JPH114582A - Dc high-voltage generation device - Google Patents

Dc high-voltage generation device

Info

Publication number
JPH114582A
JPH114582A JP15315997A JP15315997A JPH114582A JP H114582 A JPH114582 A JP H114582A JP 15315997 A JP15315997 A JP 15315997A JP 15315997 A JP15315997 A JP 15315997A JP H114582 A JPH114582 A JP H114582A
Authority
JP
Japan
Prior art keywords
branch
polarity
voltage generator
impedance
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15315997A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ogura
靖弘 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15315997A priority Critical patent/JPH114582A/en
Publication of JPH114582A publication Critical patent/JPH114582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To switch the polarity quickly, by providing a rectification element branch that can be used as a path for discharging an electric charge stored in a capacitor branch and a load, breaking the power supply of a charge transformer when a polarity is inverted, and switching a polarity selection switch while the electric charge remains. SOLUTION: When a positive polarity is outputted, a capacitor branch 1 is charged to (+) and (-) (a). After the power supply of a transformer 2 for charging is broken by a switch 7 (b), a polarity selection switch 3 is switched (b). At this time, currents i1 and i2 are fed from the capacitor branch 1 to a rectification element branch 4 and current i3 is fed from the load to the branch 4 for discharging. In this case, the current element branch 4 has a sufficient capacity for (i1 +i2 +i3 ). An electric charge stored in the capacitor branch/load is discharged through the rectification branch 4 instead of a leakage resistor, thus reducing a discharge constant, eliminating the need for a long discharge time, discharging remained electric charge quickly, and switching polarity quickly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐電圧試験等に用い
るコッククロフトウォルトン式直流高電圧発生装置に関
し、特に出力電圧の極性を切り換えることが可能である
高電圧発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cockcroft-Walton DC high voltage generator for use in withstand voltage tests and the like, and more particularly to a high voltage generator capable of switching the polarity of an output voltage.

【0002】[0002]

【従来の技術】一般にコッククロフトウォルトン式の高
電圧発生装置においては整流素子の方向により出力電圧
の極性が決定される。図11に3段の正極性出力のコック
クロフト回路を示す。ここで充電用変圧器(2)コンデ
ンサ枝(1)整流素子枝(4)からなっており、左側の
コンデンサ枝群を「押上げコラム」(101)右側のコンデ
ンサ枝群を「平滑コラム」(100)と呼ぶ。平滑コラムの
先端(5)が出力端子となり充電用変圧器に交流電力を
加えると充電用変圧器の出力電圧ピーク値の約2N倍
(N:段数)の直流出力を発生する。この端子(5)が
耐電圧試験供試機などの負荷(8)と接続される。
2. Description of the Related Art Generally, in a Cockcroft-Walton type high voltage generator, the polarity of an output voltage is determined by the direction of a rectifying element. FIG. 11 shows a Cockcroft circuit having three stages of positive output. Here, the charging transformer (2) is composed of a capacitor branch (1) and a rectifying element branch (4). The left capacitor branch group is a "push-up column" (101) The right capacitor branch group is a "smoothing column" ( Call it 100). When AC power is applied to the charging transformer, the tip (5) of the smoothing column becomes an output terminal, and generates a DC output of about 2N times (N: the number of stages) the peak value of the output voltage of the charging transformer. This terminal (5) is connected to a load (8) such as a withstand voltage test device.

【0003】図12に示すように整流素子枝(4)の向き
を運転させると、出力端子(5)には負極性の高電圧が
発生する。図13に示すように、極性選択スイッチ(3)
を設けることで回路を図11と同じにも図12と同じにも切
換えることが可能となる。
When the direction of the rectifying element branch (4) is operated as shown in FIG. 12, a negative high voltage is generated at the output terminal (5). As shown in FIG. 13, the polarity selection switch (3)
The circuit can be switched between the same as in FIG. 11 and the same as in FIG.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな高電圧発生装置は損失を低減し高効率をはかるた
め、各々の枝の絶縁性が高く設計されているので、一旦
コンデンサ枝に充電すると充電用変圧器の電源をしゃ断
しても、なかなかコンデンサ枝の電荷は放電されない。
したがって、電源しゃ断後長時間待って極性選択スイッ
チを切換えた後に、変圧器に電源を投入する必要があっ
た。正極性・負極性どちらかの試験を行う場合には充分
有効であったが、直流送電のように短時間で極性が反転
するものの耐電圧を検証するために短時間で極性が反転
する電源が必要とされる場合には、適用することができ
なかった。本発明は上記の実情を考慮してなされたもの
であり、短時間で出力極性反転ができる直流高電圧発生
装置を提供するこをと目的とする。
However, in order to reduce the loss and achieve high efficiency, such a high-voltage generator is designed to have high insulation of each branch. Even if the power of the transformer is cut off, the electric charge of the capacitor branch is not easily discharged.
Therefore, it is necessary to turn on the power to the transformer after switching the polarity selection switch for a long time after the power is cut off. Although it was sufficiently effective when conducting either a positive or negative polarity test, a power supply that reverses its polarity in a short time to verify its withstand voltage, although the polarity reverses in a short time like DC power transmission, was used. Where needed, it could not be applied. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a DC high voltage generator capable of inverting output polarity in a short time.

【0005】[0005]

【課題を解決するための手段】請求項1に対応する発明
はコンデンサ枝と負荷に貯えられた電荷を放電する径路
として使用する能力を有した整流素子枝を備えている。
したがって、極性を反転させる場合は充電変圧器の電源
をしゃ断した後、電荷の残った状態で極性選択スイッチ
を切りかえることが可能となり、短時間での極性切換が
できる。
The invention according to claim 1 comprises a capacitor branch and a rectifying element branch having the ability to be used as a path for discharging charges stored in a load.
Therefore, when reversing the polarity, it is possible to switch the polarity selection switch in a state where the charge remains after the power supply of the charging transformer is cut off, and the polarity can be switched in a short time.

【0006】請求項2に対応する発明は、負荷の短絡時
の限流保護を目的として、負荷と電源の間に挿入される
インダクタンスや抵抗などの直列インピーダンスを利用
して、コンデンサ枝の放電と負荷の放電とを時間的に電
流を分離するものであり、整流素子枝の容量を軽減する
ことができる。
According to a second aspect of the present invention, a discharge of a capacitor branch is performed by utilizing a series impedance such as an inductance or a resistance inserted between a load and a power supply for the purpose of current limiting protection when a load is short-circuited. The current is temporally separated from the discharge of the load, and the capacity of the rectifying element branch can be reduced.

【0007】請求項3に対応する発明は、極性切換操作
は意図的に行なうものであることから切換時と通常時と
で直列インピーダンスを変化させるスイッチを設けるこ
とで、負荷短絡時の限流性能を維持することができる。
According to a third aspect of the present invention, since the polarity switching operation is performed intentionally, a switch for changing the series impedance between the switching time and the normal time is provided, so that the current limiting performance at the time of load short circuit is provided. Can be maintained.

【0008】請求項4に対応する発明は、整流素子と直
列に放電々流のピーク値を制限するため、インダクタン
スや抵抗などのインピーダンスを挿入することで整流素
子の容量を軽減することができる。
According to a fourth aspect of the present invention, the capacity of the rectifying element can be reduced by inserting impedance such as inductance or resistance in order to limit the peak value of the discharge current in series with the rectifying element.

【0009】請求項5に対応する発明は、請求項3と同
様に極性反転が意図的に行なわれるものであることから
切換時以外には請求項4の直列インピーダンスを含まな
い回路とすることにより、高電圧発生装置の効率を維持
することができる。
According to a fifth aspect of the present invention, since the polarity inversion is intentionally performed similarly to the third aspect, the circuit according to the fourth aspect does not include the series impedance except at the time of switching. In addition, the efficiency of the high voltage generator can be maintained.

【0010】請求項6に対応する発明は、請求項5の切
換スイッチが動作するのが、極性切換選択スイッチと同
時期であることから1台の4点選択スイッチによって請
求項5と同じ機能を得ることができる。
In the invention corresponding to claim 6, since the changeover switch of claim 5 operates at the same time as the polarity selection switch, the same function as in claim 5 is provided by one four-point selection switch. Obtainable.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を示
す。図1は本発明の第1の実施の形態を示す図であり、
3段のコッククロフトウォルトン回路の例を示す。
Embodiments of the present invention will be described below. FIG. 1 is a diagram showing a first embodiment of the present invention,
An example of a three-stage Cockcroft-Walton circuit is shown.

【0012】図2は本発明の正極性から負極性への切換
動作を示すものであり、正極性出力時コンデンサ枝
(1)は図2(a)のように(+)(−)の電荷が充電
されている。ここで充電用変圧器(2)の電源をスイッ
チ(7)で遮断する(図2(b))。その後、極性選択
スイッチ(3)を図2(c)のように切り換える。この
時コンデンサ枝(1)からi1 、i2 負荷からi3 の電
流が整流素子枝(4)に流れ、放電する。
FIG. 2 shows the switching operation from the positive polarity to the negative polarity according to the present invention. In the case of the positive output, the capacitor branch (1) has the (+) (-) charge as shown in FIG. Is charged. Here, the power supply of the charging transformer (2) is cut off by the switch (7) (FIG. 2 (b)). Thereafter, the polarity selection switch (3) is switched as shown in FIG. At this time, a current i 1 flows from the capacitor branch (1) and a current i 3 flows from the i 2 load to the rectifying element branch (4), and discharges.

【0013】ここで、整流素子枝(4)は(i1 +i2
+i3 )に対し充分な容量を有するものが備えられてい
る。このようにしてコンデンサ枝・負荷に貯えられた電
荷は漏れ抵抗ではなく整流素子枝(4)を介して放電さ
れるため放電時定数も短く、長い放電時間を必要としな
い。
Here, the rectifying element branch (4) is (i 1 + i 2
+ I 3 ). In this way, the electric charge stored in the capacitor branch / load is discharged not through the leakage resistance but through the rectifying element branch (4), so that the discharge time constant is short and a long discharge time is not required.

【0014】その後図2(d)のように充電用変圧器に
電源を投入することで負極性を出力する。以上のうよう
に本実施形態によれば、残留した電荷を短時間で放電で
きるので短時間での極性切換が可能な直流電圧発生装置
を得ることが可能となる。
Thereafter, as shown in FIG. 2D, the power is turned on to the charging transformer to output a negative polarity. As described above, according to the present embodiment, the remaining charges can be discharged in a short time, so that it is possible to obtain a DC voltage generator capable of switching the polarity in a short time.

【0015】次に図3は本発明の第2の実施の形態を示
す。出力端子(5)と負荷(8)の間に直列インピーダ
ンス(9)が挿入されている。このインピーダンスによ
り負荷の放電々流i3 の波形ZS を変えることができ
る。ここでi3 の波形の時定数がi1 、i2 の波形の時
定数の3倍以上となるようインピーダンスを選択するこ
とにより、i1 、i2 の波形がピーク時の1/20以下
[exp(−3)=0.05]になった時i3 が流れる。こ
のため図4aのようにi1 、i2 のピークを持った波と
3 のピークを持った波が時間的に分離された形となる
ため、図4bのようにピークが重なった時にくらべ整流
素子枝に流れるトータル電流のピーク値を小さくするこ
とができる。
FIG. 3 shows a second embodiment of the present invention. A series impedance (9) is inserted between the output terminal (5) and the load (8). With this impedance, the waveform Z S of the discharge current i 3 of the load can be changed. Here by the time constant of the i 3 of waveform selecting the impedance to more than three times the time constant of the i 1, i 2 of the waveform, i 1, i 1/20 or less 2 waveform peak [ exp (-3) = 0.05] is i 3 when they are flowing. For this reason, as shown in FIG. 4A, the wave having the peaks of i 1 and i 2 and the wave having the peak of i 3 are separated in time, and as compared with the case where the peaks overlap as shown in FIG. 4B. The peak value of the total current flowing through the rectifying element branch can be reduced.

【0016】以上のように本実施形態によれば、放電々
流のピーク値を小さくできるので整流素子の容量を軽減
でき装置を小形化できる。次に図5に本発明の第3の実
施形態を示す。
As described above, according to this embodiment, the peak value of each discharge can be reduced, so that the capacity of the rectifying element can be reduced and the device can be downsized. Next, FIG. 5 shows a third embodiment of the present invention.

【0017】図3で示した直列インピーダンスZ3
(9)の部分を示したものであり、直列インピーダンス
A (10)と直列インピーダンスZB (11)の和が図3
の直列インピーダンスに相当する(ZS =ZA +Z
B )。直列インピーダンスZA (10)は供試負荷が短絡
故障を発生した際に、直流電源から過大な電流が流れる
ことを防ぐために必要な限流用の直列インピーダンス値
を有している。スイッチ(13)は通常の運転時には短絡
状態となってPQ間のインピーダンスはZA と等しくな
っている。
The series impedance Z 3 shown in FIG.
(9) is shown, and the sum of the series impedance Z A (10) and the series impedance Z B (11) is shown in FIG.
(Z S = Z A + Z
B ). The series impedance Z A (10) has a current limiting series impedance value necessary to prevent an excessive current from flowing from the DC power supply when a short circuit fault occurs in the test load. Switch (13) during normal operation impedance between PQ becomes short-circuited state is equal to the Z A.

【0018】ここで極性切換を行う途中充電用変圧器を
しゃ断した後、スイッチ(13)を開き、PQ間のインピ
ーダンスを(ZA +ZB )としてから極性選択スイッチ
(3)を切り換え、残留電荷の放電を行い、再びスイッ
チ(13)を閉じてPQ間のインピーダンスをZA とす
る。
After the charging transformer is shut off during the polarity switching, the switch (13) is opened, the impedance between the PQs is set to (Z A + Z B ), and the polarity selection switch (3) is switched. perform the discharge, the impedance between PQ and Z a again closing the switch (13).

【0019】ここで図3で示した直列インピーダンス
(9)よりもZA の法が大きくZB をマイナスとしなけ
ればならない場合は図6のような構成となる。すなわち
A をZS と(ZA −ZS )に分割し(ZA −ZS )の
インピーダンスと並列にスイッチ(16)を接続するスイ
ッチ(16)はスイッチ(13)とは逆に通常時開放状態と
なり極性切換の途中で短絡となる。
Here, when the method of Z A is larger than the series impedance (9) shown in FIG. 3 and Z B must be minus, a configuration as shown in FIG. 6 is obtained. That is, the switch (16) that divides Z A into Z S and (Z A −Z S ) and connects the switch (16) in parallel with the impedance of (Z A −Z S ) is generally opposite to the switch (13). It becomes an open state at the time and short circuit occurs during the polarity switching.

【0020】以上のように本実施形態によれば、極性切
換の間だけ直列インピーダンスの値を変えることができ
るので極性切換と負荷短絡のいずれに対しても最適な直
列インピーダンスとして機能するうえインピーダンス
(ZB )中の抵抗分による損失もなくなるため高電圧発
生装置の効率も向上する。
As described above, according to the present embodiment, the value of the series impedance can be changed only during the polarity switching, so that it functions as the optimum series impedance for both the polarity switching and the load short circuit, and the impedance ( Since the loss due to the resistance component in Z B ) is eliminated, the efficiency of the high voltage generator is also improved.

【0021】次に図7に本発明の第4の実施形態を示
す。整流素子枝(4)に整流素子(17)と直列にインピ
ーダンスZC (18)が挿入されている。このインピーダ
ンスによりコンデンサ枝(1)の放電々流i1 、i2
負荷(8)の放電々流i3 のいずれも波形を変え、ピー
ク値を下げることが可能となる。これによって整流素子
に流れるトータル電流のピーク値を小さくすることがで
きる。
Next, FIG. 7 shows a fourth embodiment of the present invention. An impedance Z C (18) is inserted into the rectifying element branch (4) in series with the rectifying element (17). This impedance makes it possible to change the waveforms of the discharge currents i 1 and i 2 of the capacitor branch (1) and the discharge current i 3 of the load (8) to lower the peak value. Thus, the peak value of the total current flowing through the rectifier can be reduced.

【0022】以上のように本実施形態によれば、放電々
流のピーク値を小さくできるので整流素子の容量を軽減
でき装置を小形化できる。次に図8に本発明の第5の実
施形態を示す。
As described above, according to the present embodiment, the peak value of each discharge can be reduced, so that the capacity of the rectifying element can be reduced and the device can be downsized. Next, FIG. 8 shows a fifth embodiment of the present invention.

【0023】図7で示した整流素子枝(4)の部分(整
流素子(17)+インピーダンスZC(18))を示したも
のであり、インピーダンスZC (18)とスイッチ(19)
が並列接続されたものが、整流素子(17)と直列に接続
されている。スイッチ(19)は、通常の運転時には短絡
状態となってRS間は整流素子(17)だけが接続された
のと等価になる。ここで極性切換を行う途中充電用電圧
器をしゃ断した後、スイッチ(19)を開き、RS間を整
流素子(17)とインピーダンスZC (18)が直列接続さ
れた状態としてから、極性選択スイッチ(3)を切り換
え残留電荷の放電を行い、再びスイッチ(19)を閉じて
RS間を整流素子(17)だけとする。
FIG. 7 shows a portion of the rectifying element branch (4) shown in FIG. 7 (rectifying element (17) + impedance Z C (18)), and the impedance Z C (18) and the switch (19) are shown.
Are connected in parallel, and are connected in series with the rectifying element (17). The switch (19) is in a short-circuit state during normal operation, and is equivalent to connecting only the rectifying element (17) between the RSs. After the charging voltage is shut off during the polarity switching, the switch (19) is opened and the rectifying element (17) and the impedance Z C (18) are connected in series between the RSs. (3) is switched to discharge the residual charge, and the switch (19) is closed again to make only the rectifying element (17) between the RSs.

【0024】以上のように本実施形態によれば、極性切
換の間だけ整流素子と直列にインピーダンスZC をつけ
ることができるので、インピーダンスZC 中の抵抗分に
よる損失もなくなり高電圧発生装置の効率も向上する。
According to this embodiment as described above, it is possible to give the impedance Z C only the rectifying element in series between the polarity switching, eliminates the loss due to the resistance component in the impedance Z C of the high voltage generator Efficiency is also improved.

【0025】次に図9本発明の第6の実施形態を示す。
極性切換選択スイッチ(20)は4点の選択スイッチであ
り、図7で整流素子枝に設けたインピーダンスZC (1
8)が整流素子枝ではなく、極性切換選択スイッチ(2
0)と平滑コラム(100)の間に挿入されている。図10は
本発明の正極性から負極性への極性切換時の動作を示す
ものである。
Next, FIG. 9 shows a sixth embodiment of the present invention.
The polarity switching selection switch (20) is a four-point selection switch, and the impedance Z C (1
8) is not a rectifier element branch, but a polarity switch (2)
It is inserted between (0) and the smooth column (100). FIG. 10 shows the operation of the present invention when switching the polarity from the positive polarity to the negative polarity.

【0026】正極性出力時、整流素子(17)は極性切換
選択スイッチ(20)により、コンデンサ枝のU端と接続
されている。(図10a)。極性を切り換える時まず充電
用変圧器(2)の電源(6)をスイッチ(7)でしゃ断
する(図10b)。次に、極性切換選択スイッチ(20)に
より、整流素子枝とU端につながれたインピーダンスZ
C (18)のU´端を接続した後(図10c)、整流素子
(17)をV端につながれたインピーダンスZC (18)の
V´端と接続する(図10d)。これにより残留電荷はイ
ンピーダンスZC を介して整流素子に流れる。最後に極
性切換スイッチをV端と接続した後(図10e)電源を投
入する。
At the time of the positive polarity output, the rectifying element (17) is connected to the U end of the capacitor branch by the polarity switching selection switch (20). (FIG. 10a). When switching the polarity, the power supply (6) of the charging transformer (2) is cut off by the switch (7) (FIG. 10b). Next, the impedance Z connected to the rectifying element branch and the U-end by the polarity switching selection switch (20).
After connecting the U 'end of C (18) (FIG. 10c), the rectifying element (17) is connected to the V' end of the impedance Z C (18) connected to the V end (FIG. 10d). Thereby residual charge flows to the rectifier element via an impedance Z C. Finally, after the polarity switch is connected to the V terminal (FIG. 10E), the power is turned on.

【0027】以上のように本実施形態によれば、一連の
選択切換によって電荷を短時間に放電できるので短時間
での極性切換が可能なうえ、操作も容易な直流電圧発生
装置を得ることができる。
As described above, according to the present embodiment, it is possible to discharge the electric charge in a short time by a series of selection switching, so that it is possible to switch the polarity in a short time, and to obtain a DC voltage generator which is easy to operate. it can.

【0028】[0028]

【発明の効果】以上述べたように、本発明によれば、、
短時間のうちに極性を切換えることが可能な直流高電圧
発生装置を提供できる。
As described above, according to the present invention,
It is possible to provide a DC high voltage generator capable of switching the polarity within a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の回路図。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】本発明の第1の実施形態の動作を示す図。FIG. 2 is a view showing the operation of the first embodiment of the present invention.

【図3】本発明の第2の実施形態の回路図。FIG. 3 is a circuit diagram according to a second embodiment of the present invention.

【図4】本発明の第2の実施形態の動作を示す図。FIG. 4 is a diagram showing the operation of the second embodiment of the present invention.

【図5】本発明の第3の実施形態の回路図。FIG. 5 is a circuit diagram according to a third embodiment of the present invention.

【図6】本発明の第3の実施形態の動作を示す図。FIG. 6 is a diagram showing the operation of the third embodiment of the present invention.

【図7】本発明の第4の実施形態の回路図。FIG. 7 is a circuit diagram according to a fourth embodiment of the present invention.

【図8】本発明の第5の実施形態の回路図。FIG. 8 is a circuit diagram according to a fifth embodiment of the present invention.

【図9】本発明の第6の実施形態の回路図。FIG. 9 is a circuit diagram according to a sixth embodiment of the present invention.

【図10】本発明の第6の実施形態の動作を示す図。FIG. 10 is a diagram illustrating the operation of the sixth embodiment of the present invention.

【図11】従来の正極性出力回路図。FIG. 11 is a conventional positive polarity output circuit diagram.

【図12】従来の負極性出力回路図。FIG. 12 is a conventional negative output circuit diagram.

【図13】従来の、極性選択スイッチを設けた極性出力回
路図。
FIG. 13 is a conventional polarity output circuit diagram provided with a polarity selection switch.

【符号の説明】[Explanation of symbols]

1 コンデンサ枝 2 充電用変圧器 3 極性選択スイッチ 4 整流素子枝 100 平滑走コラム 101 押上コラム DESCRIPTION OF SYMBOLS 1 Capacitor branch 2 Charging transformer 3 Polarity selection switch 4 Rectifier element branch 100 Smooth running column 101 Push-up column

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 直列に積み重ねられたコンデンサ枝と、
充電用変圧器と、整流素子枝と、前記整流素子枝の接続
を切り換えて出力の直流電圧を正極性あるいは負極性の
いずれも選択可能なスイッチを有する極性切換形コック
クロフトウォルトン式直流高電圧発生装置において、 各段のコンデンサ枝および負荷が定格運転時に充電され
る電荷を残したままで、充電用変圧器の入力が0となっ
た時点で、前記スイッチにより整流素子枝の方向を切り
換えた時に流れるコンデンサ枝および負荷の放電々流に
耐える容量を有した整流素子枝を用いたことを特徴とす
る極性切換形直流高電圧発生装置。
A capacitor branch stacked in series;
A polarity-switching Cockcroft-Walton DC high voltage generator having a charging transformer, a rectifying element branch, and a switch capable of switching the connection of the rectifying element branch to select either positive or negative output DC voltage. At the time when the input of the charging transformer becomes 0 while the capacitor branch and the load of each stage leave the charge to be charged during the rated operation, the capacitor flowing when the direction of the rectifying element branch is switched by the switch. A polarity switching type DC high voltage generator, characterized by using a rectifying element branch having a capacity to withstand a discharge flow of a branch and a load.
【請求項2】 請求項1に記載の高電圧発生装置におい
て、 高電圧発生装置と負荷の間に挿入される直列インピーダ
ンスの値を、負荷の放電時定数がコンデンサ枝の放電時
定数の3倍以上となるように選択されたことを特徴とす
る高電圧発生装置。
2. The high-voltage generator according to claim 1, wherein the value of the series impedance inserted between the high-voltage generator and the load is three times the discharge time constant of the load than the discharge time constant of the capacitor branch. A high-voltage generator selected as described above.
【請求項3】 請求項2に記載の高電圧発生装置におい
て、 挿入する直列インピーダンスを負荷の短絡故障時の限流
保護に必要な直列インピーダンスと両者の差分とに分割
し、通常時は差分を短絡し極性切換時のみ開放するスイ
ッチを有することを特徴とする高電圧発生装置。
3. The high-voltage generator according to claim 2, wherein the series impedance to be inserted is divided into a series impedance necessary for current-limiting protection in the event of a short-circuit fault of a load and a difference between the two. A high-voltage generator having a switch that is short-circuited and opened only when the polarity is switched.
【請求項4】 請求項1に記載の高電圧発生装置におい
て、 整流素子枝に整流素子と直列に、放電々流のピーク値を
制限するインピーダンスを挿入したことを特徴とする高
電圧発生装置。
4. The high-voltage generator according to claim 1, wherein an impedance for limiting a peak value of the discharge current is inserted in series with the rectifier element in the rectifier element branch.
【請求項5】 請求項4に記載の高電圧発生装置におい
て、 通常時は短絡し極性切換時のみ開放するスイッチをピー
ク値制限用インピーダンスと並列に挿入したことを特徴
とする高電圧発生装置。
5. The high-voltage generator according to claim 4, wherein a switch that normally short-circuits and opens only when switching the polarity is inserted in parallel with the peak value limiting impedance.
【請求項6】 請求項1に記載の高電圧発生装置におい
て、 極性切換スイッチを4点の選択式とし整流素子枝の接続
先を、コンデンサ枝の一端に接続された第1のピーク値
制限用インピーダンスの相手端、コンデンサ枝の他端に
接続された第2のピーク値制限用インピーダンスの相手
端、前記コンデンサ枝の他端の順に、またこれらを逆順
に切換えていくことを特徴とした高電圧発生装置。
6. The high-voltage generator according to claim 1, wherein the polarity changeover switch is a four-point selection type, and a connection destination of the rectifying element branch is a first peak value limiter connected to one end of the capacitor branch. A high voltage, wherein the impedance is switched in the order of the other end of the second peak value limiting impedance connected to the other end of the capacitor branch, the other end of the capacitor branch, and in reverse order. Generator.
JP15315997A 1997-06-11 1997-06-11 Dc high-voltage generation device Pending JPH114582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15315997A JPH114582A (en) 1997-06-11 1997-06-11 Dc high-voltage generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15315997A JPH114582A (en) 1997-06-11 1997-06-11 Dc high-voltage generation device

Publications (1)

Publication Number Publication Date
JPH114582A true JPH114582A (en) 1999-01-06

Family

ID=15556334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15315997A Pending JPH114582A (en) 1997-06-11 1997-06-11 Dc high-voltage generation device

Country Status (1)

Country Link
JP (1) JPH114582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015494A (en) * 2009-06-30 2011-01-20 Sony Corp Booster circuit, light source device, and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015494A (en) * 2009-06-30 2011-01-20 Sony Corp Booster circuit, light source device, and liquid crystal display device

Similar Documents

Publication Publication Date Title
US5930122A (en) Inverter and DC power supply apparatus with inverter used therein
JP5049964B2 (en) Power converter
JPH0686536A (en) Carrying-over circuit for ac-dc converter
EP1047172A2 (en) Energy transfer unit, charge unit, and power supply unit
US11909308B2 (en) Power conversion circuit, method for controlling power conversion circuit, and transformer
US4849873A (en) Active snubber for an inverter
US7372711B2 (en) Circuit and method for reducing voltage spikes due to magnetizing current imbalances and power converter employing the same
AU7449498A (en) Single-phase rectifier
JP2000232771A (en) Power-converting device
JPH114582A (en) Dc high-voltage generation device
JPH0919154A (en) Rush current limiter for power supply
Afshari et al. A series-AC-link ISOP AC-AC converter with two power cells
JPH07212969A (en) Rush current preventing circuit of power system
JPH01194891A (en) Turn-off electric valve circuit
CN115622201B (en) Power supply conversion system, power supply conversion device and battery pack voltage balance control method
JPH04364357A (en) Method of protecting chopper
JP2698867B2 (en) High frequency high voltage power supply for nonlinear capacitive load
JPS58141854A (en) Arc welding power source equipment
JP3291031B2 (en) Inverter device
SU1767641A1 (en) Thyristor key
KR20230109336A (en) 3-level dc/dc converter
JPH07222446A (en) High-voltage dc generation apparatus
KR20230109337A (en) 3-level dc/dc converter
JP3246159B2 (en) DC-AC converter
SU347921A1 (en) SWITCH OF EACH PHASE OF T-PHASE AC LOAD