JPS6019110A - Optical fiber for absolutely single polarization - Google Patents

Optical fiber for absolutely single polarization

Info

Publication number
JPS6019110A
JPS6019110A JP58126109A JP12610983A JPS6019110A JP S6019110 A JPS6019110 A JP S6019110A JP 58126109 A JP58126109 A JP 58126109A JP 12610983 A JP12610983 A JP 12610983A JP S6019110 A JPS6019110 A JP S6019110A
Authority
JP
Japan
Prior art keywords
core
intermediate layer
refractive index
cladding
intermediate layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58126109A
Other languages
Japanese (ja)
Inventor
Toshito Hosaka
保坂 敏人
Yutaka Sasaki
豊 佐々木
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58126109A priority Critical patent/JPS6019110A/en
Publication of JPS6019110A publication Critical patent/JPS6019110A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To propagate only waves of one linear polarization mode with a small loss by providing the first intermediate layers on both sides of a core so that they are brought into contact with the core and providing the second intermediate layers in a clad apart from the core and the first intermediate layers orthogonally to the first intermediate layers so that they face each other. CONSTITUTION:The first intemediate layers 2' are brought into contact with a core 1' and exist only on both sides of the core 1', and the second intermediate layers 3' exist in a clad 4 apart from the core 1' and the first intermediate layers 2' orthogonally to the first intermediate layers 2' so that they face each other. The refractive index of the core 1' is higher than that of the clad 4, and the refractive index of the first intermediate layers 2' is higher than that of the clad 4, and the refractive index of the second intermediate layers 3' is equal to or lower than that of the clad 4; and when a specific refractive index difference between the core and the clad is denoted as DELTA1 and that between the clad and the first intermediate layers is denoted as -DELTA2 and sectional areas of the core and the first intermediate layers are denoted as S1 and S2 respectively, an optical fiber is constituted to satisfy condition ¦DELTA1S1¦<¦-DELTA2S2¦.

Description

【発明の詳細な説明】 本発明はコヒーレント光伝送方式用の伝送媒体または偏
光特性を有する光部品との結合用物品として要求される
単一直線偏波のみな云y禾する絶対単一偏波光ファイバ
の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an absolutely single-polarized optical fiber capable of producing only a single linearly polarized wave, which is required as a transmission medium for a coherent optical transmission system or as an article for coupling with an optical component having polarization characteristics. It is related to the structure of

いわゆる単一モード光ファイバは直間する二つの偏波モ
ードが縮退しており、厳蜜な意味で単一モードではない
。従ってこのような光ファイバに外部から応力が加えら
れたり、または温度り動が加わったりすると、二つの偏
波モードの縮退がフJ1け、直線偏波を入射させても一
般には出射光は楕円偏波となる。これは外部条件により
、出射光の偏波方向が変動することを意味し、コヒーレ
ント光伝送または出射端に偏波依存性のある光部品を接
続する場合には伝送特性が劣化する。
A so-called single mode optical fiber has two directly adjacent polarization modes that are degenerate, so it is not a single mode in the strict sense. Therefore, when external stress or temperature fluctuations are applied to such an optical fiber, the two polarization modes become degenerate, and even if linearly polarized waves are input, the output light generally becomes elliptical. It becomes a polarized wave. This means that the polarization direction of the emitted light varies depending on external conditions, and the transmission characteristics deteriorate in coherent optical transmission or when an optical component with polarization dependence is connected to the output end.

これまで絶対単一偏波光ファイバとしては次の二つが考
えられている。
Up to now, the following two types of absolute single polarization optical fiber have been considered.

(zl 第1図に示すよう忙、コア1の相対向する両側
にのみ、屈折率がコアの屈折率より小さく、クラッド4
の屈折率より大きな層2を持たせ、直交する二つの偏波
モードのうち、電界方向が前記層2の方向にある偏波モ
ードのみを遮断する方法。(参考文献: T、 0ko
shi anci K、 Oyamada。
(zl As shown in Figure 1, only on opposite sides of core 1, the refractive index is smaller than the refractive index of the core, and the cladding 4
A method of blocking only the polarization mode in which the electric field direction is in the direction of the layer 2 among the two orthogonal polarization modes by providing a layer 2 with a refractive index greater than . (References: T, 0ko
shi anci K, Oyamada.

Electron、Let、t、、 、 Vol、 1
6 + AlB + PP、 712−718.198
0 ) (2) 第2図に示すように、コア1の両側に、コアか
ら離してコアに応力を付与する領域8をクラッドΦ内に
設け、光ファイバに複屈折率B=5×10 というよう
な大きな複屈折率を持たせ、二つの直交す−る基本モー
ドのうち、一つのモードのみを漏洩モードとし、実際に
は伝搬不可能にする方法。(参考文献:A、W、 5n
yderand F、Etuhl + Electro
n、Let、t、、 、 Vol、 191J6.51
PP、 185−186.1988 ; A、0urn
+a、zd、 t・1.、al 。
Electron, Let, t,, , Vol, 1
6 + AlB + PP, 712-718.198
0) (2) As shown in Fig. 2, regions 8 are provided in the cladding Φ on both sides of the core 1 to apply stress to the core at a distance from the core, and the optical fiber has a birefringence of B=5×10. A method of providing such a large birefringence that only one mode out of two orthogonal fundamental modes becomes a leaky mode, making it practically impossible to propagate. (References: A, W, 5n
yderand F, Etuhl + Electro
n, Let, t, , Vol, 191J6.51
PP, 185-186.1988; A, 0urn
+a, zd, t・1. , al.

Electron、 hett、1.vol、19 、
 A4 、 PP、 14)1−144.1988 ) しかしこれらの方法では絶対単一偏波として使える一つ
の直線偏波モードのみ伝(跳ンしイ4る波長領域が非常
に狭く、また伝送すべきモードの伝送]ij失も大きい
という欠点があった。
Electron, hett, 1. vol, 19,
A4, PP, 14) 1-144.1988) However, in these methods, only one linear polarization mode that can be used as absolute single polarization is transmitted (the wavelength range in which it jumps is very narrow, and the wavelength range to be transmitted is Mode transmission] There was a drawback that the loss of ij was also large.

本発明はこれらの欠点を除去するため、コアの側面に相
対向する屈折率の溝な鈑けて一つの制波モードを遮断す
る効果と、さらに応力付与部を付加して複屈折率を大き
くし、漏洩上−ドとする効果を加え合わせたものであり
、その目的は一つの直線偏波モードのみを伝搬する実用
的な絶対tB −偏波光ファイバの提供にある。
In order to eliminate these drawbacks, the present invention has the effect of cutting off one wave control mode by cutting the refractive index grooves facing each other on the side surfaces of the core, and also increases the birefringence by adding a stress applying part. However, the purpose is to provide a practical absolute tB-polarized optical fiber that propagates only one linearly polarized mode.

第8図は本発明の絶対単一制波ファイバの一例の断面図
であって、1はコア、2′は基本モードである二つのH
E xおよびHE0□yモードにカット第1 フを与えるための第1中間層、8′はコアlに応力な加
えるための第2中間層、iはクラッドである。
FIG. 8 is a cross-sectional view of an example of the absolutely single wave control fiber of the present invention, in which two Hs, 1 being the core and 2' being the fundamental mode, are shown.
The first intermediate layer is for applying a first cut to the Ex and HE0□y modes, 8' is the second intermediate layer for applying stress to the core l, and i is the cladding.

コアは円形であり、コア径5μm、コアとクラッドの比
屈折率差0.8%である。第1中間層2はコアの相対向
する両側に存在し、その幅は5μm。
The core is circular, has a core diameter of 5 μm, and a relative refractive index difference between the core and the cladding of 0.8%. The first intermediate layer 2 exists on opposite sides of the core and has a width of 5 μm.

第1中間層とクラッドの比屈折率差は−0,8%である
The relative refractive index difference between the first intermediate layer and the cladding is -0.8%.

また第2中間層3はコアから離れて存在し、円形であり
、その外径は50μm、コアと第2中間層との距ばLは
8μm1屈折車はクラッドの屈折率と等しい。それぞれ
のガラス組成は、コア1がゲルマニウムドープまたはリ
ンドープのシリカガラス、第1中間I@2′はフッ素の
7リカガラス、第2中間層3′はボロン、フッ素および
ゲルマニウムドープのシリカガラス、クラッド4は純シ
リカガラスである。
The second intermediate layer 3 is located apart from the core and is circular, with an outer diameter of 50 μm and a distance L between the core and the second intermediate layer of 8 μm. The composition of each glass is as follows: core 1 is germanium-doped or phosphorus-doped silica glass, first intermediate layer I@2' is fluorine-doped silica glass, second intermediate layer 3' is boron, fluorine and germanium-doped silica glass, and cladding 4 is silica glass doped with boron, fluorine and germanium. It is pure silica glass.

コア、第1中間層およびクラッドガラスの熱膨張係数は
ほぼ等しく、ボロンおよびゲルマニウムを多bf K含
んだ第2中間層(Bs0B =10 mo1%。
The core, first intermediate layer, and cladding glass have approximately the same coefficient of thermal expansion, and the second intermediate layer contains boron and germanium in a large amount of bf K (Bs0B = 10 mo1%).

GeO,!−5m01%)の熱膨張係数がこれらに比較
して大きいので、光フアイバ作製のための線引き時にお
ける約2100°Cから室温への1急冷過程において、
熱膨張係数の差により、約48 k!9/Jの残留熱応
力がファイバに生じる。
GeO,! -5m01%) is large compared to these, so in one quenching process from about 2100°C to room temperature during drawing for optical fiber production,
Due to the difference in thermal expansion coefficient, approximately 48 k! A residual thermal stress of 9/J is created in the fiber.

第4図は第1中間層のみを考えた場合の二つの基本モー
ドHE、、” (電界、ベクトルがX方向)とHE□、
y(電界ベクトルがy方向)の実効屈折小” ”off
 ’ nXff )を示したものである。横軸は規格化
周波数Vである。コアの側面に第1中間層が屈折率の溝
として存在し、コアの断面積をS□、第1中間層の断面
積な82、コアとクラッドの比屈折率差をΔ0、クラッ
ドと第1中間層の比屈折率差を一Δ2としたとき、1Δ
□S工1く1−Δ2S21を満足し℃いるので、基本モ
ードにカットオフが生じる。実効屈折率”e7Jがクラ
ッドの屈折率n。ladと等しいときがモードのカット
オフとなるが、二つのモードのV値に対するカットオフ
条件に差が生じ、HE□□yモードはカットオフとなる
が、HE、、”モードは伝搬可能となるV値の領域(波
長領域)が存在する。すなわちこの領域が絶対単一偏波
領域である。しかしこの領域は非常に狭く、V値で約0
.02、波長で約0.02μmの範囲である。
Figure 4 shows the two fundamental modes HE, '' (electric field, vector is in the X direction) and HE□, when only the first intermediate layer is considered.
Small effective refraction in y (electric field vector is in the y direction)""off
'nXff). The horizontal axis is the normalized frequency V. The first intermediate layer exists as a refractive index groove on the side surface of the core, the cross-sectional area of the core is S□, the cross-sectional area of the first intermediate layer is 82, the relative refractive index difference between the core and the cladding is Δ0, and the cladding and the first intermediate layer are When the relative refractive index difference of the intermediate layer is -Δ2, 1Δ
Since □S(1×1−Δ2S21) is satisfied, a cutoff occurs in the basic mode. The mode is cutoff when the effective refractive index "e7J is equal to the cladding refractive index n.lad, but there is a difference in the cutoff conditions for the V value of the two modes, and the HE□□y mode is cutoff. However, there is a V value region (wavelength region) in which the HE mode can propagate. That is, this region is an absolute single polarization region. However, this region is very narrow, and the V value is approximately 0.
.. 02, the wavelength range is approximately 0.02 μm.

第5図は第2中間層のみを考えた場合のHE、、Xおよ
びHE□□yモードの実効屈折率を規格化周波数V K
 7) して示したものである。残留応力による複屈折
のため二つの基本モードの実効屈折率”off(HE、
”モード)、nKff ””11yモード)に差が生じ
る。こCでn:ffはnXffより大きく、伝搬能力が
HE□、′モードの方が強い。”Kffがnclad以
下の値のときにはHE□、yモードは漏洩モードとなり
、実質的に伝搬不可能となる。従って”KffがnIa
d 〈”Kff <nHladのV値領域において、H
E□、′モードのみが伝搬可能となり、実質的な絶対単
一偏波領域となる。この波長領域は約0.1μmである
Figure 5 shows the effective refractive index of the HE, , X and HE□□y modes when considering only the second intermediate layer at the normalized frequency V K
7) It is shown as follows. Due to birefringence due to residual stress, the effective refractive index of the two fundamental modes is off (HE,
``mode), nKff ````11y mode). Here, n:ff is larger than nXff, and the propagation ability is stronger in HE□,' mode.When Kff is less than nclad, HE□ , y mode becomes a leaky mode and becomes virtually impossible to propagate. Therefore, “Kff is nIa
In the V value region of d 〈”Kff <nHlad, H
Only the E□,' modes can propagate, resulting in a substantial absolute single polarization region. This wavelength range is approximately 0.1 μm.

第6図は不発り」の絶対単一偏波ファイバのV値と二ツ
ノ糸本モードの実効屈折率を示したものである。
FIG. 6 shows the V value and the effective refractive index of the two-horn mode of an absolutely single-polarization fiber with no ignition.

前M己二つの効果が重なり合い、絶対単一偏波領域(波
長領域)が広くなるとともに、この領域でのHE、、”
モードの伝搬能力が強くなる。またこのファイバにおけ
るモード級屈折率Bは1.2X10−8であり、通常の
偏波保持光ファイバとしての性能も優れている。
The two effects overlap, and as the absolute single polarization region (wavelength region) becomes wider, HE in this region...
Mode propagation ability becomes stronger. Moreover, the mode-class refractive index B of this fiber is 1.2×10 −8 , and its performance as a normal polarization-maintaining optical fiber is also excellent.

なおこの実施例ではコアおよび第2中間層を円形とした
が、形状は円形に限定されない。また第1中間層を中空
の穴とし、屈折率を極端に小さくすることにより、絶対
単一偏波領域を広くすることも可能である。
In this example, the core and the second intermediate layer are circular, but the shape is not limited to circular. Furthermore, by making the first intermediate layer a hollow hole and making the refractive index extremely small, it is also possible to widen the absolute single polarization region.

第Bldに示すような断面形状なイ:T″4″る絶対単
一偏波光ファイバの作製方法の一例としては、第7図に
示すような同心円状のコア、第1中間層およびクラッド
よりなるファイバ用母材を、破諜で示すように板状に研
削、研磨し、また第8図に示すような同心円状の応力付
与用母@(第2中間層に相当)を半円柱状に研削、研磨
し、第9図に示すように石英管5に挿入して線引くこと
により実現できる。
An example of a method for manufacturing an absolutely single polarization optical fiber having a cross-sectional shape of T"4" as shown in FIG. The fiber base material is ground and polished into a plate shape as shown in the diagram, and the concentric stress applying base material (corresponding to the second intermediate layer) is ground into a semi-cylindrical shape as shown in Figure 8. This can be achieved by polishing, inserting into a quartz tube 5 and drawing a line as shown in FIG.

以上説明したように、本発明の絶対単一偏波光ファイバ
は、絶対偏波領域を広(できるので、コヒーレント光伝
送方式用の伝送媒体として利用で“きるという利点があ
る。また偏波特性を有する光回路素子間の結合の際ても
偏波情報を充分に活用することができる利点もある。
As explained above, the absolute single polarization optical fiber of the present invention has the advantage that it can be used as a transmission medium for coherent optical transmission systems because it can widen the absolute polarization region. There is also the advantage that polarization information can be fully utilized even when coupling between optical circuit elements having the same structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の絶対単一偏波ファイバの断
IIIJ図、第3図は本発明の絶対単一偏波ファイバの
一例の断面図、第4図は第1中間層のみを考えた場合の
二つの基本モードHE□、8およびHE、、yモードの
実効屈折率とv値との関係を示す図、第5図はめ2中間
層のみを考えた場合の二つの基本モードIIF□、′お
よびHE□□yモードの実効屈折率とv飴の関捺を示す
図、第6図は本発明の絶対単一偏波ファイバの二つの基
本モードHE工□1およびHE□、yモードの実効屈折
率とV値の関係を示す図、第7図、第8図および第9図
は本発明の絶対単一偏波光ファイバの作製方法の説明図
である。 ■・・・コア、2′・・・第1中間層、8′・・・第2
中間層、4・・・クラッド、5・・・石英管。 −4; 第4図 第5図 第6目 第7図 第8図 第り図
Figures 1 and 2 are cross-sectional views of a conventional absolutely single-polarized fiber, Figure 3 is a cross-sectional view of an example of the absolutely single-polarized fiber of the present invention, and Figure 4 shows only the first intermediate layer. Figure 5 shows the relationship between the effective refractive index of the y mode and the v value when considering the two fundamental modes HE Figure 6 shows the relationship between the effective refractive index of □, ′ and HE□□y mode and v candy. FIGS. 7, 8, and 9, which show the relationship between the effective refractive index of the mode and the V value, are explanatory diagrams of the method for manufacturing the absolutely single polarization optical fiber of the present invention. ■...core, 2'...first intermediate layer, 8'...second
Intermediate layer, 4... cladding, 5... quartz tube. -4; Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig.

Claims (1)

【特許請求の範囲】 L 中心16Hの円形または楕円形のコアと、その外側
の第1中間層とさらにその外側のクラッドとクラッド中
の第2中間層からなり、第1中間層はコアに接し、コア
の相対向する両側にのみ存在し、第2中間層は第1中間
層と直方する方向にコアおよび第1中間層から離れて相
対向して存在し、コアはクラッドより屈折イ4が大きく
、第1中間層はクラッドより屈折率が小さく、第2中間
層はクラッドと同じかクラッドより小さい屈折率を有し
、コアとクラッドの比屈折率差をΔ□、クラッドと第1
中間層の比屈折率差を一Δ2、コアの断面1j1を80
、第1中間層の断面積なS、とし、1ΔS 1〈1−Δ
、S21の条件を満足し、第21 中間層な形成するガラスの熱膨張係数がクラッドを形成
するガラスの熱膨張係数と異なることを特徴とする絶対
単一偏波光ファイバ。 i コアとしてゲルマニウムまたはリンな添加した石英
ガラスを用い、第1中間層として石英ガラスに硼素また
はフッ素を添加したガラスを用い、第2中間層として石
英ガラスK イ11111素、フッ素、ゲルマニウムま
たは硼素、フッ素、ゲルマニウム、リンを添加したガラ
スな用い、クラッドとして石英ガラスを用いることな特
徴とする特許請求の範囲第1項i己載の絶対単一偏波光
ファイバ。
[Claims] L Consisting of a circular or elliptical core at the center 16H, a first intermediate layer outside the core, a cladding outside the core, and a second intermediate layer in the cladding, the first intermediate layer being in contact with the core. , are present only on opposite sides of the core, the second intermediate layer is present oppositely and away from the core and the first intermediate layer in a direction perpendicular to the first intermediate layer, and the core has a refractive index 4 greater than the cladding. The first intermediate layer has a refractive index smaller than that of the cladding, the second intermediate layer has a refractive index equal to or smaller than the cladding, and the relative refractive index difference between the core and the cladding is Δ□, and the cladding and the first intermediate layer have a refractive index equal to or smaller than the cladding.
The relative refractive index difference of the intermediate layer is -Δ2, and the cross section 1j1 of the core is 80
, the cross-sectional area of the first intermediate layer is S, and 1ΔS 1<1−Δ
, S21, and is characterized in that the coefficient of thermal expansion of the glass forming the intermediate layer is different from the coefficient of thermal expansion of the glass forming the cladding. i Using quartz glass doped with germanium or phosphorus as the core, using glass with boron or fluorine added to quartz glass as the first intermediate layer, and using quartz glass K as the second intermediate layer, fluorine, germanium or boron, An absolutely single-polarized optical fiber as claimed in claim 1, characterized in that the optical fiber is made of glass doped with fluorine, germanium, or phosphorus, and quartz glass is used as the cladding.
JP58126109A 1983-07-13 1983-07-13 Optical fiber for absolutely single polarization Pending JPS6019110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126109A JPS6019110A (en) 1983-07-13 1983-07-13 Optical fiber for absolutely single polarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126109A JPS6019110A (en) 1983-07-13 1983-07-13 Optical fiber for absolutely single polarization

Publications (1)

Publication Number Publication Date
JPS6019110A true JPS6019110A (en) 1985-01-31

Family

ID=14926842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126109A Pending JPS6019110A (en) 1983-07-13 1983-07-13 Optical fiber for absolutely single polarization

Country Status (1)

Country Link
JP (1) JPS6019110A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627104A (en) * 1979-08-13 1981-03-16 Sumitomo Electric Ind Ltd Construction of optical fiber
JPS5835503A (en) * 1981-08-27 1983-03-02 Nippon Telegr & Teleph Corp <Ntt> Single lineary polarizing optical fiber of zero polarization scattering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627104A (en) * 1979-08-13 1981-03-16 Sumitomo Electric Ind Ltd Construction of optical fiber
JPS5835503A (en) * 1981-08-27 1983-03-02 Nippon Telegr & Teleph Corp <Ntt> Single lineary polarizing optical fiber of zero polarization scattering

Similar Documents

Publication Publication Date Title
KR0172600B1 (en) Single-mode, single polarization optical fiber
US4515436A (en) Single-mode single-polarization optical fiber
JP3734733B2 (en) Polarization-maintaining optical fiber and absolute single-polarization optical fiber
US4549781A (en) Polarization-retaining single-mode optical waveguide
JPH01237507A (en) Absolute single polarizing optical fiber
GB2190762A (en) Directional coupler
US4851025A (en) Process for producing a planar optical waveguide
KR100786617B1 (en) Method of manufacturing polarization-maintaining optical fiber coupler
US6614961B2 (en) Method of fabricating a fused-type mode-selective directional coupler
EP0201544A1 (en) Form birefringent fibers and method of fabrication
US4818047A (en) Polarized wave preserving fiber
JPS6019110A (en) Optical fiber for absolutely single polarization
JPS59164505A (en) Single-polarization single-mode optical fiber
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH01287603A (en) Absolute single mode polarization optical fiber
JPH0350505A (en) Single polarization optical fiber
JPS58104035A (en) Preparation of optical fiber having single polarization diversity and single mode
JPS61228404A (en) Optical fiber for constant polarized wave
JPS60173505A (en) Optical fiber for maintaining polarized wave
JP2001051150A (en) Manufacture of polarization retaining optical fiber coupler
CN116338851A (en) Optical waveguide for single-mode single-polarization transmission
JP2827231B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPS6054644B2 (en) Single polarization fiber for very long wavelengths
JPS6235307A (en) Optical coupler