JPS60194376A - Voltage source circuit - Google Patents

Voltage source circuit

Info

Publication number
JPS60194376A
JPS60194376A JP59049097A JP4909784A JPS60194376A JP S60194376 A JPS60194376 A JP S60194376A JP 59049097 A JP59049097 A JP 59049097A JP 4909784 A JP4909784 A JP 4909784A JP S60194376 A JPS60194376 A JP S60194376A
Authority
JP
Japan
Prior art keywords
voltage
voltage source
capacitor
circuit
source circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59049097A
Other languages
Japanese (ja)
Inventor
Yukio Nakagawa
中川 由岐夫
Yoshio Yoshioka
芳夫 吉岡
Kunio Hirasawa
平沢 邦夫
Takeshi Hashimoto
橋本 斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59049097A priority Critical patent/JPS60194376A/en
Publication of JPS60194376A publication Critical patent/JPS60194376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To hold a value in the vicinity of the peak value of transient recovery voltage, by connecting a voltage source capacitor, a reactor, a gap and a commutation capacitor in series and inserting a rectifier between the gap and the commutation condenser. CONSTITUTION:When a close switch 4 is closed, a current is supplied to a breaker 6 from a current source circuit consisting of an electrode 1, a reactor 2 and a shortcircuit transformer 3. A blocking order is issued to an auxiliary breaker 5 and the breaker 6 to block the breaker 6. A gap 11 is ignited before or after a current zero point blocking the current from the current source circuit. Voltage almost corresponding to the charging voltage of a voltage source capacitor 7 appears in a commutation capacitor 12 within a short time. A voltage peak value is held to the commutation capacitor 12 by a rectifier 15.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は遮断器の遮断性能を検証する合成試験の電圧源
回路に係り、特に、遮断器の電極間に高電圧を印加保持
するに好適な電圧源回路に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a voltage source circuit for a synthetic test to verify the breaking performance of a circuit breaker, and particularly to a voltage source circuit suitable for applying and maintaining a high voltage between the electrodes of a circuit breaker. Regarding voltage source circuits.

〔発明の背景〕[Background of the invention]

遮断器の遮断性能を調べるための試験回路には種々のも
のがあって、電流と電圧をそれぞれ別の電源から供給す
る合成試験回路も用いられている。
There are various types of test circuits for examining the breaking performance of a circuit breaker, including a composite test circuit that supplies current and voltage from separate power sources.

第1図、第2図は既に知られている合成試験回路の例で
あるが、電流遮断後の電極間の電圧回復特性を調べるこ
とが出来るので、遮断器の研究開発試験でよく用いられ
る。第1図で、電流源回路は、発電機、あるいは、充電
されたコンデンサから成る電極1.リアクトル2.短絡
変圧器3.投入スイッチ4.補助遮断器5から成る。こ
こで、6は供試遮断器を示す、電圧源回路は電圧源コン
デンサ7、高速投入スイッチ8.放電抵抗9から成る。
FIGS. 1 and 2 are examples of already known synthetic test circuits, which are often used in research and development tests for circuit breakers because they can examine the voltage recovery characteristics between the electrodes after current interruption. In FIG. 1, the current source circuit consists of an electrode 1.0 consisting of a generator or a charged capacitor. Reactor 2. Short circuit transformer 3. Closing switch 4. It consists of an auxiliary circuit breaker 5. Here, 6 indicates a test circuit breaker, and the voltage source circuit includes a voltage source capacitor 7, a high-speed closing switch 8. It consists of a discharge resistor 9.

電圧源コンデンサ7は、図示しない別電源で、高電圧値
Vまで充電される。本回路を用いた遮断器6の絶縁回復
特性を調べる遮断試験を次に説明する。補助遮断器5.
遮断器6は投入し、投入スイッチ4.高速投入スイッチ
8が開いている状態で、投入スイッチ4を投入すると、
電流源から電流が遮断器6に供給される。ここで、補助
遮断器5゜遮断器6に遮断指令が出され、両速断器は開
極動作を始め、遮断器6の遮断性能に応じたアーク時間
で電流源は遮断される。なお、補助遮断器5は電圧源回
路に電圧源の高電圧が印加しないように、電流源を電圧
源から分離するためのものである。
The voltage source capacitor 7 is charged to a high voltage value V by a separate power supply (not shown). A breaking test for examining the insulation recovery characteristics of the circuit breaker 6 using this circuit will be described below. Auxiliary circuit breaker5.
The circuit breaker 6 is closed, and the closing switch 4. If you turn on the make-up switch 4 while the high-speed make-in switch 8 is open,
Current is supplied to the circuit breaker 6 from the current source. Here, a disconnection command is issued to the auxiliary circuit breaker 5° and the circuit breaker 6, the double-speed circuit breakers begin opening operation, and the current source is disconnected at an arc time corresponding to the circuit breaker 6's circuit breaking performance. Note that the auxiliary circuit breaker 5 is for separating the current source from the voltage source so that the high voltage of the voltage source is not applied to the voltage source circuit.

電圧源回路は、遮断器6が電流源からの電流を遮断する
電流零点の前あるいは後で高速投入スイッチ8を投入す
るようにシーケンスを組む。遮断器極間には、電極間の
浮遊コンデンサ10(容量CS)を充電する時定数τ”
 Cs ’ RLの電圧が生じる。(ここにRLは放電
抵抗)。第3図はその電圧波形例を示す。電圧V、で極
間の絶縁破壊が生じると、電圧が低下し、放電抵抗RL
で制限される電流が流れるが、R1が高抵抗のためその
電流は小さく、すぐに遮断され、電圧は再び立上る。続
いて、V z 、 V 3等でも絶縁破壊を生じ、破線
で示す包絡線が時間に対する絶縁回復特性を示す。第2
図は第1図と基本的に同じ回路であるが、高速投入スイ
ッチ8の代わりにギャップ11を設け、転流コンデンサ
12.抵抗13を加えである。抵抗13の値はRLと比
較して極めて小さく、転流コンデンサ12の値も電圧源
コンデンサ7の値よりも1桁以上小さい。従って、ギャ
ップ11が点弧すると、転流用コンデンサ12には、は
ぼ電圧源コンデンサの充電電圧相当の電圧が、極めて短
時間に現われることになる。この場合、転流用コンデン
サ12は、第1図の電圧源コンデンサ7と同じ働きをす
ることになる。ここで、電圧源コンデンサの充電電圧は
それぞれの設備に応じて限度がある。一方、この試験法
では遮断器極間への印加電圧は、第3図に示すように放
電による損失等で、充電電圧Vを越えることは出来ず、
それよりも低目である。従って、遮断性能が設備容凰を
上回る場合、その設備を用いて限界性能を調べることが
出来なくなる場合もある。これらの欠点を補う発明もな
され(特願昭51−59140)でおり、その基本回路
は第4図に示す通りである。
The voltage source circuit is sequenced so that the fast closing switch 8 is closed before or after the current zero point at which the circuit breaker 6 interrupts the current from the current source. Between the circuit breaker electrodes, there is a time constant τ for charging the floating capacitor 10 (capacitance CS) between the electrodes.
A voltage of Cs' RL is generated. (RL here is the discharge resistance). FIG. 3 shows an example of the voltage waveform. When dielectric breakdown occurs between the electrodes at voltage V, the voltage decreases and discharge resistance RL
A current limited by R1 flows, but since R1 has a high resistance, the current is small and is immediately cut off, and the voltage rises again. Subsequently, dielectric breakdown occurs at V z , V 3, etc., and the envelope shown by the broken line shows the dielectric recovery characteristics with respect to time. Second
The diagram shows basically the same circuit as in FIG. 13 resistors are added. The value of the resistor 13 is extremely small compared to RL, and the value of the commutating capacitor 12 is also smaller than the value of the voltage source capacitor 7 by more than one order of magnitude. Therefore, when the gap 11 is ignited, a voltage equivalent to the charging voltage of the voltage source capacitor appears in the commutation capacitor 12 in a very short time. In this case, the commutation capacitor 12 will function in the same way as the voltage source capacitor 7 in FIG. Here, the charging voltage of the voltage source capacitor has a limit depending on each equipment. On the other hand, in this test method, the voltage applied between the poles of the circuit breaker cannot exceed the charging voltage V due to losses due to discharge, as shown in Figure 3.
It is lower than that. Therefore, if the interrupting performance exceeds the capacity of the equipment, it may not be possible to investigate the limit performance using that equipment. An invention to compensate for these drawbacks has also been made (Japanese Patent Application No. 51-59140), the basic circuit of which is shown in FIG.

第4図の回路は、第2図の回路に於いてギャップ11と
転流コンデンサ12.抵抗13の間のりアクドル14を
挿入したものである。この場合の遮断器極間の電圧波形
を第5図に示す。制限抵抗RLの大きさによって電圧波
形は変わるが、(a)R,小の場合は点線で示すように
、振幅率1.8〜2程度の充電電圧の二倍に近い波高値
の電圧を遮断器に印加出来る。但し、振動波形のため、
高電圧を維持することが出来ない。また、絶縁破壊する
と、RLが小さいため、遮断器を流れる直流電流が大き
くなり、その電流は直ちに遮断出来ないので、第3図に
示すような電圧上昇の緑返し波形は得られず、有効なデ
ータはv、しが得られないことになる。また、複数の有
効なデータを得るため、RLを大きくして制限電流を小
さくすると、RLが大きいために、第5図(b)に示す
ように電圧の振幅率が小さくなって、高い電圧が得られ
ない、ことにもなる。
The circuit of FIG. 4 has a gap 11 and a commutating capacitor 12. An axle 14 is inserted between the resistors 13. The voltage waveform between the circuit breaker poles in this case is shown in FIG. The voltage waveform changes depending on the size of the limiting resistor RL, but in the case of (a) R, small, as shown by the dotted line, the voltage with a peak value close to twice the charging voltage with an amplitude ratio of about 1.8 to 2 is cut off. Can be applied to the device. However, due to the vibration waveform,
Unable to maintain high voltage. In addition, when dielectric breakdown occurs, the DC current flowing through the circuit breaker increases because RL is small, and the current cannot be interrupted immediately, so the green return waveform of voltage increase as shown in Figure 3 cannot be obtained, and it is not effective. The data will not be obtained. Furthermore, in order to obtain multiple valid data, if RL is increased and the limiting current is decreased, the voltage amplitude rate decreases as shown in Figure 5(b) due to the large RL, resulting in a high voltage. It also means that you won't get it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は電圧源回路で発生させる振動性の過渡回
復電圧の波高値付近の値を保持出来る回路を提供するに
ある。
An object of the present invention is to provide a circuit that can maintain a value near the peak value of an oscillatory transient recovery voltage generated in a voltage source circuit.

〔発明の概要〕[Summary of the invention]

本発明の要点はりアクドル、コンデンサから成り立つ電
圧源回路を流れる振動電流は、電圧波高値付近で電流の
流れが逆転するが、その電流の逆転を阻止すれば振動に
よる電圧の低下はなく、高電圧を維持できるので、回路
に整流器を挿入したことにある。
The gist of the invention is that the oscillating current that flows through the voltage source circuit, which consists of an accelerator and a capacitor, reverses its current flow near the voltage peak value, but if the reversal of the current is prevented, the voltage does not drop due to vibration, and the voltage increases. This is because a rectifier was inserted into the circuit.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第6図により説明する。第6
図では第4図に示す電圧源回路に整流器15を加えたも
ので、整流器は矢印方向の電流は流すが、逆方向の電流
は流さない。従って、転流コンデンサ12には電圧波高
値が保持されることになる。第7図にその電圧波形を示
す。整流器15がない場合の従来例では、破線で示す振
動電圧が現われるのに対して、整流器15を挿入した場
合は実線で示すように、電圧の波高値が保持される。こ
こで第6図を用いての遮断試験は既に説明した第2図を
用いての遮断試験と原理的には全く同じである。第2図
では転流コンデンサ12に充電される電圧は、高々Vで
あるのに対して、本発明による第6図では1.8〜2v
と、電圧源コンデンサ7に充電した電圧の二倍近く高い
電圧になる。従って、供試遮断器6の絶縁回復特性は第
8図に示すように、充電電圧よりも高い電圧範囲で、し
かも、多数点のデータを得ることが出来る。
An embodiment of the present invention will be described below with reference to FIG. 6th
In the figure, a rectifier 15 is added to the voltage source circuit shown in FIG. 4, and the rectifier allows current to flow in the direction of the arrow, but not in the opposite direction. Therefore, the voltage peak value is held in the commutating capacitor 12. FIG. 7 shows the voltage waveform. In the conventional example without the rectifier 15, an oscillating voltage shown by the broken line appears, whereas when the rectifier 15 is inserted, the peak value of the voltage is maintained as shown by the solid line. Here, the interruption test using FIG. 6 is exactly the same in principle as the interruption test using FIG. 2, which has already been explained. In FIG. 2, the voltage charged to the commutating capacitor 12 is at most V, whereas in FIG.
Then, the voltage becomes nearly twice as high as the voltage charged in the voltage source capacitor 7. Therefore, as shown in FIG. 8, the insulation recovery characteristics of the test circuit breaker 6 can be obtained in a voltage range higher than the charging voltage, and data can be obtained from multiple points.

従って1本実施例によれば、価格の高い容量の大きな電
圧値コンデンサ7を増設することなしに、電圧源設備を
二倍相当に高めて利用できる。
Therefore, according to this embodiment, the voltage source equipment can be doubled and used without adding an expensive capacitor 7 with a large voltage value.

本発明の他の実施例を第9図に示す。第9図は第6図に
もう一段電圧増幅回路を設けたものである。ギャップ1
6の放電がギャップ11の放電後に行なわれるように調
整することによって、転流コンデンサ12′には、電圧
源コンデンサ7に充電した電圧Vの四倍近い電圧を生じ
させることが可能で、本実施例では電圧源設備を、さら
に、有効に利用出来る。なお、この電圧増幅回路をさら
に多段設けることも可能である。
Another embodiment of the invention is shown in FIG. FIG. 9 shows an arrangement in which one more stage voltage amplification circuit is provided in FIG. 6. gap 1
By adjusting so that the discharge of 6 is performed after the discharge of the gap 11, it is possible to generate a voltage in the commutating capacitor 12' that is nearly four times the voltage V charged in the voltage source capacitor 7. In this example, voltage source equipment can be used more effectively. Note that it is also possible to provide this voltage amplification circuit in more stages.

電圧源回路に整流器を加えるという本発明の応用例とし
て、凹パラメーター過渡回復電圧発生回路がある。さら
に他の実施例を第10図に示す。
An application example of the present invention in which a rectifier is added to a voltage source circuit is a concave parameter transient recovery voltage generation circuit. Still another embodiment is shown in FIG.

第10図は第6図の放電抵抗9に変わるものとして、第
二の電圧源コンデンサ18.ギャップ19゜リアクトル
20.電圧波形調整用の抵抗21とコンデンサ22を加
えたものである。電圧源コンデンサ7.18は図示しな
い充電装置によってあらかじめ充電されているものとす
る。第11図は第10図のV’+ 、V2 、V3波形
を示す。ギャップ11の放電時刻を零として、vIの波
形がほぼ波高値となる時間t、で、ギャップ19の゛放
電が起こるように制御すれば、v2で示される電圧が生
じ、遮断器6の電極間にはV+とv2の和で示される電
圧v3が現われる。この電圧波形で四パラメーターの波
形を示すことが出来る。本実施例では比較的簡単な回路
構成で四パラメーター電圧波形を発生出来るという効果
がある。なお1図中13′は抵抗、14′はりアクドル
である。
FIG. 10 shows a second voltage source capacitor 18, which replaces the discharge resistor 9 in FIG. Gap 19° Reactor 20. This includes a resistor 21 and a capacitor 22 for voltage waveform adjustment. It is assumed that the voltage source capacitor 7.18 has been charged in advance by a charging device (not shown). FIG. 11 shows the V'+, V2, and V3 waveforms of FIG. 10. If the discharge time of the gap 11 is set to zero and the discharge of the gap 19 is controlled to occur at the time t when the waveform of vI is approximately at its peak value, a voltage shown by v2 is generated and the voltage between the electrodes of the circuit breaker 6 is A voltage v3 appears as the sum of V+ and v2. This voltage waveform can represent a four-parameter waveform. This embodiment has the advantage that a four-parameter voltage waveform can be generated with a relatively simple circuit configuration. In Figure 1, 13' is a resistor, and 14' is an axle.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高価な電圧源コンデンサを増設するこ
となしに、充電電圧以上の電圧を保持して利用出来るの
で、電圧源設備を安価にして有効に利用出来る。
According to the present invention, a voltage higher than the charging voltage can be maintained and used without adding an expensive voltage source capacitor, so that the voltage source equipment can be used effectively at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第4図は従来の回路図、第3図、第5
図は従来の電圧波形図、第6図は本発明の一実施例の回
路図、第7図、第8図は第6図の電圧波形図、第9図、
第10図は本発明の他の実施例の回路図、Sz図は第1
0図の電圧波形図である。 15・・・整流器、11,16.19・・・ギャップ、
7゜18・・・電圧源コンデンサ、14.14’ 、2
0・・・リアクトル、12.12’ 、22・・・転流
コンデンサ。 代理人 弁理士 高橋明夫 躬(閃 高3m 一時間 も6口 躬6閃 もq閃 も80 −峙聞 抽90
Figures 1, 2 and 4 are conventional circuit diagrams, Figures 3 and 5 are conventional circuit diagrams.
The figure is a conventional voltage waveform diagram, Figure 6 is a circuit diagram of an embodiment of the present invention, Figures 7 and 8 are voltage waveform diagrams of Figure 6, Figure 9,
FIG. 10 is a circuit diagram of another embodiment of the present invention, and the Sz diagram is the first embodiment.
FIG. 2 is a voltage waveform diagram of FIG. 15... Rectifier, 11, 16.19... Gap,
7゜18... Voltage source capacitor, 14.14', 2
0...Reactor, 12.12', 22...Commuting capacitor. Agent: Patent Attorney Akio Takahashi (3 meters high, 1 hour, 6 flashes, 6 flashes, q flashes: 80 - 90 points)

Claims (1)

【特許請求の範囲】 ■、電圧源コンデンサ、リアクトル、ギャップ。 転流用コンデンサを直列接続した電圧源回路に於いて、 前記ギャップと前記転流用コンデンサとの間に整流器を
挿入したことを特徴とする電圧源回路。 2、特許請求の範囲第1項において、前記電圧源回路に
電圧増幅回路を設けたことを特徴とする電圧源回路。 3、特許請求の範囲第1項または第2項において、前記
電圧源回路を遮断器の合成試験回路に用いることを特徴
とする電圧源回路。 4、特許請求の範囲第1項または第2項において、前記
電圧源回路と遮断器との間に前記ギャップ。 前記リアクトル、過渡回復電圧調整用の抵抗、コンデン
サから成る第二の電圧源回路を挿入し、前記第二の電圧
源回路のギャップは、前記電圧源回路の過渡回復電圧の
ほぼ波高値で放電するように°構成したことを特徴とす
る電圧源回路。
[Claims] ■. Voltage source capacitor, reactor, gap. 1. A voltage source circuit comprising commutating capacitors connected in series, wherein a rectifier is inserted between the gap and the commutating capacitor. 2. The voltage source circuit according to claim 1, characterized in that the voltage source circuit is provided with a voltage amplification circuit. 3. A voltage source circuit according to claim 1 or 2, characterized in that the voltage source circuit is used as a composite test circuit for a circuit breaker. 4. The gap between the voltage source circuit and the circuit breaker according to claim 1 or 2. A second voltage source circuit consisting of the reactor, a resistor for adjusting the transient recovery voltage, and a capacitor is inserted, and the gap of the second voltage source circuit is discharged at approximately the peak value of the transient recovery voltage of the voltage source circuit. A voltage source circuit characterized in that it is configured as follows.
JP59049097A 1984-03-16 1984-03-16 Voltage source circuit Pending JPS60194376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049097A JPS60194376A (en) 1984-03-16 1984-03-16 Voltage source circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049097A JPS60194376A (en) 1984-03-16 1984-03-16 Voltage source circuit

Publications (1)

Publication Number Publication Date
JPS60194376A true JPS60194376A (en) 1985-10-02

Family

ID=12821590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049097A Pending JPS60194376A (en) 1984-03-16 1984-03-16 Voltage source circuit

Country Status (1)

Country Link
JP (1) JPS60194376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532577A (en) * 2019-07-10 2022-07-15 中国南方電网有限責任公司超高圧輸電公司検修試験中心 How to evaluate the overall performance of DC high-speed switches

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532577A (en) * 2019-07-10 2022-07-15 中国南方電网有限責任公司超高圧輸電公司検修試験中心 How to evaluate the overall performance of DC high-speed switches

Similar Documents

Publication Publication Date Title
JPH0993908A (en) Semiconductor switch drive circuit
JPS60194376A (en) Voltage source circuit
JP2787050B2 (en) Insulation recovery test circuit for switchgear
JP3103240B2 (en) Residual voltage discharge device
JPH0651036A (en) Short line fault testing device
JPS61171019A (en) High voltage dc breaker
JPS6030900B2 (en) Equivalent test method for breaker
JPS59146117A (en) High voltage dc breaker
JPH08122418A (en) Weyl combination test circuit
SU1398741A1 (en) Gate device
SU1393557A1 (en) Apparatus for electric discharge alloying
JPH08126353A (en) Device for testing inversion of polarity of high dc voltage
JPH06153400A (en) Efficiency improving unit in power use
JPH0789713B2 (en) Inverter start circuit
SU363155A1 (en) DEVICE FOR PROTECTION FROM REACTOR OVERVOLTAGE IN CIRCUIT BATTERY CHAIN
JPS6230973A (en) Synthesization equivalence testing circuit of breaker
JPS61155780A (en) Equivalence tester for small leading current of breaker
JPS60207079A (en) Synthesis test of breaker
Venkataseshaiah et al. Breakdown strength of short airgaps under oscillatory impulse voltages
JPH114582A (en) Dc high-voltage generation device
JPS60200180A (en) Equivalent test of high voltage dc breaker
JPS5818174A (en) Equivalent test method for circuit breaker
JPH04348288A (en) Test circuit for breaker
JPH0461312B2 (en)
JPS59141079A (en) Equivalence tester for dc breaker