JPS60201601A - Resistor element - Google Patents
Resistor elementInfo
- Publication number
- JPS60201601A JPS60201601A JP59058819A JP5881984A JPS60201601A JP S60201601 A JPS60201601 A JP S60201601A JP 59058819 A JP59058819 A JP 59058819A JP 5881984 A JP5881984 A JP 5881984A JP S60201601 A JPS60201601 A JP S60201601A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- resistor element
- ruthenium dioxide
- ceramic green
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Non-Adjustable Resistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明は抵抗体素子に関し、特にセラミック基板上に形
成された抵抗体と、この抵抗体の両端に形成された電極
とから構成される電極付きの抵抗体(以後抵抗体素子と
称す)に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a resistor element, and more particularly to an electrode consisting of a resistor formed on a ceramic substrate and electrodes formed at both ends of the resistor. The present invention relates to a resistor (hereinafter referred to as a resistor element) with an attached resistor.
口、従来技術
従来のハイブリッドICでは、セラミック等の絶縁基板
上に蒸着或い紘印刷法で抵抗体、電極および配線パター
ンを形成し、同じ絶縁基板上にチップコンデンサ、半導
体IC等を搭載していた。このようなハイブリッドIC
のよシ一層の小形化。Conventional technology In conventional hybrid ICs, resistors, electrodes, and wiring patterns are formed on an insulating substrate such as ceramic by vapor deposition or printing, and chip capacitors, semiconductor ICs, etc. are mounted on the same insulating substrate. Ta. This kind of hybrid IC
Noyoshi is even more compact.
高集積化にはより高密度の配線パターンの形成および小
形でも高性能の抵抗体が要求されているが、しかしなが
ら、これらの要請に対し、つぎのような障害が横たわっ
ている。すなわち、従来のハイブリッドICでは、一般
にアルミナ粉末が焼結されたセラミック基板上に蒸着あ
るいは印刷法で抵抗体、電極および配線パターンを形成
している。Higher integration requires the formation of higher-density wiring patterns and small, yet high-performance resistors. However, the following obstacles lie in meeting these demands. That is, in conventional hybrid ICs, resistors, electrodes, and wiring patterns are generally formed on a ceramic substrate sintered with alumina powder by vapor deposition or printing.
この場合、セラミック基板は、あらかじめ高温で焼結さ
れているため、その後抵抗体、電極および配線パターン
を形成する際、例えば、抵抗体ペーストや導体ペースト
を用いた印刷法で、抵抗体および電極を含む配線パター
ンを形成し、焼成しても、この場合の焼成温度は、セラ
ミック基板の焼結温度に比較して相当低温度である。従
って、セラミック基板に対する抵抗体ペーストや導体ペ
ーストの化学反応は極めて小さく、各種劇料間の相互拡
散による影響は、少なくとも各種ペースト間に大きく依
存し、セラミック基板の関与は極めて少ない。しかし、
セラミックの生焼きシート、すなわちセラミックグリー
ンシートを使用し、このシート上にペースト印刷法など
で抵抗体や電極などを含む配線パターンを形成し、この
シートを複数枚積層して同時焼成するとき、焼成に伴な
いシート材料のガラス材質が抵抗体や導体のペーストと
複雑に化学反応を誘起し、特に焼成時に材料間での相互
拡散反応が著しく、所定の特性が実現されなかった。In this case, since the ceramic substrate is sintered at high temperature in advance, when forming the resistor, electrodes, and wiring patterns, for example, the resistor and electrodes are printed using a resistor paste or conductor paste. Even if a wiring pattern including the above is formed and fired, the firing temperature in this case is considerably lower than the sintering temperature of the ceramic substrate. Therefore, the chemical reaction of the resistor paste and the conductor paste with respect to the ceramic substrate is extremely small, and the influence of mutual diffusion between various harmful substances is largely dependent on at least the various pastes, and the involvement of the ceramic substrate is extremely small. but,
When a raw ceramic sheet, that is, a ceramic green sheet, is used, and a wiring pattern including resistors and electrodes is formed on this sheet using a paste printing method, etc., and multiple sheets are laminated and fired at the same time, firing is performed. As a result, the glass material of the sheet material induced complex chemical reactions with the resistor and conductor pastes, and interdiffusion reactions between the materials were particularly pronounced during firing, making it impossible to achieve the desired characteristics.
ハ0発明の目的
本発明は、このような従来技術の実情および将来動向に
鑑みなされたものであって、その目的は、超小形、かつ
高性能の複合部品を得るだめのセラミックの基板内に内
蔵された抵抗体素子を提供することにある。Purpose of the Invention The present invention has been made in view of the actual state of the prior art and future trends, and its purpose is to create an ultra-small and high-performance composite component in a ceramic substrate. The object of the present invention is to provide a built-in resistor element.
二1発明の構成
本発明によれば、ホウケイ酸鉛系ガラスと酸化アルミニ
ウムとからなるセラミックグリーンシード上に、二酸化
ルテニウムと二酸化ルテニウムを除く無機酸化物の重量
比が50150〜5/95の組成を主成分とする抵抗体
と、銀とパラジウムの重量比が9515〜70/30の
組成を主成分とする電極を被着形成し、上記抵抗体およ
び上記電極を被着形成したセラミックグリーンシートを
複数枚積層し、焼成してなる抵抗体素子が得られる。21. Constitution of the Invention According to the present invention, a composition in which the weight ratio of ruthenium dioxide and inorganic oxides excluding ruthenium dioxide is 50,150 to 5/95 is formed on a ceramic green seed made of lead borosilicate glass and aluminum oxide. A resistor as a main component and an electrode as a main component with a weight ratio of silver and palladium of 9515 to 70/30 are deposited, and a plurality of ceramic green sheets are coated with the resistor and the electrode. A resistor element is obtained by laminating the layers and firing them.
ホ0発明の原理
セラミックグリーンシートの拐料として、アルミナ粉末
とホウケイ酸鉛系ガラスを用いた場合、各種の抵抗体ペ
ーストや導体ペーストについて相互拡散が少ない材質に
ついて種々検討した。その結果、抵抗体ペーストとして
通常用いられている、酸化ルテニウム酸ビスマスや、酸
化ルテニウム酸ガドリニウムなどの酸化ルテニウムの酸
塩構造では、焼成時に導体金属やシート中のガラス成分
が複雑に関与して組成変化をおこし、所定の抵抗値特性
が発現されないことが判明した。一方、抵抗体が二酸化
ルテニウム(RuO*)の場合には、焼成時の影響が極
めて少な(,700〜900℃程度の焼成温度では、充
分集用に供し得る結果を得た。Principles of the Invention When alumina powder and lead borosilicate glass are used as fillers for ceramic green sheets, various resistor pastes and conductor pastes have been investigated for materials with low interdiffusion. As a result, in the acid salt structure of ruthenium oxide, such as bismuth ruthenate oxide and gadolinium ruthenate oxide, which are commonly used as resistor pastes, the conductive metal and the glass components in the sheet are involved in a complicated manner during firing. It was found that a change occurred and the predetermined resistance value characteristics were not expressed. On the other hand, when the resistor is made of ruthenium dioxide (RuO*), the effect during firing is extremely small (at a firing temperature of about 700 to 900°C, results were obtained that were sufficiently usable for general use.
特に、導体材料との関連が強く、導体材料が銀やパラジ
ウム単独の場合には、相互拡散反応が著しく観測され、
所定の抵抗値や抵抗の温度係数が発現されに<<、抵抗
体として二酸化ルテニウムを用いても実用に供し得ない
結果となったが銀とパラジウムを成る組成比で構成した
場合、良好な結果が得られた。これは、銀とパラジウム
の合金状態が、シートのガラス材質が存在しても抵抗体
の二酸化ルテニウムに対して極めて相互拡散しにくい作
用を呈するものと思われる。抵抗体の組成比としては、
シート抵抗値を低抵抗(約100/口)から高抵抗値(
約100/口)まで必要とするため、二酸化ルテニウム
の1量比は二酸化ルテニウムを除いた他の無機酸化物に
対して50150〜5/95の1董組成比が選ばれた。In particular, there is a strong relationship with conductive materials, and when the conductive material is silver or palladium alone, a significant interdiffusion reaction is observed.
Even if ruthenium dioxide was used as a resistor, the result could not be put to practical use because the specified resistance value and temperature coefficient of resistance were not achieved. However, when it was composed of a composition ratio of silver and palladium, good results were obtained. was gotten. This is thought to be because the alloy state of silver and palladium exhibits an effect that makes it extremely difficult for the ruthenium dioxide of the resistor to diffuse into each other even in the presence of the glass material of the sheet. As for the composition ratio of the resistor,
Change the sheet resistance value from low resistance (approximately 100/mouth) to high resistance value (approx.
Since the amount of ruthenium dioxide required is 50,150 to 5/95 with respect to other inorganic oxides except ruthenium dioxide, the composition ratio of ruthenium dioxide was selected to be 50,150 to 5/95.
これに対する導体ペースト、特に本発明による銀とパラ
ジウムの導体材料について、酸化アルミニウム(AA!
* Os )とホウケイ酸鉛系ガラスからなるセラミ
ックグリーンシートを用いた場合、このシートや抵抗体
との相互拡散の比較的少ない銀とパラジウムの組成比を
詳細に検討した。その結果、銀とパラジウムのMW組成
比が9515〜70/30を主成分とする導体材料であ
れば、上記組成比範囲の二酸化ルテニウムを主成分とす
る抵抗体や上記セラミックグリーンシートに対する影響
は、減少されることを見出した。このように、本発明の
抵抗体素子では、酸化アルミニウムとホウケイ酸鉛系ガ
ラスのセラミックグリーンシートを用いた場合、特に有
効な、つまり、相互作用による特性劣化に影響が少なく
、所定の抵抗特性が発現できるのである。For this purpose, conductor pastes, in particular the silver and palladium conductor materials according to the invention, can be used with aluminum oxide (AA!
*Os) and a ceramic green sheet made of lead borosilicate glass, we investigated in detail the composition ratio of silver and palladium, which causes relatively little interdiffusion with the sheet and the resistor. As a result, if the conductor material has a MW composition ratio of silver and palladium of 9515 to 70/30 as its main component, the effect on the resistor and the ceramic green sheet whose main component is ruthenium dioxide in the above composition ratio range is as follows. found that it was reduced. As described above, in the resistor element of the present invention, when ceramic green sheets of aluminum oxide and lead borosilicate glass are used, it is particularly effective, that is, there is little influence on characteristic deterioration due to interaction, and predetermined resistance characteristics can be achieved. It can be expressed.
へ、実施例 つぎに本発明を実施例により説明する。To, Example Next, the present invention will be explained by examples.
第1図は本発明の一実施例に係る抵抗体素子を製造工程
について説明するための工程ブロック図、第2図は複数
枚のグリーンシートを積み重ね焼成する直前の斜視図、
第3図は第1図の工程によシ作られる抵抗体素子の回路
図である。まず、第1表に示すように、酸化アルミニウ
ム(A110g)からなる無機粉末Aと酸化珪素(8i
0z)、酸化鉛(pbo)および酸化硼素(BsOs)
を主成分とする無機粉末Bとを第2表に示すような混合
比で混合した。A+Hの第1図1で示す無機粉末100
fに対し、第1図2で示す。FIG. 1 is a process block diagram for explaining the manufacturing process of a resistor element according to an embodiment of the present invention, FIG. 2 is a perspective view immediately before stacking and firing a plurality of green sheets,
FIG. 3 is a circuit diagram of a resistor element manufactured by the process shown in FIG. First, as shown in Table 1, inorganic powder A consisting of aluminum oxide (A110g) and silicon oxide (8i
0z), lead oxide (pbo) and boron oxide (BsOs)
and inorganic powder B containing as the main component were mixed at the mixing ratio shown in Table 2. Inorganic powder 100 shown in FIG. 1 of A+H
f, as shown in FIG.
第1表
第2表
有機溶媒であるエチルセロソルブ60〜100CC1ブ
チルカルピトール10〜20cc1および、ブチルフタ
リルグリコール酸ブチル1.5〜3ccと、第1図3で
示す有機バインダーであるポリビニルブチラール5〜2
0Fを加え、充分混合して、泥漿4とする。この泥漿4
を、ドクターブレードを用いたキャスティング成膜法に
よって成膜5とし、乾燥させて、第1図および第2図の
未焼成の絶縁シート6を形成し、ステンレス等から成る
金型でパンチングP1 * P 2 + −−−P n
して同時にn種類の孔部7 、7、−m=を形成する
。次に酸化ルテニウム(几u02)と酸化鉛(PbO)
、’酸化硅素(StO冨)、酸化アルミニウム(AA!
20g)+酸化銅(CuO)等から成るガラスの重量比
が50150〜5/95であるような割合のルテニウム
系組成物からなる抵抗体11、ならびに、銀(Ag )
とパラジウム(Pd)の重量比が9515〜70/30
を主成分とする導体電極12および配線パターン13を
絶縁シート6上に印刷DI 、D2、−−−Dnする。Table 1 Table 2 Organic solvent ethyl cellosolve 60-100cc1 butyl carpitol 10-20cc1 and butyl phthalyl glycolate 1.5-3cc and organic binder polyvinyl butyral 5-3cc as shown in FIG. 2
Add 0F and mix thoroughly to obtain slurry 4. this slurry 4
is formed into a film 5 by a casting film formation method using a doctor blade, dried to form an unfired insulating sheet 6 shown in FIGS. 1 and 2, and punched P1 * P with a mold made of stainless steel or the like. 2 + ---P n
At the same time, n types of holes 7, 7, -m= are formed. Next, ruthenium oxide (几u02) and lead oxide (PbO)
, 'Silicon oxide (StO), aluminum oxide (AA!)
Resistor 11 made of a ruthenium-based composition such that the weight ratio of 20g) + glass made of copper oxide (CuO) etc. is 50150 to 5/95, and silver (Ag)
and palladium (Pd) weight ratio is 9515 to 70/30
A conductor electrode 12 and a wiring pattern 13 having as main components DI, D2, ---Dn are printed on the insulating sheet 6.
次に、これらのシートを全体として第3図に示す抵抗ネ
ットワークの回路を構成するように複数枚を積層し、熱
プレス機を用いて温度100〜150℃。Next, a plurality of these sheets are laminated so as to constitute the circuit of the resistor network shown in FIG.
圧力200〜300kg/caの条件のもとて約20分
間熱圧着7をし、その後ピーク温度が800〜1000
℃で約10分間保持する領域を持つ温度条件のもとて焼
成8をし完成する。Thermocompression bonding 7 is carried out for about 20 minutes under pressure conditions of 200 to 300 kg/ca, and then the peak temperature is 800 to 1000 kg/ca.
Firing 8 is completed under temperature conditions that allow holding at ℃ for about 10 minutes.
第4図は本発明によるセラミック基板内に内蔵された抵
抗ネットワークの温度特性を示すグラフであり、第5図
は温度85℃の雰囲気で1/4W(最大電圧200V)
の負荷を加えた時の寿命試験の結果を示すグラフである
。ここで、温度係数(TCi’L)は温度25℃、−5
5℃、125℃の各抵抗値几2B r R−1i1i
t R115から次式による引算でめた。FIG. 4 is a graph showing the temperature characteristics of the resistor network built into the ceramic substrate according to the present invention, and FIG.
3 is a graph showing the results of a life test when applying a load of . Here, the temperature coefficient (TCi'L) is -5 at a temperature of 25°C.
Resistance values at 5℃ and 125℃ 2B r R-1i1i
It was determined by subtracting from tR115 using the following formula.
また寿命試験は、10Ω/口、10Ω/口、103Ω/
0.10 Ω/口、10Ω/口、10 Ω/口 のそれ
ぞれの抵抗体素子について1000時間までの抵抗値変
化率を測定した。結果は第5図に示すように、10Ω/
ロ〜106Ω/口の抵抗値範囲でTC几が±100 p
pm/℃、高温負荷寿命試験でも抵抗値変化率が±0.
5チ以内の非常に安定なセラミックに内蔵した抵抗体素
子が得られた。In addition, the life test is 10Ω/mouth, 10Ω/mouth, 103Ω/mouth.
The rate of change in resistance value up to 1000 hours was measured for each resistor element of 0.10 Ω/port, 10 Ω/port, and 10 Ω/port. As shown in Figure 5, the results are 10Ω/
TC is ±100p in the resistance value range of ~106Ω/mouth
pm/℃ and high temperature load life test, the resistance value change rate is ±0.
A very stable ceramic built-in resistor element within 5 inches was obtained.
トロ発明の効果
以上、本発明によると第2図に示すように、抵抗体およ
び電極がセラミックの内部に層状に形成できるため、従
来のハイブリッド技術よりもさらに小形化、集積化が容
易で、かつ高性能な抵抗体素子が得られる。In addition to the effects of Toro's invention, according to the present invention, as shown in FIG. 2, the resistor and electrode can be formed in layers inside the ceramic, making it easier to downsize and integrate the material than the conventional hybrid technology. A high-performance resistor element can be obtained.
、なお、上記実施例では、ネットワーク構成の抵抗体素
子について説明したが、個単独の抵抗体素子で4本発明
が適用できるのはいうまでもない。In the above embodiments, the resistor elements having a network configuration have been described, but it goes without saying that the present invention can be applied to individual resistor elements.
第1図は本発明の一実施例の抵抗体素子を製造工程につ
いて説明するための工程ブロック図、第2図は第1図の
工程血中の仕掛品の斜視図、第3図は完成後の構成を示
す回路図、第4図は本発明の一実施例に係る抵抗体素子
の温度特性を示すグラフ、第5図は同じく寿命試験特性
を示すグラフである。
6・・・・・・絶縁シート、7・・・・・・孔部、11
・・・・・・抵抗体、12・・・・・・電極、13・・
・・・・配線パターン。
z l 図Fig. 1 is a process block diagram for explaining the manufacturing process of a resistor element according to an embodiment of the present invention, Fig. 2 is a perspective view of the work-in-progress in the process of Fig. 1, and Fig. 3 is after completion. FIG. 4 is a graph showing the temperature characteristics of a resistor element according to an embodiment of the present invention, and FIG. 5 is a graph showing the life test characteristics. 6... Insulating sheet, 7... Hole, 11
...Resistor, 12...Electrode, 13...
...Wiring pattern. z l diagram
Claims (1)
ラミックグリーンシート上に、二酸化ルテニウムと二酸
化ルテニウムを除く無機酸化物の重量比が50150〜
5/95の組成を主成分とする抵抗体と、銀とパラジウ
ムの重量比が9515〜70/30の組成を主成分とす
る導体電極を被着し、前記抵抗および電極を被着したセ
ラミックグリーンシートを複数枚積層し、焼成してなる
ことを特徴とする抵抗体素子。On a ceramic green sheet made of lead borosilicate glass and aluminum oxide, the weight ratio of ruthenium dioxide and inorganic oxides excluding ruthenium dioxide is 50,150 to 50,150.
A ceramic green coated with a resistor whose main component is a composition of 5/95 and a conductor electrode whose main component is a composition with a weight ratio of silver and palladium of 9515 to 70/30, and the resistor and electrode are coated thereon. A resistor element characterized by being made by laminating a plurality of sheets and firing them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058819A JPS60201601A (en) | 1984-03-27 | 1984-03-27 | Resistor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058819A JPS60201601A (en) | 1984-03-27 | 1984-03-27 | Resistor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60201601A true JPS60201601A (en) | 1985-10-12 |
Family
ID=13095228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59058819A Pending JPS60201601A (en) | 1984-03-27 | 1984-03-27 | Resistor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60201601A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017045906A (en) * | 2015-08-28 | 2017-03-02 | 住友金属鉱山株式会社 | Thick film resistor paste |
-
1984
- 1984-03-27 JP JP59058819A patent/JPS60201601A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017045906A (en) * | 2015-08-28 | 2017-03-02 | 住友金属鉱山株式会社 | Thick film resistor paste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100525176B1 (en) | Ceramic electronic component and production method therefor | |
US7067173B2 (en) | Method for manufacturing laminated electronic component | |
KR20080068938A (en) | Conductor composition and method for production thereof | |
KR100693119B1 (en) | Ceramic component element and ceramic component and method for the same | |
JPH0574166B2 (en) | ||
JPH07242845A (en) | Electrically-conductive coating compound for electrode and its production | |
JPS60201601A (en) | Resistor element | |
JP3649775B2 (en) | Thick film conductive paste composition | |
JPH08148369A (en) | Conductive paste | |
JPH04154104A (en) | Laminated ceramic capacitor | |
JP3366479B2 (en) | Metallized composition and method for producing wiring board | |
JPH0318089A (en) | Resistor paste, thick film resistor layer, wiring board, and manufacture of wiring board | |
JPS6092697A (en) | Composite laminated ceramic part | |
JPH0963845A (en) | Layered component and production thereof | |
JPH04210481A (en) | Composition for forming palladium or palladium alloy thin film and its manufacture | |
JPH08148375A (en) | Conductive paste | |
JP2553658B2 (en) | Electrode material for electronic parts | |
JPH06103656B2 (en) | Conductive paint for internal electrodes of multilayer capacitors | |
JP2642390B2 (en) | Thick film capacitors | |
JP2742627B2 (en) | Ceramic body having metallized metal layer | |
JPH03214716A (en) | Formation of electrode and electronic parts using the same | |
JPH06236707A (en) | Conductive paste | |
JPH0253951B2 (en) | ||
JPH0982560A (en) | Multilayer ceramic capacitor | |
JPH03129809A (en) | Laminated ceramic chip capacitor and manufacture thereof |