つ再生時に透過光も利用でき、このため再生
出力の高いファラデー回転角を利用して再生することが
できる。
Effect The metal oxide magnetic material or magnetic film of the present invention has appropriate Tc and l-1c as a material for magneto-optical recording media, and although it has high recording sensitivity, it has oxidation corrosion resistance that conventional products did not have. Since the material is transparent and magneto-optical, its magneto-optical properties do not deteriorate over time, and transmitted light can also be used during reproduction, making it possible to reproduce using a Faraday rotation angle that provides a high reproduction output.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1〜10 下記表に示した組成のターゲットを各々用いて、表面光
学研摩処理した石英基板」二にAr分圧2.OnwnT
orr、02分圧0.3nmTorr、放電々力0.3
5KW、基板温度520〜700℃の条件で4時間スパ
ッタリングして0.3μm厚の磁性膜を形成した。 こ
れら磁性膜のキュリ一温度Tc及び保磁力Hc、 ti
−測定した結果を下表に示す。
Examples 1 to 10 A quartz substrate whose surface was optically polished using each target having the composition shown in the table below. OnwnT
orr, 02 partial pressure 0.3nmTorr, discharge force 0.3
A magnetic film with a thickness of 0.3 μm was formed by sputtering for 4 hours at 5 KW and a substrate temperature of 520 to 700°C. Curie temperature Tc and coercive force Hc of these magnetic films, ti
-The measured results are shown in the table below.

次に以上のようにして得られた各光磁気記録媒体を一方
向に磁化させ、この磁化の方向とは逆の500エルステ
ツドの磁界を印加しながら、15− 出力201の半導体レーザーy6を記録媒体表面での強
度10m1+1及び周波数IM117のパルスで照射し
て磁気反転せしめ、記録したところ、いずれもビット径
約1.5μ川の記録ビットが形成された。
Next, each of the magneto-optical recording media obtained as described above is magnetized in one direction, and while applying a magnetic field of 500 oersted opposite to the direction of magnetization, a semiconductor laser y6 with an output of 15-201 is applied to the recording medium. When the surface was irradiated with a pulse having an intensity of 10 m1+1 and a frequency of IM117 to cause magnetic reversal and recording, recording bits with a bit diameter of about 1.5 μm were formed in each case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々、金属酸化物磁性体S r、+
2t P h、2t F e +p Δ1’ M x 
O19< Mはr、r、In。 Ti、Sn、Zn、Ta及びGeを示し、y′はMの置
換数、mはMのイオン価数を示す。)における置換数X
′と、キュリ一温度Tc及び保磁II l−(cとの関
係図である。第3図及び第4図は夫々、金属酸化物磁性
体 Sr 、J(P l) p、7< (’:rv ’ M
e、 ’ F el:2.− y ’ −色、 Z ’
 OIQ(M eはI n、 T i、 S n、 7
.n、 Ta及びGeから選けれる元素を示し、y′は
Crの置換数、Z′はMeの置換数、mはMeのイオン
価数を示す。)にJ3ける置換数y′及びZ′と、Tc
及び)(cとの関係図である。第5〜9図は夫々本発明
の磁性体又は磁性膜を用いた光磁気記録媒体の一例の構
成図である。 16− 1・・・基 板 1′・・・ガイドトラック付き基板 2・・・磁性膜 3・・・反射膜 4・・透明誘電層 5・・ガイドトラック層6・・・保
 護 膜 7・・・透明接着層8・・・耐熱層 18− 第5図 第7図 第9図 第6図 第8図
FIG. 1 and FIG. 2 show metal oxide magnetic material S r, +
2t P h, 2t F e +p Δ1' M x
O19<M is r, r, In. Ti, Sn, Zn, Ta, and Ge are shown, y' is the number of substitutions of M, and m is the ion valence of M. ) in the number of substitutions
', Curie temperature Tc, and coercivity II l-(c. :rv'M
e,' F el:2. −y′ −color, Z′
OIQ (M e is I n, T i, S n, 7
.. Indicates an element selected from n, Ta, and Ge, y' indicates the number of substitutions of Cr, Z' indicates the number of substitutions of Me, and m indicates the ion valence of Me. ) and the number of substitutions y' and Z' in J3, and Tc
and ) (c). Figures 5 to 9 are configuration diagrams of examples of magneto-optical recording media using the magnetic material or magnetic film of the present invention. 16-1...Substrate 1 '...Substrate with guide track 2...Magnetic film 3...Reflection film 4...Transparent dielectric layer 5...Guide track layer 6...Protective film 7...Transparent adhesive layer 8... Heat-resistant layer 18- Fig. 5 Fig. 7 Fig. 9 Fig. 6 Fig. 8

Claims (1)

【特許請求の範囲】 1、一般式 %式%] (但し、AはBa、Sr又はPbの少なくとも2種以上
を示し、MeはI n、Ti、 Sn、 Zn。 Ta、Geから選ばれる元素を示し、 mはMeのイオン価数を示し、n+X+’/+Zは夫々
5.0≦n≦6.0.0<x≦1.o(y≦1.0゜0
<z≦1.0である。) で示される金属酸化物磁性体。 2、一般式 %式%] (但し、AはB a 、 S r又はPbの少なくとも
2種以上を示し、MeはIn、Ti、Sn、Zn。 Ta、Geから選ばれる元素を示し、 mはMeのイオン価数を示し、n + x+ V + 
Zは夫々5.0≦n≦6.0.0<x≦LD<y≦1.
0゜0<z≦1.0である。) で示される金属酸化物磁性体よりなる磁性膜。
[Claims] 1. General formula % Formula %] (However, A represents at least two or more of Ba, Sr, or Pb, and Me is an element selected from In, Ti, Sn, Zn, Ta, and Ge. , m indicates the ion valence of Me, and n+X+'/+Z are respectively 5.0≦n≦6.0.0<x≦1.o (y≦1.0゜0
<z≦1.0. ) is a metal oxide magnetic material. 2. General formula % Formula %] (However, A represents at least two or more of Ba, Sr, or Pb, Me represents an element selected from In, Ti, Sn, Zn, Ta, Ge, and m represents Indicates the ion valence of Me, n + x+ V +
Z is 5.0≦n≦6.0.0<x≦LD<y≦1.
0°0<z≦1.0. ) A magnetic film made of a metal oxide magnetic material.
JP8807584A 1984-05-01 1984-05-01 Metallic oxide magnetic material and magnetic film Pending JPS60231304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8807584A JPS60231304A (en) 1984-05-01 1984-05-01 Metallic oxide magnetic material and magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8807584A JPS60231304A (en) 1984-05-01 1984-05-01 Metallic oxide magnetic material and magnetic film

Publications (1)

Publication Number Publication Date
JPS60231304A true JPS60231304A (en) 1985-11-16

Family

ID=13932738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8807584A Pending JPS60231304A (en) 1984-05-01 1984-05-01 Metallic oxide magnetic material and magnetic film

Country Status (1)

Country Link
JP (1) JPS60231304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822675A (en) * 1987-01-14 1989-04-18 Minnesota Mining And Manufacturing Company Stable magneto optic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822675A (en) * 1987-01-14 1989-04-18 Minnesota Mining And Manufacturing Company Stable magneto optic recording medium

Similar Documents

Publication Publication Date Title
US4670322A (en) Metal oxide magnetic substance and a magnetic film consisting thereof and their uses
JPS60231304A (en) Metallic oxide magnetic material and magnetic film
JPS60124901A (en) Metal oxide magnetic material and magnetic film
JPS6189607A (en) Metal oxide magnetic substance and magnetic film
JPS60164303A (en) Magnetic material and magnetic film of metal oxide
JPH0576763B2 (en)
JPS60158604A (en) Metal oxide magnetic substance and magnetic film
JPS60178607A (en) Metallic-oxide magnetic material and magnetic film
JPS60164302A (en) Magnetic material and magnetic film of metal oxide
JPS60163406A (en) Metallic oxide magnetic material and magnetic film
JPS60231303A (en) Metallic oxide magnetic material and magnetic film
JPS60180920A (en) Metallic oxide magnetic body and magnetic film
JPS60226105A (en) Metal oxide magnetic material and magnetic film
JPS60201603A (en) Magnetic material and magnetic film of metal oxide
JPS60163408A (en) Metallic oxide magnetic material and magnetic film
JPS60226106A (en) Metal oxide magnetic material and magnetic film
JPS60220909A (en) Metal oxide magnetic body and magnetic film
JPS60133711A (en) Metallic oxide magnetic material and magnetic film
JPS60120503A (en) Metallic oxide magnetic material and magnetic film
JPS60163407A (en) Metallic oxide magnetic material and magnetic film
JPS60166233A (en) Magnetic material of metal oxide and magnetic film
JPS60240106A (en) Metal oxide magnetic material and magnetic film
JPS60124902A (en) Metal oxide magnetic material and magnetic film
JPS60121705A (en) Metal oxide magnetic substance and magnetic film
JPS60133705A (en) Metallic oxide magnetic material and magnetic film