JPS60194067A - Formation of hard film - Google Patents

Formation of hard film

Info

Publication number
JPS60194067A
JPS60194067A JP4926884A JP4926884A JPS60194067A JP S60194067 A JPS60194067 A JP S60194067A JP 4926884 A JP4926884 A JP 4926884A JP 4926884 A JP4926884 A JP 4926884A JP S60194067 A JPS60194067 A JP S60194067A
Authority
JP
Japan
Prior art keywords
rotating body
substrate
forming
hard film
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4926884A
Other languages
Japanese (ja)
Other versions
JPS6338428B2 (en
Inventor
Nobushige Mineta
峰田 進栄
Nobuo Yasunaga
安永 暢男
Noboru Tarumi
樽見 昇
Akira Obara
明 小原
Masayuki Ikeda
正幸 池田
Junichi Sato
純一 佐藤
Takeshi Sadahiro
貞廣 孟史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tungaloy Corp
Resonac Holdings Corp
Original Assignee
Agency of Industrial Science and Technology
Showa Denko KK
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Showa Denko KK, Toshiba Tungaloy Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP4926884A priority Critical patent/JPS60194067A/en
Publication of JPS60194067A publication Critical patent/JPS60194067A/en
Publication of JPS6338428B2 publication Critical patent/JPS6338428B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form easily various kinds of hard films on a substrate by using a laser vapor deposition installation by using graphite, carbon, metal, alloy, metallic compd., ceramics, etc. for forming a rotating body on which convergent laser light is irradiated. CONSTITUTION:Convergent laser light is irradiated on a rotating body under rotation in a vessel and the particles evaporating from the rotating body are deposited on a substrate, thereby forming a hard film thereon. The rotating body is made of a mixture composed of >=2 different materials selected from graphite, carbon, metal, alloy, metallic compd. and ceramics. The construction thereof is columnar, cylindrical body, conical body, disk body, and ring body. If such rotating body is formed of a powder mixture composed of, for example, metallic titanium and carbon, the hard film of titanium carbide can be formed on the substrate. The dense, strong and hard film is formed on the substrate with good adhesion at a high deposition rate by the above-mentioned method.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は基板上に耐摩耗性、耐熱性、耐食性などが優れ
た硬質膜を形成する方法に関し、更に詳しくは、複数の
物質からなる蒸発源に大出力レーザ光を照射することに
より、合金、単一化合物、複合化合物、固溶体又はこれ
らが積層してなる硬質膜を形成する方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for forming a hard film with excellent wear resistance, heat resistance, corrosion resistance, etc. on a substrate, and more specifically, relates to a method for forming a hard film having excellent wear resistance, heat resistance, corrosion resistance, etc. on a substrate. The present invention relates to a method of forming an alloy, a single compound, a composite compound, a solid solution, or a hard film formed by laminating these materials by irradiating a material with a high-power laser beam.

[発明の技術的背景とその問題点] 従来から、基板上に硬質膜を形成する方法としては、プ
ラズマスプレー法、化学蒸着法、物理蒸着法が知られて
いる。
[Technical Background of the Invention and Problems Therewith] Plasma spray methods, chemical vapor deposition methods, and physical vapor deposition methods are conventionally known as methods for forming hard films on substrates.

これらのうち、プラズマスプレー法は成膜速度が大きい
という利点を有する反面、一方では緻密で強固な膜を形
成することが困難であるという欠点がある。
Among these methods, the plasma spray method has the advantage of a high film formation rate, but has the disadvantage that it is difficult to form a dense and strong film.

また、化学蒸着法において、例えば積層した硬質膜を基
板に形成する際には積層すべきそれぞれの11りの析出
温度が異なる場合があり、このため、積層膜を1つの容
器内で同時に形成することは製造工程上での温度抑制が
煩雑になり、また複合硬質膜を形成する場合に、該層を
構成するそれぞれの物質が合成される化学反応は相互に
異なるので、相互の化学反応が共存し得るときにのみ成
膜可能となるため、形成できる複合硬質膜の種類が限定
されてしまう、しかもこの化学蒸着法にあっては、膜構
成物質の基板への堆積速度が小さいという欠点がある。
In addition, in the chemical vapor deposition method, for example, when forming a laminated hard film on a substrate, the deposition temperature of each of the 11 layers to be laminated may be different, so the laminated film may be formed simultaneously in one container. This means that controlling the temperature during the manufacturing process becomes complicated, and when forming a composite hard film, the chemical reactions used to synthesize each material that makes up the layer are different from each other, so it is difficult for the chemical reactions to coexist. This chemical vapor deposition method has the drawback that the deposition rate of the film constituent materials on the substrate is slow. .

一方、物理蒸着法において、その代表的方法であるイオ
ンブレーティング法、スパッタリング法を適用すれば緻
密で強固な硬質膜を形成することは可能であるが、しか
し一般に膜構成物質の基板への堆積速度は小さいという
欠点がある。
On the other hand, in the physical vapor deposition method, it is possible to form a dense and strong hard film by applying the representative methods, ion blating method and sputtering method. The disadvantage is that the speed is low.

そのため最近では、真空容器内に配置された膜構成物質
の被照射試料に大出力のレーザ光を照射して該試料を蒸
発させ、この蒸発粒子を基板上に堆積させるという方法
が提案されている。
Therefore, a method has recently been proposed in which a high-power laser beam is irradiated onto an irradiated sample of film constituent materials placed in a vacuum container to vaporize the sample, and the evaporated particles are deposited on a substrate. .

この方法で用いる従来のレーザ蒸着装置は、しかしなが
ら、いずれも支持板に載置されている被照射試料の表面
に垂直方向からレーザ光を照射して該レーザ光をスキャ
ンニングさせるか、又は被照射試料を支持板の法線軸の
まわりに回転さ・せるかして照射点位置を移動させる構
造のものであり、また適用される照射エネルギーもCO
2レーザでtoo−w以下であった。
However, conventional laser evaporation equipment used in this method either irradiates the surface of the irradiated sample placed on a support plate with a laser beam from a vertical direction and scans the laser beam, or It has a structure in which the sample is rotated around the normal axis of the support plate to move the irradiation point position, and the applied irradiation energy is also CO
It was less than too-w with 2 lasers.

このような従来のレーザ蒸着装置を用いた方法では、蒸
発粒子の基板への堆積速度は必ずしも大きくなく、また
形成された膜強度はあまり高くない。そのため、この方
法は光学部品、電子部品用の膜形成にその適用が限られ
ている。
In methods using such conventional laser evaporation equipment, the deposition rate of evaporated particles onto the substrate is not necessarily high, and the strength of the formed film is not very high. Therefore, the application of this method is limited to film formation for optical components and electronic components.

そこで、本発明者らは、上記レーザ蒸着装置において被
照射試料を真空容器内で軸回転する例えば円筒形状の回
転体として構成し、該回転体の外周面に接線方向から収
束レーザ光を照射することを主要な特徴点とする装置を
開発し、すでに特願昭57−225587号として出願
した。この装置を用いると、蒸発粒子は高密度でかつ安
定して基板に供給されるので試料の基板への堆積速度は
上昇゛し、形成された膜も緻密、強固であり、しかも基
板と膜との密着性も向上して各種の有用な機能材料の製
造が可能となった。
Therefore, the present inventors constructed the irradiated sample in the laser vapor deposition apparatus as a rotary body, for example, in a cylindrical shape, which rotates on its axis in a vacuum container, and irradiated the outer circumferential surface of the rotary body with a convergent laser beam from a tangential direction. A device with this as its main feature was developed and filed as Japanese Patent Application No. 57-225587. When this device is used, the evaporated particles are supplied to the substrate in a high density and stably, increasing the deposition rate of the sample on the substrate.The formed film is also dense and strong, and the bond between the substrate and film increases. This improved adhesion has made it possible to produce a variety of useful functional materials.

そして、その後も、更に有用性に富む硬質膜を上記レー
ザ蒸着装置と方法を適用することによって製造する努力
が重ねられてきている。
Since then, efforts have been made to manufacture even more useful hard films by applying the above laser vapor deposition apparatus and method.

〔発明の目的] 本発明は、レーザ蒸着装置を用いて各種の硬質膜を簡単
に基板状に形成する方法の提供を目的とする。
[Object of the Invention] An object of the present invention is to provide a method for easily forming various hard films on a substrate using a laser evaporation apparatus.

[発明の概要] 本発明の硬質膜の形成方法は、容器内で軸回転する回転
体に収束レーザ光を照射し、該回転体から蒸発した粒子
を基板に堆積させて成る膜の形成方法において、該回転
体が黒鉛、炭素、金属、合金、金属化合物又はセラミッ
クスの群から選ばれる少なくとも2種の物質から成るこ
とを特徴とする。
[Summary of the Invention] The method for forming a hard film of the present invention includes irradiating a rotating body that rotates on its axis within a container with a focused laser beam, and depositing particles evaporated from the rotating body on a substrate. The rotating body is characterized in that it is made of at least two substances selected from the group consisting of graphite, carbon, metals, alloys, metal compounds, and ceramics.

以下に本発明方法を図面に例示した装置を参考にして詳
細に説明する。
The method of the present invention will be explained in detail below with reference to the apparatus illustrated in the drawings.

第1図は、本発明方法で用いるレーザ蒸着装置の1例を
示す概略図で、lはレーザ発振器(図示しない)から放
射された平行なレーザ光である。
FIG. 1 is a schematic diagram showing an example of a laser evaporation apparatus used in the method of the present invention, where l represents a parallel laser beam emitted from a laser oscillator (not shown).

レーザ光lは平面鏡2で水平方向に光路変換され、集光
レンズ3を通過して収束されたのち、透過窓4から容器
5に導入される。
The optical path of the laser beam 1 is changed in the horizontal direction by a plane mirror 2, and after passing through a condensing lens 3 and being converged, the laser beam 1 is introduced into a container 5 through a transmission window 4.

容器5の中には、中心軸6の回転に対応して例えば矢印
P方向に軸回転するように、回転体7が配置されている
0回転体7は、形成すべき硬質膜の構成物質から成って
いて被照射試料である。
A rotating body 7 is arranged in the container 5 so as to rotate in the direction of arrow P in response to the rotation of the central axis 6. This is the sample to be irradiated.

容器5内に導入された収束レーザ光は、平面鏡8によっ
て再び光路変換され、回転体7の外周面に図の如く該回
転体の接線方向から照射される。
The convergent laser beam introduced into the container 5 is again converted in its optical path by the plane mirror 8, and is irradiated onto the outer peripheral surface of the rotating body 7 from the tangential direction of the rotating body as shown in the figure.

集光レンズ、3については、収束レーザ光が回転体7の
照射点付近Qで焦点を結ぶように、その焦点距離及び配
置位置を適宜に選定する。
Regarding the condenser lens 3, its focal length and arrangement position are appropriately selected so that the convergent laser beam is focused near the irradiation point Q of the rotating body 7.

収束レーザ光が照射される間、回転体7は適宜な速度で
軸6を中心にして軸回転させる。更にこの回転体が円柱
体、円筒体1円錐体又は湾曲凸面体の構造の場合その回
転体の中心軸方向の長さに相当する距離だけ揺動運動が
可能である構造にしておけば、回転体7の外周面全体は
均一加熱されてその熱割れ現象が防止されるとともに回
転体7の外周面の被照射試料全体を一様に蒸発させるこ
とができる。又、回転体がリング体又は円板体のような
板体の場合は、板面に照射する収束レーザ光が板面の半
径に相当する距離だけスキャンニングできるようにして
おけば同様の効果が得られる。
While the convergent laser beam is irradiated, the rotating body 7 is rotated about the shaft 6 at an appropriate speed. Furthermore, if this rotating body has a cylindrical body, a cylindrical conical body, or a curved convex body structure, if the structure is such that it can swing by a distance corresponding to the length in the direction of the central axis of the rotating body, rotation can be achieved. The entire outer circumferential surface of the body 7 is uniformly heated to prevent thermal cracking, and the entire irradiated sample on the outer circumferential surface of the rotating body 7 can be uniformly evaporated. In addition, if the rotating body is a plate body such as a ring body or a disc body, the same effect can be obtained if the convergent laser beam irradiated to the plate surface can be scanned over a distance corresponding to the radius of the plate surface. can get.

収束レーザ光が照射されることにより照射点付近Qの外
周面試料は蒸発し、その蒸発粒子は矢印R方向に放出さ
れて基板9の上に蒸着して堆積する。10は、基板9の
前面に配設される可動シャッタで蒸発粒子の基板9への
蒸着時間を任意に調整するためのものである。
By being irradiated with the focused laser beam, the outer peripheral surface sample near the irradiation point Q is evaporated, and the evaporated particles are emitted in the direction of arrow R and deposited on the substrate 9 . Reference numeral 10 denotes a movable shutter disposed in front of the substrate 9 for arbitrarily adjusting the deposition time of the evaporated particles onto the substrate 9.

なお、回転体7を構成する被照射試料が極めて熱割れを
生じやすい材質である場合には、回転体7の外周面近傍
に図のような予熱ヒータ11を配置し、回転体7を予熱
しておけば収束レーザ光の照射時に回転体7の損壊を防
止することができる。
Note that if the irradiated sample constituting the rotating body 7 is made of a material that is extremely prone to thermal cracking, a preheater 11 as shown in the figure is placed near the outer peripheral surface of the rotating body 7 to preheat the rotating body 7. By doing so, it is possible to prevent damage to the rotating body 7 during irradiation with the focused laser beam.

さて、本発明は1以上例示した装置において、回転体7
が、黒鉛、炭素、金属、合金、金属化合物、セラミック
スからなる物質の少なくとも2種以上からなることを特
徴とする。すなわち、本発明にかかる回転体は2種類以
上の異種物質がそれぞれその特性を独立させた状態で混
在する構造体である。
Now, the present invention provides one or more exemplified devices in which the rotating body 7
is characterized in that it is made of at least two or more of the following substances: graphite, carbon, metals, alloys, metal compounds, and ceramics. That is, the rotating body according to the present invention is a structure in which two or more types of different materials coexist with each other having independent characteristics.

具体的には次のような態様のものを好適例としてあげる
ことができる。
Specifically, the following embodiments can be cited as preferred examples.

第1は、2種類以上の異種物質が混合してなる回転体で
ある0回転体の構造としては、第2図に示すような円柱
体、第3図に示すような円筒体。
First, the structure of a zero-rotating body, which is a rotating body made of a mixture of two or more different types of substances, is a cylindrical body as shown in FIG. 2, and a cylindrical body as shown in FIG.

第4図に示すような円錐体、第5図に示すような湾曲凸
面体、第6図に示すような円板体、第7図に示すような
リング体等種々の形態をあげることができる。このよう
な構造の回転体は、例えば金属チタンと炭素との混合粉
末からなる回転体から炭化チタンの硬質膜を形成する場
合、炭化チタンと窒化チタンとの混合粉末からなる回転
体から炭窒化チタンの硬質膜を形成する場合、窒化ケイ
素と酸化アルミニウムと酸化イツトリウムの混合粉末か
らなる回転体から窒化ケイ素を主体とした物質又はサイ
アロンと称する固溶体の硬質膜を形成する場合に適用し
て有効である。
Various forms can be mentioned, such as a conical body as shown in Figure 4, a curved convex body as shown in Figure 5, a disc body as shown in Figure 6, and a ring body as shown in Figure 7. . For example, when forming a hard film of titanium carbide from a rotating body made of a mixed powder of titanium metal and carbon, a rotating body with such a structure may be used to form a hard film of titanium carbonitride from a rotating body made of a mixed powder of titanium carbide and titanium nitride. It is effective when forming a hard film of a substance mainly composed of silicon nitride or a solid solution called sialon from a rotating body made of a mixed powder of silicon nitride, aluminum oxide, and yttrium oxide. .

なお、ここで第3図に示すような円筒体を回転体として
使用する場合、円筒体の外周面に対して接線方向から収
束レーザ光を外周面に照射すれば円柱体(第2図)、円
錐体(第4図)、湾曲凸面体(第5図)を用いた場合と
同様の効果を得ることができるが、特に、円筒体の内側
壁面に対して接線方向(回転軸方向)から収束レーザ光
を該壁面に照射すれば、粒子の蒸発方向が一定にそろう
ため蒸発粒子を基板に堆積させることが容易となり、又
、蒸発粒子が容器内に飛散して容器内壁全体を汚染する
ことを抑制できるなどの更なる効果を得ることも可能と
なる。
Note that when a cylindrical body as shown in Fig. 3 is used as a rotating body, if a convergent laser beam is irradiated to the outer peripheral surface of the cylindrical body from a tangential direction, the cylindrical body (Fig. 2), It is possible to obtain the same effect as when using a conical body (Fig. 4) or a curved convex body (Fig. 5), but in particular, convergence from the tangential direction (direction of the rotational axis) to the inner wall surface of the cylindrical body can be obtained. By irradiating the wall surface with laser light, the evaporation direction of the particles is aligned, making it easier to deposit the evaporated particles on the substrate, and also prevents the evaporated particles from scattering into the container and contaminating the entire inner wall of the container. It is also possible to obtain further effects such as suppression.

第2は、2種類以上の異種物質をそれぞれ別々に1つの
構造体として形成し、これらを組合わせてなる回転体で
ある0例えば、異種物質で形成した断面扇状の柱体を、
2個以上、求心的に合体させて円柱体、円筒体、円錐体
又は湾曲凸面体にしたり(第8図:円柱体の場合)、異
種物質で形成した断面扇状の板体を、2個以上、求心的
に合体させてリング体又は円板体にしたり(第9図:円
板体の場合)、異種物質で形成した円柱体、円筒体、円
錐体又は湾曲凸面体を、2個以上、回転体の軸方向に一
体的に連設したり(第10図:連設円柱体の場合)、異
種物質で形成し直径の異なるリング体又は円板体を、2
個以上、同心円状に合体させてリング体又は円板体にし
たり(第11図二同心円状リング体の場合)、その他、
1つの物質で形成した回転体の中に少なくとも1種の他
の異種物質を適当な形状にして合体させたり(第12図
、第13図)した種々の回転体である。
The second type is a rotating body formed by forming two or more types of different materials separately as one structure and combining them.
Two or more pieces can be centripetally combined to form a cylinder, a cylindrical body, a cone, or a curved convex body (Fig. 8: In the case of a cylinder), or two or more plate bodies with a fan-shaped cross section made of different materials. , two or more cylindrical bodies, cylindrical bodies, conical bodies, or curved convex bodies made of different materials, which are combined centripetally to form a ring body or a disc body (Fig. 9: In the case of a disc body), Two rings or disks made of different materials and having different diameters may be connected integrally in the axial direction of the rotating body (Fig. 10: In the case of a continuous columnar body).
Two or more concentric rings can be combined into a ring body or a disc body (in the case of two concentric ring bodies in Figure 11), and other
These are various types of rotating bodies, such as a rotating body made of one material and at least one other different substance in an appropriate shape and combined (FIGS. 12 and 13).

これらの回転体は、硬質膜を形成する目的やその用途に
よって種々使い分けることができる0例えば第1で示し
た2種以上の異種物質が混合してなる回転体では粉末の
状態で混合成形して回転体にしたり又はその回転体を予
備焼結によって適当な硬さ及び強度を持たせたりして使
用することができる。このような混合状の回転体は、例
えば2種以上の金属からなる回転体によって合金からな
る硬質膜を形成したり、2種以上の単一化合物からなる
回転体によって複合化合物、固溶体又は混合物からなる
硬質膜を形成することもできる。第2で示した2種以上
の異種物質をそれぞれ別々に1つの構造体として形成し
、これらの構造体を組合わせてなる回転体では、第1で
示した混合状の回転体と同様の硬質膜の形成が可能であ
るのみならず、更に組合わせによって、例えば第1θ図
や第11図の様な構造体からなる回転体を使用すること
によって積層状の硬質膜の形成ができる。
These rotating bodies can be used in various ways depending on the purpose of forming a hard film and its use. For example, in the case of a rotating body made of a mixture of two or more different substances shown in the first section, it is possible to mix and mold them in a powder state. It can be used as a rotating body or by pre-sintering the rotating body to give it appropriate hardness and strength. Such a mixed rotating body can be used, for example, to form a hard film made of an alloy by a rotating body made of two or more metals, or to form a composite compound, solid solution, or mixture by a rotating body made of two or more single compounds. It is also possible to form a hard film. A rotating body formed by combining two or more types of different materials shown in the second part as one structure, and combining these structures, has the same rigidity as the mixed rotating body shown in the first part. Not only is it possible to form a film, but also a laminated hard film can be formed by combining, for example, a rotating body consisting of a structure as shown in Fig. 1θ or Fig. 11.

本発明方法において、被照射試料の基板への堆積方向は
ほぼ一方向となるので、基板を回転又は揺動させること
により、複雑形状の基板であってもその全面に目的の硬
質膜を形成することができる。また、複数本の収束レー
ザ光を導入すれば、各種の被照射試料の同時蒸着又は積
層蒸着が可能となり新しい機能材料開発の可能性を孕む
In the method of the present invention, the direction of deposition of the irradiated sample on the substrate is approximately one direction, so by rotating or rocking the substrate, the desired hard film can be formed on the entire surface of the substrate even if it has a complex shape. be able to. Furthermore, by introducing a plurality of convergent laser beams, it becomes possible to perform simultaneous vapor deposition or laminated vapor deposition of various irradiated samples, giving rise to the possibility of developing new functional materials.

また、基板を水、液体窒素などで冷却したり、ヒータ加
熱、レーザ加熱などによって加熱したりすることもでき
、基板上の硬質膜を目的用途に応じて非晶質又は結晶性
のよいものにすることができる。とくに、基板を加熱し
たとき、形成された硬質膜と基板との間の密着性を向上
せしめることができる。基板の冷却又は加熱方法は真空
中又は雰囲気中で冷却又は加熱する方法であれば従来か
ら行なわれているいかなる方法であってもよい。
In addition, the substrate can be cooled with water, liquid nitrogen, etc., or heated with heater heating, laser heating, etc., and the hard film on the substrate can be made amorphous or crystalline depending on the intended use. can do. In particular, when the substrate is heated, the adhesion between the formed hard film and the substrate can be improved. The substrate may be cooled or heated by any conventional method as long as it is cooled or heated in vacuum or in an atmosphere.

更に、本発明方法にあっては、被照射試料の蒸発粒子を
基板に堆積させると同時に、そこにイオン照射したり、
高周波若しくはマイクロ波を照射して該堆積物質をイオ
ン化したり、又は蒸発粒子をバイアス電圧で加速させた
りすることができる。このような処置を施すと、蒸発粒
子が活性化して基板との密着性に優れた硬質膜を形成す
ることができる。
Furthermore, in the method of the present invention, while depositing the evaporated particles of the sample to be irradiated on the substrate, ions are irradiated thereon,
The deposited material can be ionized by high frequency or microwave radiation, or the evaporated particles can be accelerated by a bias voltage. By performing such treatment, the evaporated particles are activated and a hard film with excellent adhesion to the substrate can be formed.

また、本発明方法は、真空中のみならず各種の不活性ガ
ス、反応性ガス又はこれらの混合ガス中で行なうことも
できる0例えば、被照射試料として各種の金属を用い、
これを窒素雰囲気中で収束レーザ光を用いて蒸発させ、
同時に例えば窒素ガスイオンを照射すれば、基板上にこ
れら金属の窒化物の硬質膜を形成することができる。
Furthermore, the method of the present invention can be carried out not only in vacuum but also in various inert gases, reactive gases, or mixed gases thereof. For example, by using various metals as the sample to be irradiated,
This is vaporized using a focused laser beam in a nitrogen atmosphere.
At the same time, for example, by irradiating with nitrogen gas ions, a hard film of nitrides of these metals can be formed on the substrate.

ここで使用する基板としては、金属、合金、工具鋼、超
硬合金、サーメット又はセラミックス等積々のものを用
途によって使い分けることができる。
As the substrate used here, a variety of materials can be used depending on the purpose, such as metal, alloy, tool steel, cemented carbide, cermet, or ceramic.

[発明の実施例] 実施例1 金属チタン粉末80wt%と炭素粉末20wt%との混
合粉末を円柱体に成形した後、真空中で1200℃に予
備焼結して回転体とした。この回転体と一〇−10%C
O合金からなる基板を容器にセットした。器内を IX
 10′Tartに排気した後、回転体を3Orpm 
テ回転させながら1000℃に予熱し、基体を700℃
に予熱した。次にレーザ発振器から7001i1のC1
11C02収束レーザ光を回転体の外周面に接線方向か
ら照射して蒸発させ、この蒸発粒子を基板表面に堆積さ
せた。得られた硬質膜の硬さはマイクロビッカースで2
800〜3000kg/ rats2であった。硬質膜
の厚さは、107を腸であり、このときの堆積速度は約
lkm/l1inであった。この硬質膜をX線回折によ
って解析した結果TiCであることが認められた。
[Examples of the Invention] Example 1 A mixed powder of 80 wt% of titanium metal powder and 20 wt% of carbon powder was formed into a cylindrical body, and then presintered at 1200° C. in vacuum to form a rotating body. This rotating body and 10-10%C
A substrate made of O alloy was set in a container. Inside the vessel IX
After exhausting to 10'Tart, the rotating body is set to 3Orpm.
Preheat to 1000℃ while rotating, and heat the substrate to 700℃.
preheated to. Next, from the laser oscillator, C1 of 7001i1
A 11C02 convergent laser beam was irradiated onto the outer peripheral surface of the rotating body from a tangential direction to evaporate it, and the evaporated particles were deposited on the substrate surface. The hardness of the obtained hard membrane was 2 on the micro Vickers scale.
It was 800-3000 kg/rats2. The thickness of the hard membrane was 107 mm, and the deposition rate was about 1 km/1 inch. When this hard film was analyzed by X-ray diffraction, it was confirmed that it was TiC.

実施例2 S + 02を微量含有したS r a Na粉末から
成り、中心角60度の断面扇状の柱体を4本、A文、、
03−2oマo1%Y2O3の混合粉末から成り、中心
角30度の断面扇状の柱体を2本及びAffiN−20
マo1%Y2O3の混合物から成り、中心角30度の断
面扇状の柱体2本を作成した。これら8木の柱体な異種
物質が相互に隣接するように心的に合体させて回転体と
した。基板はAll 203−Si02系セラミフクス
を用いた。これらの回転体と基板を容器にセットして実
施例1と同様にして基板の表面に蒸発粒子を堆積させた
Example 2 It was made of S r a Na powder containing a small amount of S + 02, and had four pillars with a fan-shaped cross section and a central angle of 60 degrees.
It consists of a mixed powder of 03-2o mao1% Y2O3, and has two pillars with a fan-shaped cross section with a central angle of 30 degrees and AffiN-20.
Two pillars made of a mixture of MaO1% Y2O3 and having a fan-shaped cross section with a central angle of 30 degrees were prepared. These eight different types of cylindrical materials were mentally combined so that they were adjacent to each other to form a rotating body. All 203-Si02 ceramic ceramic was used as the substrate. These rotating bodies and the substrate were set in a container, and evaporated particles were deposited on the surface of the substrate in the same manner as in Example 1.

得られた硬質膜の硬さはマイクロビッカースで1800
kg/ am2でその膜厚は5ル層であった。このとき
の堆積速度は約0.5 #L m/winであった。こ
の硬質膜をX線回折したところサイアロンと考えられる
固溶体を含むSi3N4主体の物質であることが認めら
れた。
The hardness of the obtained hard film was 1800 on the micro Vickers scale.
kg/am2 and the film thickness was 5 layers. The deposition rate at this time was approximately 0.5 #L m/win. When this hard film was subjected to X-ray diffraction, it was found to be a substance mainly composed of Si3N4 containing a solid solution considered to be sialon.

実施例3 六方晶型窒化ホウ素からなる円筒体(外形50tw、内
径10m腸、長さ30■−)と窒化チタンからなる円筒
体(外形50m1、内径lO謹鵬、長さaO鵬層)とを
軸方向に合体させて連設円筒体(外形50膳■、内径l
O腸■、長さ80mm)を形成して回転体とした。基板
はSi3N、系セラミックスを用いた。回転体と基板を
容器にセットして、容器内を IX 10” 丁orr
に排気した後、回転体を15rpmに回転させながら5
00℃に予熱し、基体を1000℃に予熱した0次にレ
ーザ光発振器から 100OWのcwco、、収束レー
ザ光を回転体の外周面に接線方向から照射してまず窒化
チタンの回転体を蒸発させた後に六方晶型窒化ホウ素の
回転体を蒸発させて基板表面に蒸発粒子を堆積させた。
Example 3 A cylindrical body made of hexagonal boron nitride (outer diameter 50 tw, inner diameter 10 m, length 30 mm) and a cylindrical body made of titanium nitride (outer diameter 50 m1, inner diameter 10 m, length a0) were used. Combined in the axial direction to form a continuous cylindrical body (outer diameter 50 cm, inner diameter l)
A rotating body was formed by forming an intestine (length: 80 mm). The substrate used was Si3N ceramics. Set the rotating body and the substrate in the container, and set the inside of the container to IX 10” orr.
After exhausting the air to
First, the titanium nitride rotating body was evaporated by irradiating the outer peripheral surface of the rotating body with a focused laser beam of 100 OW from a zero-order laser beam oscillator that had been preheated to 00°C and the substrate was preheated to 1000°C. After that, the hexagonal boron nitride rotating body was evaporated to deposit evaporated particles on the substrate surface.

得られた硬質膜の硬さは4000ヌープであった。硬質
膜は、第1層が5IL園、第2層も5ル鵡の積層膜であ
った。この硬質膜をX線回折したところ内層である第1
層は窒化チタンであったけれども外層である第2層は非
晶質状のものであった。
The hardness of the obtained hard film was 4000 Knoop. The hard membrane was a laminated film in which the first layer was 5IL and the second layer was also 5IL. X-ray diffraction of this hard film showed that the first layer, which is the inner layer,
Although the layer was titanium nitride, the outer second layer was amorphous.

[発明の効果] 以上の説明で明らかなように、本発明方法は基板上に緻
密で強固な硬質膜を基板との密着性よく大きな堆積速度
で形成することができる。したがって、被照射試料を適
宜に選択し、また基板との組合わせを選択することによ
り、新しい機能材料を製造することができるのでその工
業的価値は大である。
[Effects of the Invention] As is clear from the above description, the method of the present invention can form a dense and strong hard film on a substrate with good adhesion to the substrate and at a high deposition rate. Therefore, by appropriately selecting the sample to be irradiated and selecting the combination with the substrate, new functional materials can be manufactured, which has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を行なうときに用いるレーザ蒸着装
置の1例を示す概略図であり、第2図〜第13図はいず
れも本発明にかかる回転体の具体例を示す概念的斜視図
である。 l−レーザ光 2.8一平面鏡 3−集光レンズ 4−透過窓 5−真空容器 6−中心軸 7−回転体(被照射試料) 9一基板 lO−シャッタ 11−子熱ヒータ 指定代理人 等々力 達 復代理人 津 国 肇 第1図 第4 If 第7図 第1o図 第13図 第1頁の続き [相]発明者安永 暢男茨朋1 究所内 −0発 明 者 樽 見 昇 茨城系1究所内 [相]発 明 者 小 原 明 茨城系1究所内 @発明者 池1)正幸茨朋1 究所内 0発 明 者 佐 藤 純 −横浜市ネ@発明者 真贋
 古史 用崎市う 斤治郡桜村梅園1丁目1番4号 工業技術院総合研斤治
郡杉 斤治郡杉 斤治郡し 申奈用ト
FIG. 1 is a schematic diagram showing an example of a laser vapor deposition apparatus used when carrying out the method of the present invention, and FIGS. 2 to 13 are conceptual perspective views showing specific examples of the rotating body according to the present invention. It is. 1-Laser light 2.8 Single plane mirror 3-Condensing lens 4-Transmission window 5-Vacuum container 6-Central axis 7-Rotating body (irradiated sample) 9-Substrate 1O-Shutter 11-Child thermal heater designated representative Todoroki Tatsukuni Hajime Hajime Tsukuni Figure 1 Figure 4 If Figure 7 Figure 1o Figure 13 Continued from page 1 [Phase] Inventor Nobuo Yasunaga Ibaraki 1 Kyusho-0 Inventor Noboru Tarumi Ibaraki Kei 1 Inventor within the laboratory Akira Kohara Ibaraki-based 1 laboratory @ inventor Ike 1) Masayuki Ibaratomo 1 0 within the laboratory Inventor Jun Sato - Yokohama city @ inventor Authenticity Old history Uko, Yozaki city 1-1-4 Baien, Sakuramura, Osamu District, Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】 (1)容器内で軸回転する回転体に収束レーザ光を照射
し、該回転体から蒸発した粒子を基板に堆積させて成る
膜の形成方法において、 該回転体が黒鉛、炭素、金属、合金、金属化合物又はセ
ラミックスの群から選ばれる少なくとも2種の物質から
成ることを特徴とする硬質膜の形成方法。 (2)該回転体が円柱体、円筒体、円錐体又は湾曲凸面
体の構造からなる特許請求の範囲第1項記載の硬質膜の
形成方法。 (3)該回転体がリング体又は円板体の構造からなる特
許請求の範囲第1項記載の硬質膜の形成方法。 (4)該回転体が断面扇状の柱体又は板体の2個以上を
心的に合体させてなる特許請求の範囲第1項、第2項又
は第3項記載の硬質膜の形成方法。 (5)該回転体が円柱体、円筒体又は円錐体の2個以上
を該回転体の軸方向に一体的に連設してなる特許請求の
範jllJ#1項又は第2項記載の硬質膜の形成方法。 (8)該回転体が直径の異なるリング体又は円板体の2
(l1以上を同心円状に合体させてなる特許請求の範囲
第1項又は第3項記載の硬質膜の形成方法。
[Claims] (1) A method for forming a film by irradiating a rotating body that rotates on its axis within a container with a focused laser beam and depositing particles evaporated from the rotating body on a substrate, wherein the rotating body is made of graphite. , carbon, metal, alloy, metal compound, or ceramics. (2) The method for forming a hard film according to claim 1, wherein the rotating body has a structure of a cylinder, a cylinder, a cone, or a curved convex body. (3) The method for forming a hard film according to claim 1, wherein the rotating body has a ring or disk structure. (4) The method of forming a hard membrane according to claim 1, 2 or 3, wherein the rotating body is formed by mentally uniting two or more pillars or plates having a fan-shaped cross section. (5) The rigid body according to claim 1 or 2, wherein the rotating body is formed by integrally connecting two or more cylindrical bodies, cylindrical bodies, or conical bodies in the axial direction of the rotating body. How to form a film. (8) The rotating body is a ring body or a disc body with different diameters.
(The method for forming a hard membrane according to claim 1 or 3, which comprises combining l1 or more in a concentric circle.
JP4926884A 1984-03-16 1984-03-16 Formation of hard film Granted JPS60194067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4926884A JPS60194067A (en) 1984-03-16 1984-03-16 Formation of hard film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4926884A JPS60194067A (en) 1984-03-16 1984-03-16 Formation of hard film

Publications (2)

Publication Number Publication Date
JPS60194067A true JPS60194067A (en) 1985-10-02
JPS6338428B2 JPS6338428B2 (en) 1988-07-29

Family

ID=12826085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4926884A Granted JPS60194067A (en) 1984-03-16 1984-03-16 Formation of hard film

Country Status (1)

Country Link
JP (1) JPS60194067A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320454A (en) * 1986-07-14 1988-01-28 Nippon Kokan Kk <Nkk> Vapor deposition device
WO1996010324A1 (en) * 1994-09-26 1996-04-04 Fom-Instituut Voor Plasmafysica Rijnhuizen Laser target for use in an apparatus for generating radiation and atomic particles
US5786129A (en) * 1997-01-13 1998-07-28 Presstek, Inc. Laser-imageable recording constructions utilizing controlled, self-propagating exothermic chemical reaction mechanisms
JP2004238701A (en) * 2003-02-07 2004-08-26 Dainippon Printing Co Ltd Ion-plating apparatus and deposition method using the same
JP2008255481A (en) * 2007-03-09 2008-10-23 Mitsubishi Materials Corp Vapor deposition material
JP2009041219A (en) * 2007-08-07 2009-02-26 Toyoda Gosei Co Ltd Locking device for vehicular change box
WO2017025662A1 (en) * 2015-08-10 2017-02-16 Picodeon Ltd Oy Method for manufacturing thin films by laser ablation by applying laser pulses with a rotating target

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158377A (en) * 1981-03-27 1982-09-30 Ishikawajima Harima Heavy Ind Co Ltd Plating device for inside surface of pipe utilizing laser beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158377A (en) * 1981-03-27 1982-09-30 Ishikawajima Harima Heavy Ind Co Ltd Plating device for inside surface of pipe utilizing laser beam

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320454A (en) * 1986-07-14 1988-01-28 Nippon Kokan Kk <Nkk> Vapor deposition device
WO1996010324A1 (en) * 1994-09-26 1996-04-04 Fom-Instituut Voor Plasmafysica Rijnhuizen Laser target for use in an apparatus for generating radiation and atomic particles
NL9401560A (en) * 1994-09-26 1996-05-01 Rijnhuizen Plasmafysica Method and device for generating radiation and atomic particles.
US5786129A (en) * 1997-01-13 1998-07-28 Presstek, Inc. Laser-imageable recording constructions utilizing controlled, self-propagating exothermic chemical reaction mechanisms
JP2004238701A (en) * 2003-02-07 2004-08-26 Dainippon Printing Co Ltd Ion-plating apparatus and deposition method using the same
JP4486308B2 (en) * 2003-02-07 2010-06-23 大日本印刷株式会社 Ion plating apparatus and film forming method using the same
JP2008255481A (en) * 2007-03-09 2008-10-23 Mitsubishi Materials Corp Vapor deposition material
JP2009041219A (en) * 2007-08-07 2009-02-26 Toyoda Gosei Co Ltd Locking device for vehicular change box
WO2017025662A1 (en) * 2015-08-10 2017-02-16 Picodeon Ltd Oy Method for manufacturing thin films by laser ablation by applying laser pulses with a rotating target

Also Published As

Publication number Publication date
JPS6338428B2 (en) 1988-07-29

Similar Documents

Publication Publication Date Title
CA2556786C (en) Process and apparatus for the manufacture of sputtering targets
JPS60194067A (en) Formation of hard film
McKernan Magnetron sputter deposition of boron and boron carbide
Zalar et al. Multiple-point depth profiling of multilayer Cr/Ni thin film structures on a rough substrate using scanning auger microscopy
JPS59116373A (en) Vapor deposition device by laser
JP3311387B2 (en) Composite sputtering equipment
JP4701386B2 (en) High hardness material
JP4573450B2 (en) Sputtering equipment
JPS588640B2 (en) speaker
JPH02107757A (en) Production of amorphous superlattice alloy
JPS6196721A (en) Film forming method
JPS62170474A (en) Laser vapor deposition device
JPH0215161A (en) Formation of titanium carbide film by ion beam sputtering method
JPS60194066A (en) Production of hard film-coated material
JPS61133376A (en) Method and device for forming thin film
JPS6241291A (en) Preparation of solid lubricating film
JPH0244901B2 (en) REEZAOMOCHIITAJOCHAKUSOCHI
JPS58133368A (en) Formation of boron coating film
JPH03159978A (en) Method for forming metallic film onto ceramic surface by ion mixing method
JPS62170472A (en) Laser vapor deposition device with cleaning mechanism
JPS6320445A (en) Ion plating
JPH02159362A (en) Method and apparatus for production of thin film
RU2532742C1 (en) Method of producing fullerene-containing film on substrate
JPS6263669A (en) Vapor depositing apparatus using electron beam
JPS61221364A (en) Film forming apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term