JPS60173505A - Optical fiber for maintaining polarized wave - Google Patents

Optical fiber for maintaining polarized wave

Info

Publication number
JPS60173505A
JPS60173505A JP59019423A JP1942384A JPS60173505A JP S60173505 A JPS60173505 A JP S60173505A JP 59019423 A JP59019423 A JP 59019423A JP 1942384 A JP1942384 A JP 1942384A JP S60173505 A JPS60173505 A JP S60173505A
Authority
JP
Japan
Prior art keywords
core
optical fiber
thermal expansion
intermediate layers
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59019423A
Other languages
Japanese (ja)
Inventor
Toshito Hosaka
保坂 敏人
Yutaka Sasaki
豊 佐々木
Katsunari Okamoto
勝就 岡本
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59019423A priority Critical patent/JPS60173505A/en
Publication of JPS60173505A publication Critical patent/JPS60173505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Abstract

PURPOSE:To increase the allowance of the deviation in the symmetry of intermediate layers for applying stress having straight core sides and to intensify the maintainability of the polarized wave against disturbance by providing said intermediate layers on both sides of a core. CONSTITUTION:An optical fiber for maintaining polarized wave is constituted of a core 1, a clad 2 and intermediate layers 3. The core 1 is circular and the layers 3 are semicircular and exist only on both sides facing the core apart from the core. The amt. of GeO2 contained in the core is small and has therefore the coefft. of thermal expansion slightly larger than the coefft. of thermal expansion of pure SiO2. The intermediate layers contain much B2O3 as compared with the core and have therefore the coefft. of thermal expansion larger than the cofft. of thermal expansion of the core and clad. A large residual tensile stress arises consequently in the direction (X-axis direction) connecting the core and both intermediate layers owing to a difference in the coefft. of thermal expansion between the core and clad and the intermediate layers when the base material for the optical fiber is quickly cooled to a fiber in the stage of drawing. If the large residual stress exists on both sides facing the core, large double refractivity is generated in the core part by said stress and the maintenance of the linearly polarized wave against fluctuation in external conditions is made possible.

Description

【発明の詳細な説明】 (技術分野) 本発明はコヒーレント元伝送方式′1fcは偏波依゛存
性を有する光部品との結合、また光計測等に要求される
偏波保持光ファイバに関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a coherent source transmission system '1fc, which is a polarization-maintaining optical fiber required for coupling with polarization-dependent optical components and for optical measurement. It is.

(従来技術) ′ 通常の単一モ□−ド光ファイバは直交する二つの偏波モ
ードが縮退しており、厳密な意味で単一モl1l−ドで
はない0従ってこのようなファイバに外部から応力が加
えられたり、または温度変動力i与えられたりすると、
二つの偏波モードの組成が解け、直線偏波を入射させて
も出射光は一般には楕円偏波や円偏波の種々のi波姿態
となる0この工う゛なトファイバの出射端に偏波依存性
のある光部品が接続される場合には、その結合効率が大
きく変動し、系全体の伝送特性が悪影響を受ける。
(Prior art) ' In a normal single mode optical fiber, two orthogonal polarization modes are degenerated, and in the strict sense it is not a single mode. When a stress is applied or a temperature variation force i is applied,
The composition of the two polarization modes is solved, and even if linear polarization is input, the output light generally has various i-wave forms such as elliptically polarized waves and circularly polarized waves.The output end of this sophisticated fiber is polarized. When optical components with dependencies are connected, their coupling efficiency varies greatly, and the transmission characteristics of the entire system are adversely affected.

これまで直線偏波を保存する方法とし上次の二つが考え
られていた。
Until now, the following two methods have been considered to preserve linear polarization.

(1)直交する二つの偏波モードが存在可能な光フ1ア
イバにおいて、ファイバ内部に応力を誘起させる構造と
し、その応力によって外乱により受ける複屈折率より十
分大きな複屈折率をコ□ア部に内在させて1一つの直線
偏波全励起した時、′直交する他の直線偏波への結合を
抑さえる方法0(2) 単一偏波のみが存在可能な構造
を用いる方法。
(1) An optical fiber in which two orthogonal polarization modes can exist has a structure that induces stress inside the fiber, and the stress causes the core to have a birefringence that is sufficiently larger than the birefringence experienced by disturbances. Method of suppressing coupling to other orthogonal linear polarizations when one linearly polarized wave is completely excited by making it inherent in 0 (2) A method using a structure in which only a single polarized wave can exist.

上記のうち為(2)の方法としては非常に大きな応力を
付与することにより、複屈折率をlOのオーダーにして
、曲げ損失により一方の直線偏波全10除去する方法(
M、P 、Varnham 、 Electron 、
 Lett 、。
Among the above methods, method (2) is a method in which the birefringence index is set to the order of lO by applying a very large stress, and all 10 of the linearly polarized waves on one side are removed by bending loss (
M.P., Varnham, Electron;
Lett.

Vol、 19.A 17. pp、f310〜680
. 1988 ) 、1!:、コアの相対向する両側に
コアに接して屈折率の低い領域を設け、一方の基本モー
ドを御所する方法〔大越、OQE 78. P、61.
 (1978) )があるが、伝15送損失が大きいこ
とまたは単一偏波領域が少ないという欠点があった。
Vol, 19. A17. pp, f310-680
.. 1988), 1! : A method of providing low refractive index regions in contact with the core on opposite sides of the core to control one fundamental mode [Okoshi, OQE 78. P, 61.
(1978)), but it had the drawbacks of large transmission loss and a small number of single polarization regions.

(1)の方法は現在一般的に用いられている偏波保持光
ファイバの実現方法であって、第1図(a)、(b)に
示すように洩々の構造のものがあり11はコア)ム−2
はクラッド、8は応力付与用の中間層(以下、゛中間層
と略記)である。これらの構造では、完全に対称な理想
的な場合には、直線偏波の保持性が良いが、第2図(a
)、Φ)に示すように対称性が少しずれると、急激に偏
波保持性が悪くなるという欠゛点があった。
The method (1) is a method for realizing polarization-maintaining optical fibers that is currently commonly used. Core) Mu-2
8 is a cladding, and 8 is an intermediate layer for applying stress (hereinafter abbreviated as "intermediate layer"). In these structures, in the ideal case of perfect symmetry, linear polarization retention is good, but as shown in Fig. 2 (a)
), Φ), there was a drawback that when the symmetry shifted slightly, the polarization maintenance property suddenly deteriorated.

(発明の目的) 本発明はこれらの欠点を除去するため、コアの両側にコ
ア側が直線状をなす応力付与用の中間層を設け、該中間
層の対称性のずれ許容度を高めた1・・ものであり、そ
の目的は外乱に対する偏波保持性を強化してコヒーレン
ト伝送用または光計測用の偏波保持光ファイバを提供す
ることにある〇(発明の構成および作用) 第8図は本発明による偏波保持光ファイバの断l゛・面
図であって、コア1、クラッド2および中間層8から構
成されており、コアlは円形、中間層8は半円形であり
、コアの相対向する両側にのみコアより離れて存在する
0コアの材料はSin、 十Gam2、゛クラッドは5
102、中間層はsio□十B2O3であるO!11(
8) コアやクラッドの比屈折率差は約0.6%、クララ1ド
と中間層の比屈折率差は約−0,596であり、コアノ
GeO3ドープ童は約(l mO/ %、中間層)B、
08ドープ量は約16 mo/%である。コア径は6μ
m1外径は200μm1コアと中間層の間隔は15μm
15中間層の厚さは40.4μmである。
(Objective of the Invention) In order to eliminate these drawbacks, the present invention provides a stress-applying intermediate layer on both sides of the core, the core side of which is linear, and improves the tolerance for deviation in symmetry of the intermediate layer.・The purpose is to provide a polarization-maintaining optical fiber for coherent transmission or optical measurement by strengthening the polarization-maintaining property against disturbances (Structure and operation of the invention) 1 is a cross-sectional view of a polarization-maintaining optical fiber according to the invention, which is composed of a core 1, a cladding 2, and an intermediate layer 8, in which the core 1 is circular and the intermediate layer 8 is semicircular; The material of the 0 core that exists away from the core only on both sides is Sin, 10 Gam2, and the cladding is 5
102, the middle layer is sio □ ten B2O3 O! 11(
8) The relative refractive index difference between the core and cladding is approximately 0.6%, the relative refractive index difference between Clara 1D and the intermediate layer is approximately -0,596, and the core and cladding are approximately (l mO/%, intermediate layer). layer) B,
08 doping amount is about 16 mo/%. Core diameter is 6μ
m1 outer diameter is 200μm1 distance between core and intermediate layer is 15μm
The thickness of the No. 15 intermediate layer is 40.4 μm.

コア中に含まれるGeO2の量は少量であるので、純粋
なSin、より若干大きな熱膨張係数を有する・これに
対して一中間層はB、08を多量に含んでいるので1コ
アおよびクラッドより大きな熱膨張係数IQを有する。
Since the amount of GeO2 contained in the core is small, it has a slightly larger thermal expansion coefficient than pure Sin. On the other hand, the first intermediate layer contains a large amount of B and 08, so it has a slightly larger thermal expansion coefficient than the first core and cladding. It has a large coefficient of thermal expansion IQ.

従って光フアイバ母材が線引き時に急冷されてファイバ
化される時、コアおよびクラッドと中間層との熱膨張係
数の差にまり、コアと両中間膚を結ぶ方向(X軸方向)
に大きな残留引っ張り応力が生じる。ここでコア、クラ
ッド、中間15層の熱膨張係数は、それぞれ9.96X
IU ’、5.4×10 および1.65 X 10 
である。
Therefore, when the optical fiber base material is rapidly cooled and made into a fiber during drawing, it is absorbed by the difference in thermal expansion coefficient between the core, cladding, and intermediate layer, and the direction that connects the core and both intermediate layers (X-axis direction)
A large residual tensile stress occurs. Here, the thermal expansion coefficients of the core, cladding, and middle 15 layers are each 9.96X.
IU', 5.4 x 10 and 1.65 x 10
It is.

前記ファイバのようにコアの相対向する両側に大きな残
留応力が存在すると、これによりコア部に大きな複屈折
性が生じ、外部条件の変動に対し2・・(4) て直線偏波を保持することが可能となる◎ 1次に第4
図中)に示すように、中間層8の一つがy軸方向にΔy
だけ変動した場合の偏波保持性の劣化を検討する。偏波
保持性の劣化は、規格化モード結合係数γで表わされる
0γは有限要素法に5よる応力解析(K、Okamot
o、 IEEE、 J、QuantumElectro
n、、 Vol、QE−18,41,1,p、1890
.1982 )より1 で表わされる。
When large residual stress exists on opposite sides of the core, as in the above-mentioned fiber, this causes large birefringence in the core, which maintains linear polarization against fluctuations in external conditions. ◎ 1st and 4th
), one of the intermediate layers 8 is Δy in the y-axis direction.
We will examine the deterioration of polarization maintenance when the The deterioration of polarization maintaining property is expressed by the normalized mode coupling coefficient γ.
o, IEEE, J, Quantum Electro
n,, Vol, QE-18, 41, 1, p, 1890
.. 1982).

ここでnはコアの屈折率、ngはクラッドの屈折率、6
は誘電率、μ は透磁率、τ(e)は各要素0 0 )
(y のせん断応力、Joは零次の第1種ベッセル関数、23
、Joは1次の第1種ベッセル関数、Koは零次の変1
形ベッセル閃数、■は規格化周波数である0また2aは
コア径、rはコア中心からの距離であり、u=a6万厖
7(8) w=aσ\ワ (4) βは伝搬定数、k=2π/λ、λは波長である。
Here, n is the refractive index of the core, ng is the refractive index of the cladding, and 6
is the permittivity, μ is the magnetic permeability, and τ(e) is each element 0 0 )
(The shear stress of y, Jo is the zero-order Bessel function of the first kind, 23
, Jo is the first-order Bessel function of the first kind, and Ko is the zero-order variable 1.
Bessel flash number, ■ is the normalized frequency, 0 or 2a is the core diameter, r is the distance from the core center, u = a 60,000 cubic meters (8) w = aσ\wa (4) β is the propagation constant , k=2π/λ, λ is the wavelength.

中間層8の形状を比較検討するために1第4図10(a
)および第4図(0)に示すような中間層形状について
も同様に中間層の変動Δyと規格化モード結合係数γの
関係を検討する。
In order to compare and study the shape of the intermediate layer 8, FIG.
) and the shape of the intermediate layer as shown in FIG. 4(0), the relationship between the fluctuation Δy of the intermediate layer and the normalized mode coupling coefficient γ will be examined in the same manner.

第4図(a) 、 (b) 、 (0)に示される中間
層の形状は種種の形状の代表として考えることができ、
必らゆINる形状はこの8種類のどれかに類似する。
The shapes of the intermediate layer shown in FIGS. 4(a), (b), and (0) can be considered as representative of various shapes.
The IN shape is necessarily similar to one of these eight types.

第5図は第4図(a) 、 (b) 、 (c)の中間
層形状に関して変動(中間層のずれ)Δyと規格化モー
ド結合係数γとの関係を示したものである0コア径2a
=6μm1比屈折率差0.6%、外径200μm1規格
化2u周波数V−2,13806、波長1.8μm、モ
ード複屈折I率B=t、5xio 、一つの中間層の間
の距離2r、= aOpms r、/a= 5、中間層
のB2o8ドープ量は15 mol係である。
Figure 5 shows the relationship between the variation (intermediate layer shift) Δy and the normalized mode coupling coefficient γ for the intermediate layer shapes in Figures 4 (a), (b), and (c).0 core diameter 2a
= 6 μm 1 relative refractive index difference 0.6%, outer diameter 200 μm 1 normalized 2u frequency V-2, 13806, wavelength 1.8 μm, mode birefringence I index B = t, 5xio, distance between one intermediate layer 2r, = aOpms r, /a = 5, and the B2o8 doping amount of the intermediate layer is 15 mol.

また中間層の厚さdは第4図(a) 、 (b) 、 
(0)につい゛・て、それぞれ58.1 μm % 4
0.4 μm 、 89.0 amである。第5図より
中)が最も規格化モード結合係数γが小さく1中間層の
変動に対して偏波保持性が高いことがわかる。
The thickness d of the intermediate layer is shown in Fig. 4 (a), (b),
(0), respectively 58.1 μm % 4
0.4 μm and 89.0 am. From FIG. 5, it can be seen that the case (middle) has the smallest normalized mode coupling coefficient γ and has high polarization maintenance against fluctuations in one intermediate layer.

このような性質は第4図中)の構造では、中間層1゜の
コアに近い部分が直線状の形状を有していることによる
ものであって、中間層の形状は必ずしも半円形である必
要はない。
This property is due to the fact that in the structure shown in Figure 4), the 1° portion of the intermediate layer near the core has a linear shape, and the shape of the intermediate layer is not necessarily semicircular. There's no need.

第6図はr、/a (応力付与用の中間層の内半径/コ
ア半径)ヲ変化させたときのOH基による過剰 15損
失α(dB/km )の関係を示したものであるo O
H基は中間層8の表面(厚さt)に存在し、表面0.1
μm厚の層に約500 ppm含まれる。OH基による
過剰損失金0.1 (iB/km以下にするためには1
r、/a)4にする必要がある。なお第6図におい21
1(7) てΔは比屈折率差”OHは表面層に含まれるOHの1量
を示す〇 第7図は第4図に示す(a)、 (b)、 (0)の構
造について、応力付与用の中間層の厚さdとモード複屈
折率Bの関係を計算したものである◇ただしコア径52
a=6μm1比屈折率差Δ=0.6%、r□/a=5、
B208= 15 mol %、ファイバ外径2b=2
00μmとした。規格化周波数V = 2.8806で
ある。第7図より、モード複屈折率Bの最大値には中間
層の構造により大きな差がないこと、また中間層の厚さ
d +。
Figure 6 shows the relationship between the excess loss α (dB/km) due to OH groups when r and /a (inner radius of stress-applying intermediate layer/core radius) are changed.
The H group exists on the surface (thickness t) of the intermediate layer 8, and has a surface thickness of 0.1
Approximately 500 ppm is contained in a μm thick layer. Excess gold loss due to OH group 0.1 (to reduce it to iB/km or less, 1
r, /a) Must be 4. In addition, Fig. 6 Smell 21
1 (7) where Δ is the relative refractive index difference and OH is the amount of OH contained in the surface layer. Figure 7 shows the structures of (a), (b), and (0) shown in Figure 4. The relationship between the thickness d of the stress-applying intermediate layer and the mode birefringence B is calculated. ◇ However, the core diameter is 52
a=6 μm1 relative refractive index difference Δ=0.6%, r□/a=5,
B208=15 mol%, fiber outer diameter 2b=2
00 μm. The normalized frequency V = 2.8806. From FIG. 7, it can be seen that there is no large difference in the maximum value of the mode birefringence B depending on the structure of the intermediate layer, and that the thickness of the intermediate layer d +.

が小さい(40μm以下)ときには、第4図中)の構造
が最も大きなりi与えることがわかる〇外乱等の影響を
少なくするため、中間層をできるだけファイバ内部に位
置づける必要があるが、第4図中)の構造はこれに適し
ている。
It can be seen that when the is small (40 μm or less), the structure shown in Fig. 4 gives the largest i. In order to reduce the influence of external disturbances, it is necessary to position the intermediate layer inside the fiber as much as possible, but as shown in Fig. 4. The structure of (middle) is suitable for this purpose.

なおこの実施例では中間層として510g+B、08ガ
ラスを用いたが、材料はこれに限定されない0リンやゲ
ルマニウムを添加した石英ガラスの熱膨張係数はクラッ
ド石英ガラスの熱膨張係数より極めて大きいので)中間
層として適しているが、1tl(8) 屈折率が増加するのでこれらを単体添加物としては用い
ることはできない0そこで屈折率が減少する添加物とし
てホウ素やフッ素を混合して添加すればよい。例えばゲ
ルマニウムを5 mo1%、ホウ素’i l 7 mo
l %を石英ガラスに添加すれば、石英ガ゛ラスと中間
層の石英系ガラスの屈折率は等しくなり、ファイバ形方
向性結合器をつくる場合に\過剰損失を減少させること
ができる〇 (発明の効果) 以上説明したように、本発明による偏波保持光1″ファ
イバは、中間層のずれに対する偏波保持特性の許容度が
大きく、現夾的なコヒーレント光伝送方式用または光計
測用の伝送媒体として利用できるという利点がある0 また偏波特性を有する光回路素子間の結合の際15にも
結合損失が小さく、偏波情報を十分に活用することがで
きる利点もある0
In this example, 510g+B, 08 glass was used as the intermediate layer, but the material is not limited to this.The coefficient of thermal expansion of quartz glass doped with 0 phosphorus or germanium is extremely larger than that of clad quartz glass, so the intermediate layer is Although suitable as a layer, they cannot be used as single additives because they increase the refractive index. Therefore, boron or fluorine may be mixed and added as additives that decrease the refractive index. For example, 5 mo1% germanium, 7 mo boron
If 1% is added to quartz glass, the refractive index of the quartz glass and the silica-based glass of the intermediate layer become equal, and it is possible to reduce excessive loss when making a fiber-type directional coupler (invention As explained above, the polarization-maintaining optical 1" fiber according to the present invention has a large tolerance of polarization-maintaining characteristics against misalignment of the intermediate layer, and is suitable for use in current coherent optical transmission systems or optical measurement. It has the advantage that it can be used as a transmission medium 0 It also has the advantage that coupling loss is small when coupling between optical circuit elements having polarization characteristics, and polarization information can be fully utilized 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (1))は従来形の偏波保持ファイバ
の断面図、第2図(a)、(b)は従来形の偏波保持光
ファイiuバの中間層にずれが生じたときの断面図、第
8図1間層がずれた場合の説明図、第5図は中間層のず
れΔyと規格化モード結合係数γとの関係を示す5図、
第6図はOH基による過剰損失を示す図、第7図は応力
付与用の中間)−の厚さdとモード複屈折率Bの関係金
示す図であるO 1・・・コア、2・・・クラッド、8・・・応力付与用
の中間層0 特許出願人 日本電信電話公社 第1図 (a) (b) 第2図 <a> (b>
Figures 1 (a) and (1)) are cross-sectional views of conventional polarization-maintaining fibers, and Figures 2 (a) and (b) are cross-sectional views of conventional polarization-maintaining optical fibers with a misalignment in the intermediate layer. Fig. 8 is an explanatory diagram when the interlayer is misaligned; Fig. 5 is a diagram showing the relationship between the interlayer misalignment Δy and the normalized mode coupling coefficient γ;
FIG. 6 is a diagram showing excess loss due to OH groups, and FIG. 7 is a diagram showing the relationship between thickness d and mode birefringence B of the stress-applying intermediate layer. ...Clad, 8...Intermediate layer for applying stress 0 Patent applicant Nippon Telegraph and Telephone Public Corporation Figure 1 (a) (b) Figure 2 <a>(b>

Claims (1)

【特許請求の範囲】 1 石英ガラスを主成分とする光ファイバのコアの相対
向する両側に、コアより離れて石英゛ガラスの熱膨張係
数と異なる熱膨張係数を有する二つの応力付与用の中間
層を備えた偏波保持光ファイバにおいて、該中間層の形
状が光ファイバの断面において、コアの中心を通り直交
するz軸に対して対称であり、かつコ1“□アに近い両
側面が直線状であることを特徴とする偏波保持光ファイ
バ。 λ 応力付与用の中間層の形状が光ファイバの断面にお
いて半円形でありS直線部分がコアに近い側にあってコ
アを挾んで相対すること1′□を特徴とする特許請求の
範囲第1項記載の偏波保持光ファイバ〇 & 応力付与用の中間層が、ホウ素もしくはフッ素の単
体、″またはこれらとケルマニウムもしくはリンの混合
物が添加された石英ガラスト・からなることを特徴とす
る特許請求の範囲第11項または第2項記載の偏波保持
光ファイバ0
[Scope of Claims] 1. Two stress-applying intermediates having a coefficient of thermal expansion different from that of quartz glass are placed on opposing sides of the core of an optical fiber whose main component is quartz glass. In a polarization-maintaining optical fiber having a layer, the shape of the intermediate layer is symmetrical in the cross section of the optical fiber with respect to the z-axis passing through the center of the core and orthogonal to it, and both sides near core 1"□a A polarization-maintaining optical fiber characterized by being linear.The shape of the intermediate layer for applying λ stress is semicircular in the cross section of the optical fiber, and the S straight part is on the side closer to the core, and the intermediate layer for applying stress has a semicircular shape in the cross section of the optical fiber. The polarization-maintaining optical fiber according to claim 1, characterized by The polarization-maintaining optical fiber 0 according to claim 11 or 2, characterized in that it is made of fused silica glass.
JP59019423A 1984-02-07 1984-02-07 Optical fiber for maintaining polarized wave Pending JPS60173505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019423A JPS60173505A (en) 1984-02-07 1984-02-07 Optical fiber for maintaining polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019423A JPS60173505A (en) 1984-02-07 1984-02-07 Optical fiber for maintaining polarized wave

Publications (1)

Publication Number Publication Date
JPS60173505A true JPS60173505A (en) 1985-09-06

Family

ID=11998851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019423A Pending JPS60173505A (en) 1984-02-07 1984-02-07 Optical fiber for maintaining polarized wave

Country Status (1)

Country Link
JP (1) JPS60173505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057479A (en) * 2001-08-21 2003-02-26 Fujikura Ltd Polarization holding optical fiber and optical component using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170835A (en) * 1981-04-15 1982-10-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of single-mode optical fiber
JPS59156929A (en) * 1983-02-22 1984-09-06 Showa Electric Wire & Cable Co Ltd Manufacture of preform for fiber retaining polarizing surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170835A (en) * 1981-04-15 1982-10-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of single-mode optical fiber
JPS59156929A (en) * 1983-02-22 1984-09-06 Showa Electric Wire & Cable Co Ltd Manufacture of preform for fiber retaining polarizing surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057479A (en) * 2001-08-21 2003-02-26 Fujikura Ltd Polarization holding optical fiber and optical component using the same
JP4578733B2 (en) * 2001-08-21 2010-11-10 株式会社フジクラ Long-period optical fiber grating using polarization-maintaining optical fiber

Similar Documents

Publication Publication Date Title
KR0172600B1 (en) Single-mode, single polarization optical fiber
EP0118192B1 (en) Single-mode single-polarization optical fiber
US4904037A (en) Waveguide type optical device with thermal compensation layers
US8958677B2 (en) Polarization-maintaining optical fiber
EP0109604A1 (en) Polarised plane-maintaining optical fiber
US7289687B2 (en) Polarization-maintaining optical fiber
EP0319319B1 (en) Single-polarization optical fiber
JPH11223734A (en) Cladding excitation fiber
US4549781A (en) Polarization-retaining single-mode optical waveguide
US5479551A (en) Optical fiber non-reciprocal phase shifters and optical isolators using them
US6463195B1 (en) Method of manufacturing polarization-maintaining optical fiber coupler
US20040013357A1 (en) Optical coupler apparatus and methods having reduced geometry sensitivity
JPS60173505A (en) Optical fiber for maintaining polarized wave
JPS6069607A (en) Optical coupler
JPS6053285B2 (en) Constant polarization optical fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JPS59139005A (en) Fiber for maintaining linearly polarized light
JPH0886927A (en) Optical waveguide device
JPS6155623A (en) Optical isolator and light source provided with isolator
JPS6018041B2 (en) Polarization maintaining single polarization optical fiber
JPH0350505A (en) Single polarization optical fiber
JPS6283708A (en) Constant polarization optical fiber
JPS62283304A (en) Absolute single polarizing plane maintaining optical fiber
CN116338851A (en) Optical waveguide for single-mode single-polarization transmission
JPS6235307A (en) Optical coupler