JPS60190631A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS60190631A
JPS60190631A JP4562984A JP4562984A JPS60190631A JP S60190631 A JPS60190631 A JP S60190631A JP 4562984 A JP4562984 A JP 4562984A JP 4562984 A JP4562984 A JP 4562984A JP S60190631 A JPS60190631 A JP S60190631A
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
exhaust
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4562984A
Other languages
Japanese (ja)
Other versions
JPH0338417B2 (en
Inventor
Toshimi Anpo
安保 敏巳
Akio Hosaka
保坂 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4562984A priority Critical patent/JPS60190631A/en
Publication of JPS60190631A publication Critical patent/JPS60190631A/en
Publication of JPH0338417B2 publication Critical patent/JPH0338417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor

Abstract

PURPOSE:To uniform the output torque of an engine having two exhaust systems and to enhance the conversion efficiency of catalyst, by controlling variations in air-fuel ratio of both systems so that they have opposite phases with respect to each other. CONSTITUTION:A first computing means 32 issues a first control signal S1 for compensating and controlling the air-fuel ratio of a mixture in accordance with the result of detection by a first exhaust detecting means 31. A first mixture metering means 33 meters a mixture fed to a first system in accordance with the first control signal S1. A second mixture computing means 34 issues a second control signal S2 for compensating and controlling the air-fuel ratio of a mixture such that a deviation of the air-fuel ratio of the second system from a predetermined value is made symmetrical with that of the first system with respect to the above-mentioned predetermined value. A second mixture metering device 35 meters a mixture fed to the second system. The air fuel ratios of mixtures fed to engine cylinders of the first and second systems vary in an opposite phase relation with respect each other. With this arrangement, the output torque of the engine is made uniform and as well the conversion efficiency of catalyst may be enhanced.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、エンジンのυ1気ガス成分瀧度を検出する排
気センサの信号に基づいて空燃比を所定値に保つように
ノイードバック制御りる空燃比制御装置に関し、特にV
型エンジンなどのようにIJI気系が2系統に分かれて
いるエンジンの場合の制御に関するものである。
Detailed Description of the Invention (Field of Application of the Invention) The present invention provides an air-fuel ratio control method that performs noise back control to maintain the air-fuel ratio at a predetermined value based on a signal from an exhaust sensor that detects the υ1 gas component flow of the engine. Regarding the control device, especially V
This relates to control in the case of an engine in which the IJI gas system is divided into two systems, such as a type engine.

(従来技術) 第1図は、従来のV型−1ンジンの燃料制御系を示′?
11例図である。
(Prior Art) Figure 1 shows the fuel control system of a conventional V-1 engine.
FIG. 11 is an example diagram.

第1図におい(,1は土アクリーナ、2は吸入空気けを
計測づるエア70−メータ、3はスロットル弁、4は右
バンク吸気ボーh、5は左バンク吸気ポー1へ、6は右
バンク噴13=1弁、71よ左バンク哨用弁、8は右バ
ンク気筒、9は左バンク気筒、10は右バンク排気管、
11は左バンク排気管、12は右バンク排気管12に設
りられた右バンク排気センサ、13は左バンク排気管1
1に設けられた左バンク排気センサ、1/1及び15は
排気カスを浄化する触媒コンバータ、16はマフラ、1
7はエンジンの回転速度を検出する回転セン4J(例え
ばクランク軸20が所定角度回転づるごとにパルス信号
出力づるセン+J−)、18はエンジンの冷7J1水渇
度を検出づる温度センIJ、19は制御装置(詳1II
I後述)20は1ンジンのクランク軸である。
In Figure 1 (1 is the earth cleaner, 2 is the air 70-meter that measures the intake airflow, 3 is the throttle valve, 4 is the right bank intake port h, 5 is the left bank intake port 1, 6 is the right bank Injection 13 = 1 valve, 71 is the left bank sentinel valve, 8 is the right bank cylinder, 9 is the left bank cylinder, 10 is the right bank exhaust pipe,
11 is the left bank exhaust pipe, 12 is the right bank exhaust sensor installed in the right bank exhaust pipe 12, and 13 is the left bank exhaust pipe 1
1/1 and 15 are catalytic converters that purify exhaust residue; 16 is a muffler;
7 is a rotation sensor 4J that detects the rotational speed of the engine (for example, a sensor +J- that outputs a pulse signal every time the crankshaft 20 rotates by a predetermined angle); 18 is a temperature sensor IJ that detects the water thirst of the engine; 19 is the control device (Details 1II
(I will be described later) 20 is a one-engine crankshaft.

また、21は排気還流制御弁でありiJI気還流吊りに
家わら、IJF気ガスを吸気系に還流】る量を制御する
装置である。
Further, 21 is an exhaust gas recirculation control valve, which is a device for controlling the amount of IJF gas recirculated into the intake system.

また、22は補助空気弁Cあり、スロツ!〜ル弁3をバ
イパスして通る空気量を制御lりることによつU 7フ
イ1〜ル回転1などを制御りるト1的に用いられるしの
である。
Also, 22 has an auxiliary air valve C, slotted! By controlling the amount of air that bypasses the filter valve 3, it is used to control the rotation of the filter U7, etc.

制御装置賀19は、例えは、(肩)U、l 、10. 
r<ΔM、ROM等からなるマイク[トコンピコ−一タ
及び該lイクロ・二1ンビコータの出力を増幅しC11
自Ill弁を駆動づるlこめの駆動パルスとりる駆動回
路/)r +ら構成されCいる。そしく各種の1ンジン
運転変数例えば回転センサ17から与えられるエンジン
の(す1申lri禾度ヤ)1ノ?フ(」−メータ2から
与えられる吸入空気量などに基づいて基本燃料噴射量を
演算し、それに温度センサ18から与えられる(穴明温
度に関する変数や排気せンリ−′12.13から与えら
れる排気ガス成分濃度(例えば酸素調度)に関りる情報
などによる補i[を句加して実際の燃料供給量を算出し
、その結果に応じて噴用弁6及び7を制御して燃料を供
給りる。
The control device 19, for example, (shoulder) U, l, 10.
r<ΔM, a microphone consisting of ROM, etc. [C11 amplifies the output of the microcoater and the microcoater
The drive circuit is composed of a drive circuit which takes every drive pulse to drive the own valve. Then, there are various engine operating variables, for example, the engine speed given by the rotation sensor 17. Calculates the basic fuel injection amount based on the amount of intake air given from the meter 2, and calculates the basic fuel injection amount based on the intake air amount given from the temperature sensor 18. Calculate the actual fuel supply amount by adding supplements i based on information related to gas component concentration (for example, oxygen level), and supply fuel by controlling the injection valves 6 and 7 according to the result. Rir.

なJ3、第1図においては右バンク、左バンクともそれ
ぞれ一つの気筒のみを表示しているが、実の 際には例えばV型8気筒エンジンA場合には、各バンク
にそれぞれ4個の気筒を右しCいるう排気センサの信号
によってノイードバツク制御を行う空燃比制御装置とし
ては、例えば公開時it(公報昭和48年91425号
などのように数多く知られている。
In Figure 1, only one cylinder is shown in each of the right bank and left bank, but in reality, for example, in the case of a V-type 8-cylinder engine A, each bank has four cylinders. There are many known air-fuel ratio control devices that perform noise back control based on signals from an exhaust sensor that is controlled by C.

そして、従来のV型1ンジンの空燃比制御装置において
は、前期のごとき周知のフィードバック制御系を左右の
バンクにそれぞれ有し、2系統独立の制皿を行うものが
知られでいる(例えば[1産自動車4j−−ビス同報第
476号)。
In the conventional V-type 1-engine air-fuel ratio control system, it is known that the well-known feedback control system of the previous model is provided in each of the left and right banks, and the two systems perform independent control (for example, [ Isan Jidosha 4J--Bis Bulletin No. 476).

112図は上記のごとき従来の空燃比制御装置にJ34
ノる信号例図である。
Figure 112 shows J34 in the conventional air-fuel ratio control device as shown above.
FIG. 3 is an example diagram of a signal.

第2図におい(、空燃化が(C)に示づように? ih
 するとJJt気センセン出力は< 1))に承りよう
に変化づる。そしζ、一般のフィードバック制御系にJ
3いては、積分特性と比例特性を持たせた積分比例制t
allを?Iうのが通常であるのC1その場合【こは(
a)に承りように燃ゎ1供給量が変化し、空燃化をλ=
1(理論空燃比近傍の値)になるよう【・二制1111
 ”’!Jる。
In Figure 2, the air-fuel conversion is as shown in (C)? ih
Then, the JJt sensor output changes as expected. Then ζ, J in general feedback control system
3, the integral-proportional system t has integral and proportional characteristics.
all? I Uno is normal C1 In that case [Koha (
As shown in a), the supply amount of fuel 1 changes, and the air-fuel conversion becomes λ=
1 (value near the stoichiometric air-fuel ratio) [・2 control 1111
”'!Jru.

しかし、このよ゛)な空燃化制御装置においでは、1ノ
1気センリが7と燃比の変化を検出し、ぞれにょっ乙燃
オ゛+1供給早が変化した時点からその結果が再びIJ
I気セン号で検出されるまCの間に)僕れ時間1なわら
第2図の10が#(iりる。
However, in such an air-fuel conversion control system, the 1st fuel oil sensor detects a change in the fuel ratio from 7 to 7, and the result is displayed again from the time when the fuel oil supply speed changes. I.J.
10 in Figure 2 is # (i ruru) during the time it was detected by the I-sen-go.

そのため、空燃化はλ−1を中心としく過濃側(リッヂ
)と希薄側(リーン)とに変動する現象、りなわらハン
チング現象が生ずる。
Therefore, the air-fuel conversion causes a phenomenon in which the air-fuel ratio fluctuates between the rich side (ridge) and the lean side (lean) centering on λ-1, and a hunting phenomenon occurs.

一方、J−ンジンの出力1−ルクは第33図に示すJ:
うに空燃比によ−)ζ変動し、λ−′1.J、つややリ
ッヂのところで最大となる。
On the other hand, the output 1-lux of the J-engine is shown in Fig. 33:
It varies depending on the air-fuel ratio, and λ-'1. J, maximum at the glossy ridge.

したがって、フィードバック制御にょっC空燃比がリッ
ヂとリーンにハンチングするど、出ツノトルクもそれに
応じで変動してしまう。
Therefore, as the air-fuel ratio hunts between ridge and lean during feedback control, the output torque also fluctuates accordingly.

そのため、アイドル時やアイドル自走時などのように低
速の一定回転速度でエンジンが作動している場合には、
エンジンの回転速度が周期的に変動して運転者に不快感
を与えるおそれがある。
Therefore, when the engine is operating at a constant low rotational speed, such as when idling or idling,
The rotational speed of the engine may fluctuate periodically, which may cause discomfort to the driver.

また、触媒コンバータの転換効率は、第4図に承りよう
に/l=1の点rlもよい条f′↑と’cKるのC1空
燃比がリッヂとリーンにハンチングづると触媒転換効率
も低トするJ3イれがある。
In addition, as shown in Figure 4, the conversion efficiency of the catalytic converter decreases when the point rl at /l = 1 is also good. There is a J3 error.

(発明の目的) 本発明は、上記のごとき従来技術の問題点を解決8Lる
ためになぎれたbのCあり、V型]−ンジンのJ、うに
排気系が2系統に分かれ(いるエンジンにおいて、各系
統の空燃比の変動を逆位相(なゎも所定値を中心として
対称となるように制御することによって、エンジンの出
力]・ルクを均一化して滑かな運転ができるようにし、
かつ触媒転換効率も白土さけることのできる空燃比制御
装置を提供りることを目的とする。
(Object of the Invention) The present invention solves the problems of the prior art as described above. By controlling the fluctuations in the air-fuel ratio of each system so that they are symmetrical around a predetermined value, the engine output and torque are equalized and smooth operation is achieved.
It is an object of the present invention to provide an air-fuel ratio control device that can also reduce catalyst conversion efficiency.

(弁明の構成) 第5図は、本発明の構成を示すブL1ツク図である。(Composition of defense) FIG. 5 is a block diagram showing the configuration of the present invention.

1k−f、第5)図(△) ニJ5 イーU、31は第
1排気検出f段Cある。
1k-f, 5th) Figure (△) DJ5 EU, 31 is the first exhaust detection f stage C.

この第1排気検出手段31は、第1系統(例えば第1図
の右バンク)の141気管に設LJられた14[気ヒン
リ−であり、第1系統の排気カス成分濃度に応じlこ1
6号を出力する。
This first exhaust gas detection means 31 is a 14-liter air pipe installed in the 141 trachea of the first system (for example, the right bank in FIG.
Output No. 6.

なお、1)1気Pンリとしては排気ガス中の酸素温度を
検出4るシル」ニア酸素J1がよく用いられ(いる。
Note that 1) as a 1 atmosphere P sensor, a cylinder near oxygen J1 that detects the oxygen temperature in the exhaust gas is often used.

次に第1演(1手段32は、第1111気検出手段、′
31の検出結末(4二畢づいC,第1系統に供給する混
合気の空燃比を所定値に保つように補正制御づる第1制
御+信号S1を演算しC出力づる(詳細後述)、。
Next, the first performance (1 means 32 is the 1111th Qi detection means, '
31 detection result (42 results C, first control for correction control + signal S1 is calculated to maintain the air-fuel ratio of the air-fuel mixture supplied to the first system at a predetermined value, and C output (details will be described later).

また第1混合気調#h手段33は、第1制御信号S1に
応じて第1系統に供給する混合気を調…するものであり
、例えば燃料噴射装置や気化器C゛あるか、あるいは燃
料噴射装置や気化器で基本的に調量された混合気を第1
制御ll信号S14こ応じ(hliILする装置、例え
ばス[jットル弁のに流部と上流部とをバイパスづるバ
イパス空気通路と、モのバイパス空気通路を流れる補助
空気用を調節りるバイパス制御弁とからなる装置を用い
ることが出来る。
The first air-fuel mixture adjustment #h means 33 adjusts the air-fuel mixture to be supplied to the first system according to the first control signal S1. The air-fuel mixture that is basically metered by the injection device or carburetor is the first
A device that responds to the control signal S14 (hliIL), such as a bypass air passage that bypasses the downstream and upstream parts of the throttle valve, and a bypass control valve that controls the flow of auxiliary air through the bypass air passage of the throttle valve. A device consisting of the following can be used.

次に第2演粋手段334は、第2系統における空燃比の
上記所定値からのずれを上記第1系統にお(]る上記ず
れど」−記所定伯を中心とし−C対称とするように補正
制御゛りる第2制i11信号$2を演算して出力づる(
詳細後)ホ)。
Next, the second calculation means 334 transfers the deviation of the air-fuel ratio in the second system from the predetermined value to the first system so that the deviation is symmetrical about the predetermined value. The second control i11 signal $2, which is subjected to correction control, is calculated and output (
Details later) Ho).

また第2混合気調闇手段35は、第2制口11信弓82
に応じて第2系統に供給づる混合気を調t−りるもので
あり、具体的内容は前記第1混合気調h1手段33と同
様ひある。
Further, the second air-fuel mixture control darkening means 35 includes the second control port 11 Shinyumi 82
The air-fuel mixture to be supplied to the second system is adjusted according to the above-mentioned conditions, and the specific content is the same as that of the first air-fuel mixture adjustment means 33.

次に第5図(A)の構成を更に具体的に説明する。Next, the configuration of FIG. 5(A) will be explained in more detail.

(イ)まず第1混合気調偵手段33と第2混合気、1l
ll串十段3!l〕どが共に燃料噴射装置である場合、
1なわら第1図に示Jことく、第1系統と第2系統にそ
れぞれ燃r1噴用弁6.7を備え、それぞれの燃r1噴
躬mを制御りることによって混合気の空燃比を制御りる
場合を説明りる。
(a) First, the first air-fuel mixture detection means 33 and the second air-fuel mixture, 1l.
ll 10 tiers of skewers 3! l] If both are fuel injection devices,
1, as shown in FIG. 1, the first system and the second system are each equipped with a fuel r1 injection valve 6.7, and by controlling each fuel r1 injection m, the air-fuel ratio of the mixture can be adjusted. Explain the case of controlling.

この場合には、第1演瞳手段32は、別途に演4)シた
基本燃料供給量(詳細後述)に、第1排気検出f段31
の検出結果と所定1直との偏差に基づいた第12+li
正信号(例えば上記偏差を積分した賄と+=差に比例し
た値とを加評した信号)を東線又は加粋りることによっ
−で、第1制御信号を演のりるもの(゛あり、また第1
混合気調吊手段33(よ、第1制御イハ号に応じ/C燃
料を第1系統にIl#剣ηる燃料噴射装置(PAメ動開
回路燃料噴射弁からなる装置)ひある。
In this case, the first pupil calculation means 32 applies the basic fuel supply amount (details will be described later) to the first exhaust detection f stage 31 separately
12th+li based on the deviation between the detection result and the predetermined first shift.
The first control signal is calculated by adding the east line or adding a positive signal (for example, a signal obtained by integrating the above-mentioned deviation and a value proportional to the difference). Yes, also the first
The air-fuel mixture adjusting means 33 (a fuel injection device (a device consisting of a PA-operated open-circuit fuel injection valve) that injects /C fuel into the first system in response to the first control signal) is located.

また第2演悼f[u:34は、前記の基本燃料供給量に
、1記第1補正情号と所定値を中心としC対称となる補
止信号を乗綽又は加紳することによっU!’!2制御信
号を演詐するbのCあり、また第2混合気調量手段35
は、第2制御イ3号に応じ!、二燃料を第2系統に噴射
する燃料噴射装置で′ある。
In addition, the second performance f [u: 34 is calculated by multiplying or modifying the basic fuel supply amount by a supplementary signal that is symmetrical about the first correction information and the predetermined value. U! '! There is C of b which spoofs the second control signal, and there is also a second air-fuel mixture regulating means 35.
According to the second control A No. 3! , is a fuel injection device that injects two fuels into a second system.

なお前記基本燃料供給量髪よ、]−ンジンの各種運転変
数、例えば回転速度N、吸入空気m Qから、TP=に
−Q/N (Kは定数)C求めた植1[)に、1111
11温度等による補正をイ」加して篩用りるものである
In addition, from the basic fuel supply amount mentioned above, TP= -Q/N (K is a constant) from various operating variables of the engine, such as rotational speed N, intake air mQ, and 1111.
11. Corrections based on temperature, etc. are added before using the sieve.

(■])次に、第1混合気調鉛手段33と第2況合気調
量手段35とがそれぞれ第1系統と第2系統とに3!番
ノられたバイパス空気通路とパ(パス制御弁である場合
、づなわら第1図の補助空気弁22と同様のものを各系
統毎にそれぞれ段け1’C場合につい′C説明する。
(■]) Next, the first air-fuel mixture lead adjusting means 33 and the second air-fuel mixture adjusting means 35 are set to the first system and the second system, respectively. In the case of a numbered bypass air passage and a pass control valve, a similar one to the auxiliary air valve 22 in FIG.

この場合には、基本的な混合気は燃料噴射弁又は気化器
によって供給され、第1混合気調量手段33と第2混合
気調培手段35とは、補正弁の空気量のみを制御するこ
とになる。
In this case, the basic mixture is supplied by the fuel injection valve or the carburetor, and the first mixture adjusting means 33 and the second mixture adjusting means 35 control only the air amount of the correction valve. It turns out.

したがって第1演紳手段32ど第2演算手段34とは、
前記(イ)の補正弁のみを第1制御信号81及び第2制
御信号S2として出力りるものぐある。
Therefore, the first calculation means 32 and the second calculation means 34 are as follows.
There is a device that outputs only the correction valve (a) as the first control signal 81 and second control signal S2.

なお、この場合には、燃料噴射弁や気化器は、各系統毎
にそれぞれ設()ても良いし、両系統に共通のものを設
り−Cも良い。”E L、 Tこの場合には、量 になる。
In this case, the fuel injection valves and carburetors may be provided for each system, or a fuel injector and a carburetor may be provided in common for both systems. ”EL, T In this case, it becomes quantity.

(ハ)次に、第1混合気調鞘手段33と第2況合気調第
手段35どが共に気化器である場合、す4にわら第1系
統ど第2系統とにそれぞれ別個の気化器から11配合気
が供給される場合に′ついC説明する。
(C) Next, if both the first air-fuel mixture conditioning sheath means 33 and the second air-conditioning air conditioning means 35 are carburetors, then the first system and the second system have separate vaporizers. In the case where 11 mixtures are supplied from the container, C will be explained.

この場合には、基本的4【燃料は、各系統毎に吸入9斤
に応じて気化器から供給されるが、例えば気化器の11
ブリートを制御ll (lることによっ(空燃比を制i
llリ−ることが出来る。
In this case, the basic 4 [fuel is supplied from the carburetor according to the 9 loaves of intake for each system, but for example, the 11
Control the air-fuel ratio (by controlling the air-fuel ratio)
I can read it.

この技術は、例えば公間特泊公報昭和51鋒第1323
26号等に多数開示されているように、空燃比制御R謂
としCは慣用技術Cある。
This technique can be used, for example, in the Official Special Lodging Bulletin No. 1323 of 1973.
As disclosed in many publications such as No. 26, the so-called air-fuel ratio control R is a conventional technology C.

したがってこの場合は、第1演紳手段32と第2演紳手
段34とは、補正弁のみを演綽してそれらを第1制御信
号と第2制御信号として出力し、それらの制御信号によ
っ(それぞれの系統の気化器のエアブリードを制御Jる
電磁弁を制御すればよい。
Therefore, in this case, the first control means 32 and the second control means 34 control only the correction valve and output them as the first control signal and the second control signal, and are controlled by these control signals. (You just need to control the solenoid valves that control the air bleed of the vaporizers in each system.

上記のように、第5図くΔ)の構成においては、第1系
統(例えば右バンク)の気筒に供給される混合気の空燃
比と第2系統(例えはl「バンク)の気筒に供給される
混合気の空燃比どのハンチングが所定値を中心としC対
称(以下逆位相と記′?l)に変動する。そのため上ン
ジンの出力軸にあられれる出力トルクは全体としC平均
化されるので変1Jがきわめて小さくなる。
As mentioned above, in the configuration shown in Figure 5 (Δ), the air-fuel ratio of the air-fuel mixture supplied to the cylinders in the first system (for example, the right bank) and the air-fuel ratio supplied to the cylinders in the second system (for example, the l "bank") are The air-fuel ratio of the air-fuel mixture that is generated fluctuates symmetrically (hereinafter referred to as anti-phase) around a predetermined value.Therefore, the output torque that is applied to the output shaft of the upper engine is averaged as a whole. Therefore, the change 1J becomes extremely small.

また、排気ガスも逆位相のハンチングが混合されるため
、全体とし−C常にλ−1の餡に近くなり、触媒の転換
効率の最も畠い付近で触媒」ンハータを作動させること
がCきる。
In addition, since the exhaust gas is mixed with anti-phase hunting, the overall value is always close to -λ-1, and the catalyst converter can be operated near the highest conversion efficiency of the catalyst.

次に、第5図(B)においC136は第211気検出手
段である。
Next, in FIG. 5(B), C136 is the 211th qi detection means.

この第21ノ1気検出手段36は、第2系統(例えば第
1図の左バンク)の排気管に設けられた排気レンツCあ
る。
The 21st exhaust gas detection means 36 is an exhaust lens C provided in the exhaust pipe of the second system (for example, the left bank in FIG. 1).

また3 71J、第2演C1手段でL5る。その他、第
5図(Δ)と同符号(31,32,33,35)は同一
物を承り。
Also, 371J, L5 in the second performance C1 means. In addition, the same symbols (31, 32, 33, 35) as in Fig. 5 (Δ) are the same.

第2演粋手段37は、第2系統にお(」る空燃比の上記
所定1a h+ +うのずれを上記第1系統にお【)る
」記すれど」−記所定伯を中心どして対称とりるように
補正制御し、かつ第2系統の空燃比の全体的4ルベルを
−に開田11ノー気検出手段31の検出結果と上記第2
排気検出手段38の検出結果どの相互関係に基づい一’
C?lli iE副制御る第2制御信号を演粋しC出力
づる。
The second calculation means 37 records the deviation of the air-fuel ratio in the second system from the predetermined value 1a h+ + to the first system. Correction control is performed so that the air-fuel ratio of the second system is symmetrical, and the overall air-fuel ratio of the second system is adjusted to - by the detection result of the no air detection means 31 of the Kaida 11 and the second system.
Based on which correlation is the detection result of the exhaust gas detection means 38?
C? lli iE sub-controls the second control signal and sends the C output.

その他の構成、作用は、前記第5)図くΔ)ど同様であ
る。
The other configurations and operations are the same as those in 5) and Δ) above.

1−開田5図(13)の構成におい(も、前記第5図(
A)の場合と同様に、第1混合気調吊手段帛 応しく、前記(イ)へ・(ハ)のごとき3種の構成が考
えられる。
1-Kaida The configuration of Figure 5 (13) (also, the configuration of Figure 5 (13) above)
As in the case of A), three types of configurations as described in (a) and (c) can be considered as appropriate for the first air-fuel mixture adjustment suspension means.

このように第1系統ど第2系統とぐ逆位相の補正を行な
うだ(プでなく、第1排気検出手段の検出結果と第2排
気検出手段の検出結果とに応じ/j補正を滴りことによ
って、第1系統と第2系統との全体的な空燃比のづ°れ
を補正することか(゛きる。
In this way, the first system performs the opposite phase correction between the second system (not according to the detection result of the first exhaust detection means and the detection result of the second exhaust detection means). By this, it is possible to correct the overall air-fuel ratio difference between the first system and the second system.

すなわち、エンジンの構成部品の\1法や特1つ1のば
らつきなどにより、第1系統と第2系統では空燃比が全
体としくfれることがある。
That is, the air-fuel ratio may be different as a whole between the first system and the second system due to variations in engine component parts or special characteristics.

そのような場合には、上記のごとく第1排気検出手段の
信号と第2排気検出の手段の信号どの相互関係に基づい
た補正を施しでやれは、空燃比の全体的なずれを補正す
ることができる。
In such a case, as described above, correction can be made based on the mutual relationship between the signals of the first exhaust detection means and the second exhaust detection means, in order to correct the overall deviation in the air-fuel ratio. I can do it.

例えば、第1111気検出手段の検出結果がリッy−か
らリーンに変化しl〔ときに第2 JJ)気検出手段の
検出結果がリーンCある場合は、第2系統の)1を合気
が全体としCリーンに偏っていることを示J−がら、第
2系統の燃料供給量を所定量だ()増加(又は補助空気
量を減少)さUるような補正を行えばよい。
For example, if the detection result of the 1111th ki detection means changes from Liy- to Lean, and the detection result of the 2nd JJ ki detection means is Lean C, then It is sufficient to make a correction by increasing the amount of fuel supplied to the second system by a predetermined amount (or decreasing the amount of auxiliary air) while indicating that the overall condition is biased towards lean.

また、上記とは逆に第1排気検出手段の検出結果がリー
ンからリッチに変化したときに第2排気検出下段の検出
結果がリップぐある場合は、第2系統の混合気が全体と
してリップに偏つ(いることを示すカ日ら、第2系統の
燃料供給(至)を所定間だfJ減少く又は補助空気量を
増加)させる補正を行なえはよい。
In addition, contrary to the above, if the detection result of the second exhaust detection lower stage is lip when the detection result of the first exhaust detection means changes from lean to rich, the air-fuel mixture of the second system as a whole is lipped. It would be better to make a correction to reduce the fuel supply to the second system by fJ or increase the amount of auxiliary air for a predetermined period of time.

また、他の15法どじでは第11J[気検出手段の検出
結果がリッチのどきに第2排気検出手段の検出結束もリ
ップである場合は、第2系統の混合気が金体としくリッ
チに偏っていることを承りから、第2系統の燃料供給量
を所定員1.:lJ減少さlる補ifを行い、また、第
1111気検出手段の検出結果がリーンのときに第21
11気検出手段の検出結果もリーンCある場合!;L 
、第2系統の混合気が全体どしくリーンに111iiつ
(いることを承りから第2系統の燃料供給Mを所定最だ
(]増加させる?111正を行えはよい。
In addition, in the other 15 method, if the detection result of the 11J gas detection means is rich and the detection result of the second exhaust detection means is also lip, the mixture in the second system is rich as metal body. Recognizing that this may be uneven, the amount of fuel supplied to the second system is set to 1. : Performs a compensation if lJ is decreased, and when the detection result of the 1111th qi detection means is lean, the 21st
If the detection result of the 11 Qi detection means is also Lean C! ;L
, it is good to increase the fuel supply M of the second system to a predetermined maximum value, recognizing that the mixture in the second system is entirely lean.

(発明の実施例) 以ト実施例に基づい(本発明の詳細な説明する。(Example of the invention) The present invention will now be described in detail based on examples.

本発明のハード的構成は、前記第1図と同様ぐあり、制
御1 !!i置装9内にJ3りる演粋が異なっている。
The hardware configuration of the present invention is similar to that shown in FIG. 1 above, with control 1! ! The functions of J3 in the i-device 9 are different.

第6図及び第7図は制御装@19内にお(〕る演算過程
を示1フローヂp −I−の−実施例図Cあり、第6図
は空燃比制御、第7図は燃料@剣量の演粋を示す。
FIGS. 6 and 7 show the calculation process in the control system @ 19. There is an embodiment diagram C of 1 flow p-I-, FIG. 6 shows the air-fuel ratio control, and FIG. 7 shows the fuel Demonstrates the essence of swordsmanship.

また、第8図は第6図の空燃比制御におりる制御信号の
変化を示1図Cある。
Further, FIG. 8 shows changes in the control signal during the air-fuel ratio control of FIG. 6, as shown in FIG. 1C.

まず、第6図は前記第5図<A)の(イ)に相当りるフ
ローヂ1= −1−であり、この場合には1ノF気セン
サは右バンク(第1図の12)のみを用いる。
First, Fig. 6 shows the flow 1 = -1-, which corresponds to (a) in Fig. 5<A), and in this case, the 1 NOF air sensor is only in the right bank (12 in Fig. 1). Use.

第6図において、まず101では、右ハンクリ[気しン
リ−12の信号から右バンクがリップCあるかリーンで
あるかを判別づる。
In FIG. 6, first, in step 101, it is determined from the signal of the right bank 12 whether the right bank is in lip C or lean.

101ぐリッチの場合は102へ1−1さ、前回の演算
ではリッヂぐあったかり一ンCあつたかを判別する。
In the case of 101 Gurich, it goes to 102 1-1, and in the previous calculation, it is determined whether Ridge is warm or C is warm.

前111もリッチである場合には、104へ行き補正係
数α1から所定値ΔIを減じた値を新たなC1とりる(
積分動作)。
If the previous 111 is also rich, go to 104 and take a new value C1 that is obtained by subtracting the predetermined value ΔI from the correction coefficient α1 (
integral action).

一方、102で前回はリーンひあった場合は、今回の演
粋において初めでリーンからリッチに変化したことを示
1から′105へ1jき、補正係数α1から八[)を減
じた値を新たなC1とプる。(比例動作)。
On the other hand, if it is 102 and it was lean last time, it means that it changed from lean to rich at the beginning in this exercise. Pull out C1. (proportional action).

また、前記101でリーンCあった揚台は、10;3へ
11き、前回の演篩にJ3りる空燃比がリツ−fCあ−
)たかリーン(・′あっ7jかを判定する。
In addition, the lift platform with lean C in the above 101 goes to 10;3, and the air-fuel ratio that is J3 in the previous calculation is
) Taka Lean (・'A7j to judge.

前回リッヂて゛あつIこ場合は、今回の演算にJ3いて
リーンからリップに反転したことを承りから1()6へ
?Jき、補正係数α1に所定1+rjΔ1)を加nした
値をIli /、l:la−C1どりる(化例動イ′1
)。
In this case, in this case, in this calculation, J3 changed from lean to lip, so it went to 1()6? J, the value obtained by adding the predetermined 1+rjΔ1) to the correction coefficient α1 is calculated as Ili/, l:la−C1 (Example motion I'1
).

一方、10S3てリーンの場合【Jは107へ行き、?
111止係数(χ′1に1すi定110△1をIli 
LI L/ iこ俯を新たなC1とりる(積分動作)。
On the other hand, if 10S3 is lean, [J goes to 107, ?
111 stop coefficient (1 in χ′1 and 110△1 as Ili
Take LI L/i as a new C1 (integral operation).

′)きに、I 08 Cは11m1のよう【ごしくめた
C1を1から減(ネした値を補正係数α2とりる。
'), I 08 C is 11 m1 [Subtract the refined C1 from 1 (and take the value as the correction coefficient α2.

つぎに、第7図に(1メいC1まずi 1i ’rは基
本燃料供給量11)を晶1粋りる。
Next, in FIG. 7, (1 meter C1 first i 1i 'r is the basic fuel supply amount 11) is shown.

例えば、別にめ(おいlこ回転速度N1吸入空気ff1
(1)から基本燃料供給量IP=に−Q/Nの式に応じ
〔基本燃料供給ffi T Pを算出りる。
For example, separately (rotational speed N1 intake air ff1
From (1), the basic fuel supply ffi TP is calculated according to the formula -Q/N based on the basic fuel supply amount IP=.

つぎに、112では上記の基本燃料供給ffi ”I”
 f’に右バンクの補正係数α1を乗紳することによつ
−C1右バンクの実燃料供給m F ’Iを粋出し、ま
た、基本燃料供給量1− Pに左バンクの補正係数α2
を東線することによって!■−バンクの実燃料供給t1
1F2を算出づる。
Next, at 112, the above basic fuel supply ffi "I"
By multiplying f' by the correction coefficient α1 for the right bank, the actual fuel supply mF'I for the right bank -C1 is optimized, and also by multiplying the basic fuel supply amount 1-P by the correction coefficient α2 for the left bank.
By east line! ■-Actual fuel supply t1 of bank
Calculate 1F2.

゛つきに、113′cは上記のFl(第111i11 
ill伯号信号当)を右バンクの駆動回路へ出力し、J
:た1−2(第2制御信号に相当)を左バンクの駆動回
路へ出力する。
Therefore, 113'c is the above Fl (No. 111i11
ill output signal) to the right bank drive circuit, and
1-2 (corresponding to the second control signal) is output to the left bank drive circuit.

なお、上記のにうにもバンクの補正係数α1と左バンク
の補正係数α2どは、1を中央値とηる乗樟補正係数で
あり、α2=1−C1と覆ることににつて右バンクと左
バンクとの補正を逆位相に行うことがCきる。
In addition, as mentioned above, the correction coefficient α1 of the left bank and the correction coefficient α2 of the left bank are multiplicative correction coefficients with 1 as the median value. Correction with the left bank can be performed in opposite phase.

上記の制御における空燃比の変動を第8図を用いて説明
する。
Fluctuations in the air-fuel ratio in the above control will be explained using FIG. 8.

第8図にJ3いて、(a)は右バンク抽気ヒンリ12の
出力信号、< b>は右バンクの燃料供給吊の制御信号
ひある。
In FIG. 8, at J3, (a) is the output signal of the right bank air bleed hinge 12, and <b> is the control signal of the right bank fuel supply hanger.

まl、二、((1)は左バンク排気センサ−13の出力
信号、(C)はにバンクの燃料供給量の制御信号C′d
うる。
1, 2, ((1) is the output signal of the left bank exhaust sensor 13, (C) is the control signal C'd for the fuel supply amount of the left bank.
sell.

第6図の演算にa3いては、(a)に示づ右バンク排気
センサ12の信号に応じ((b)に示すもバンクの燃オ
81供給■と(C)に示すノ1−パンクの燃わl供給量
どを逆位相に制御して−いるので、右バンクとノミバン
クとに全体どして空燃比のり゛れがな(Jれば、1ス間
△の部分に小1ように、右バンクど左バンクとがλ−1
を中心どしくそれぞれ逆()l相に制iy++されるこ
とになる。
In the calculation of FIG. 6, a3 is determined according to the signal of the right bank exhaust sensor 12 shown in (a) (the fuel oil 81 supply of the bank shown in (b) and the no. 1 puncture shown in (C)). Since the fuel supply amount is controlled in opposite phases, there is no overall difference in air-fuel ratio between the right bank and the chisel bank. , the right bank and the left bank are λ-1
are respectively controlled in the inverse ()l phase iy++ centered on the center.

しtこがって、右バンクど左バンクどの空燃比の変0ノ
及び出力1ヘルクの変動が逆位相になるのC1全体とし
C平均化され出力トルク変動のない滑らか41制御を実
現することかCさ、J、lこ触媒コンバータも転換効率
の最ムよいどころr作動さけることができる。
Therefore, whether the right bank or the left bank, the air-fuel ratio change of 0 and the output of 1 herk are in opposite phases, and C1 is averaged as a whole to realize smooth control without output torque fluctuation. Catalytic converters can also be operated for the best conversion efficiency.

なお、第8図におい(1dは燃vI供給吊が変化[)C
からそれがJJI気しンリ−で検出されるまでの遅れ時
間を示す。
In addition, in Fig. 8 (1d is the change in the fuel vI supply hanging [)C
It shows the delay time from when it is detected by the JJI sensor.

つぐに、左右のバンクの空燃比がエンジンの構成要素や
特性のばらつきによつC全体としてずれCいる場合には
、第8図の区間Bに承りようになるので、甲に左右のバ
ンクの空燃比を逆位相に制御するだ【ノひは初期の目的
を達成づることは(゛きない。
Next, if the air-fuel ratio of the left and right banks deviates as a whole due to variations in engine components and characteristics, it will be accepted in section B of Figure 8, so the left and right banks will be Controlling the air-fuel ratio to the opposite phase would not achieve the initial objective.

Jなわら、区間Bにおい−Cは、私バンクはJJI気セ
ンサ出力がリッヂを示しCいるので燃料供給量を減少さ
けるように制御しくおり、)「バンクr +aそれと逆
位相に燃料供給1tiを増加させるように制御している
J, in section B, the output of the JJI air sensor indicates a ridge, so the control is in place to avoid reducing the fuel supply amount. It is controlled to increase.

そしC,旧点丁OにおいC1右バンクのJJF気しン4
ノが右バンクの空燃比がリッヂからリーンに変化したこ
とを検出し、それに応じC右バンクの燃料〆供給量は減
少から増加へ変化する。
Soshi C, JJF Kishin 4 on the right bank of C1 in the old point O
C detects that the air-fuel ratio of the right bank has changed from ridge to lean, and accordingly, the fuel supply amount of the right bank C changes from decreasing to increasing.

これにしたがって、左バンクにおいては峙s::r。Accordingly, in the left bank, the position s::r.

Toから燃料を減少させる制御に切りかわる。The control switches from To to decrease the fuel.

ところで、右バンクと左バンクの空燃比が全体としてず
れていなければ、右バンクがリッチがらリーンに変化し
た時点0、左バンクはリーンからリッチに変化りるtt
 21’ t−dりるが、(C)及び(d)かられかる
J、うに、左バンクは全体としCリーン側にり゛れ(い
るのく゛、時点10(右バンクがリッfからリーンに変
化し!、二どきひも左バンクはり一ンの状態を継続しく
いる。
By the way, if the air-fuel ratios of the right bank and left bank do not deviate as a whole, the time point when the right bank changes from rich to lean is 0, and the left bank changes from lean to rich tt
21' t-d ruru is turned from (C) and (d). !, and the left bank of the second string continues to be in one position.

このJ、うに、一方のバンクの空燃比かリップからリー
ンに切りかわったどさ(J他方のバンクの空燃比がリー
ンのままC゛ある場合は、後者のバンクの空燃比か全体
と1. (リーンCあると判11iされる。
In this case, the air-fuel ratio of one bank has changed from lip to lean. (If there is a lean C, judgment 11i is made.

このよ・うな場合に(、上、時点11においC所定量S
だ【ノ燃料供給吊を増1111さける補正を行い、左バ
ンクの空燃比を全体としくリップ−側に移動さUる。
In such a case (above, at time 11, the predetermined amount of C
A correction is made to avoid increasing the fuel supply drop, and the entire air-fuel ratio of the left bank is moved to the lip side.

なa3、第ε3図の例におい(は、時点11にお1ノる
一同の補jI操作−Cも依然どしくノ、−バンクはり一
ンの状態が続くため、114点12におい(同様の補I
Iが00一度繰返され、その結果区間へのどとくノ「イ
)のバンクが富に逆位相に制御される状態となる。
In the example of Figure ε3, (a), all the complementary jI operations -C at time 11 are still difficult, and the -bank beam condition continues, so 114 points 12 (similar Supplement I
I is repeated once as 00, and as a result, the bank at the end of the section is controlled to have an opposite phase.

なAメ、−1記の例は左バンクのhが全体としCリーン
側に偏っている揚台を例示したが、リップ側に偏っCい
る場合は、」−記の逆に燃料供給量をJす[定量Sだけ
減少さける補11−を行えばよい。
A, the example in -1 shows a lifting platform where h of the left bank as a whole is biased toward the C lean side, but if C is biased toward the lip side, the fuel supply amount should be JS [Compensation 11-, which avoids a decrease by the amount S, may be performed.

上記のような補正を行う演算の)1−1−チt・−1・
を第9図に示づ。
(1-1-chit・-1・of the calculation that performs the above correction)
is shown in Figure 9.

第9図においで、101から107ま4は前記第6図と
同一である。
In FIG. 9, 101 to 107 and 4 are the same as those in FIG. 6.

つぎに、121rは左バンクの4.II気ヒンリの信号
に応じて左バンクの空燃比がリップC′あるがリーンぐ
あるかを判別する。
Next, 121r is 4. of the left bank. In response to the signal of II, it is determined whether the air-fuel ratio of the left bank is lip C' or lean.

121でリッチの場合には、右バンクがリーンからリッ
チに変化したとき左バンクがリッヂのままC゛あり、づ
なわらノ「バンクの空燃比がリッ7− fllllに偏
っていることを示りがら123c係数Δαがら所定値S
を減じた値を新たなΔαど覆る。
In the case of rich at 121, when the right bank changes from lean to rich, the left bank remains at ridge and remains at C, indicating that the air-fuel ratio of the bank is biased towards rich. 123c coefficient Δα from predetermined value S
The value obtained by subtracting Δα is overwritten by a new value.

また、122でもノミバンクのリッヂ、リーンを判別7
る。
In addition, 122 also distinguishes ridge and lean flea banks 7
Ru.

122でリーンの場合には、右バンクがリッチからリー
ンに変化したとき左バンクがリーンのままであり、すな
わち左バンクが全体どしてリーンに偏っていることを小
りから、124r係数Δαに所定(10Sを汀線したも
のを新たなΔαとする。
In the case of 122 and lean, when the right bank changes from rich to lean, the left bank remains lean, that is, the left bank as a whole is biased toward lean. The shoreline of the predetermined (10S) is set as a new Δα.

)ぎに、125 Cは1−C1にΔ0を加算した1ir
iをα?どりる。
), 125 C is 1ir which is 1-C1 plus Δ0
α for i? Doriru.

’cf−J)、′121ぐリーンの場合及び122ぐリ
ツJの場合は左右バンクが逆位相にiNI Illされ
ており、11−常4j1人態なのCΔ(XはぞのまJ、
とづる。
'cf-J), 'In the case of 121 green and 122 green J, the left and right banks are iNI Ill in opposite phases, and the CΔ (X is Zonoma J,
Tozuru.

まlこ、11−右バンクに空燃比のばらつきのない場合
にはΔαはO’rある。
11-If there is no variation in air-fuel ratio in the right bank, Δα is O'r.

1−記のように制御りることにより、/iものバンクの
空燃比か全体としくずれていた場合にし、ぞのずれを補
止し6両バンクの空燃比を逆位相に制御−11りること
が(−きるJ、うIJ’Jる。
By controlling as described in 1-1, if the air-fuel ratio of /i banks is out of order, correct the deviation and control the air-fuel ratio of the 6-car bank to the opposite phase.-11 That (-kiruJ, uIJ'Jru.

つきに、第10図は本発明の他の演鋒を承り実施例の]
[1−ブIr −t−rある。
Finally, FIG. 10 shows another embodiment of the present invention]
[1-B Ir -t-r exists.

第10図にJiい(、−101’(はで−jバンクのリ
ッチ、リーンを判別りる。
In Fig. 10, it is determined whether the bank is rich or lean.

101 ’(リッチの1号合には132に(]き、左バ
ンクのリッf、リーンを判別りる。
101' (Go to 132 () for rich No. 1, and determine left bank riff f and lean.

’l 32 (”リッチの場合には、左バンクが全体と
しCリッチであることを示すから′134へ行き、係数
Δαから所定値Mを減棹した(INを新jこな△αとづ
る。
'l 32 ("In the case of rich, it indicates that the left bank as a whole is C-rich, so go to '134 and reduce the predetermined value M from the coefficient Δα (IN is spelled as new jkona Δα) .

132でリーンの場合には、正常に逆位相の制御が行わ
れていることを示1゜ 一方、101 t’リーンの場合には133へ行き、や
はり左バンクのリッチ、リーンを判別りる。
If it is lean in step 132, it indicates that the opposite phase control is being performed normally.On the other hand, if it is lean in step 101, the process goes to step 133, where it is also determined whether the left bank is rich or lean.

133でリーンの場合には左バンクが全体とし−Cリー
ンであることを承りから、135へ打き、係数Δαに所
定fl#IMをIJII Nした賄を新たなΔ(Xとり
る。
In the case of lean at 133, it is acknowledged that the left bank as a whole is -C lean, then enter 135 and take a new Δ(X) by adding a predetermined fl#IM to the coefficient Δα.

133でリッチの場合には、正常な逆(C7相の制tm
が行われCいることを示づ。
133 and rich, normal reverse (C7 phase control tm
This shows that C is performed.

以下、102乃j7.107で前記第6図と同様の積分
比例動作を行う。
Thereafter, in steps 102 to 107, integral proportional operations similar to those shown in FIG. 6 are performed.

つぎに、142で1−C1にΔαを加えIこl+iをC
2とする。
Next, at 142, add Δα to 1-C1 and make I+i
Set it to 2.

上記の演綽(Jj3りる制御波形を第11図に承り。The above control waveforms are shown in Figure 11.

第11図において、(a)は右バンク排気センυ′12
の出力信号、(’b)は右バンクの燃料供給量の制御信
号、(lは/1バンクの燃わ1供給量の制御信号、((
1)は左バンクを補止りるための係数Δαの舶を示り。
In Fig. 11, (a) shows the right bank exhaust sensor υ'12
output signal, ('b) is the control signal for the fuel supply amount of the right bank, (l is the control signal for the fuel 1 supply amount of the /1 bank, ((
1) shows a ship with a coefficient Δα to compensate for left bank.

また(0)は、kバンクJJI気しンリ13の出力信号
を示1゜ 第11図のメ間13にJ3いでは、右バンクと左バンク
の排気セン()信号が逆位相になっCいるのC補止ti
t行われない。
In addition, (0) indicates the output signal of the K-bank JJI exhaust sensor 13. In J3, the exhaust sensor () signals of the right bank and the left bank are in opposite phase. C supplement ti
t Not done.

12間Aにおいては、右バンクの排気セン1すがリーン
を示しくいるどきにノ[バンクの排気ヒンリbリーンを
示しCいるので、全体としく左バンクがリーン側に偏っ
(いることになるので、((1)に示づ係数Δαが次第
に加瞳され(増加し、(C)に示すノLバンクの燃オ′
1供給量が次第に増加しC1ついには右バンクと左バン
クが逆位相のIF富な制御状態となる。
In the 12 interval A, the right bank exhaust sensor 1 indicates lean and at the end the bank exhaust sensor 1 indicates lean, so the left bank as a whole is biased toward the lean side. Therefore, the coefficient Δα shown in (1) is gradually increased (increased), and the combustion power of the L bank shown in (C) is
1 supply amount gradually increases, and C1 finally enters an IF-rich control state in which the right bank and the left bank are in opposite phases.

’<K J)、1./、 l説明(1、l、実IIA例
+c Jj イCLi、補正係数α1及びC2を重水燃
料供給吊]Pに乗算Jる乗綽袖j1の場合を例示したが
、補」1−領を加減Qψる加算補正の場合Cも同様の制
御を行うことがCきる。
'<K J), 1. /, l Explanation (1, l, Actual IIA example + c Jj i CLi, correction coefficients α1 and C2 are multiplied by heavy water fuel supply suspension). In the case of addition correction that increases or decreases Qψ, similar control can be performed.

また、上記の実施例は、混合気調罎手段としく燃料噴射
弁を用いる場合のみを例示したが、前記第5図の説明中
に(イ)〜(ハ)ぐ詳述したごどく、気化器やバイパス
制御弁を用いる場合でも、本発明を同様に適用すること
が出来る。
In addition, although the above embodiment has only exemplified the case where a fuel injection valve is used as the air-fuel mixture regulating means, the vaporization The present invention can be applied in the same way even when using a device or a bypass control valve.

また、第1図にJjいては、V型1−ンジンに本発明を
適用する場合を説明し/jが、水平対向土ンジンにJj
いても同様の制御を行うことができる。
In addition, Jj in FIG. 1 explains the case where the present invention is applied to a V-type engine,
Similar control can be performed even if the

〈発明の効果) 以上説明したごとく本発明におい(は、複数の気筒が2
系統に分(プられたエンジンにJ3いC′、第1系統に
属する気筒ど第2系統に属づる気筒とにお(Jる空燃比
の所定値からのずれを相互に逆位相とするように制御1
i1することがひきるので、フィードバック制御によっ
て生ずる空燃比のハ:/ヂングが引き起こづトルク変動
を押え、滑が4f出力特竹とづることがC゛きる また、全体として空燃比をλ−1の近傍に保つことがC
きるので、触媒コンバータを転換効率の最も^い点C作
動さけることができ、排気浄化性能を向上さμるごとb
′C″きる。
<Effects of the Invention> As explained above, in the present invention (a plurality of cylinders are
The cylinders belonging to the first system, the cylinders belonging to the second system, and the cylinders belonging to the second system (J) are arranged so that deviations of the air-fuel ratio from a predetermined value are in antiphase with each other. control 1
Since the torque fluctuation caused by the air-fuel ratio fluctuation caused by feedback control is suppressed, the slippage can be reduced to 4f output characteristics.In addition, the air-fuel ratio as a whole can be Keeping C near 1
As a result, the catalytic converter can be avoided operating at the point C where the conversion efficiency is highest, improving exhaust purification performance.
'C' is turned.

また、第9図及び第10図の実施例によれば、第1系統
と第2系統との空燃比が全体どしてずれ(いる場合にも
、そのずれを補止りることができ、」ンジン(幾横部品
のばら−)きによる空燃比のずれも補11りることが′
Cきるという効果がある。
Furthermore, according to the embodiments shown in FIGS. 9 and 10, even if there is an overall deviation in the air-fuel ratio between the first system and the second system, the deviation can be corrected. It is also possible to compensate for deviations in air-fuel ratio due to engine (dispersion of lateral parts).
It has the effect of cutting C.

【図面の簡単な説明】[Brief explanation of drawings]

第1因は従来の空燃比制0++装置の1例図、第2図は
従来装置の制り11信号波形図、第3図は空燃比ど出力
i・ルクの特性図、第4図は空燃比と触媒転換効率との
特性図、第5)図は木ブト明の構成を示すノ[1ツク図
、第6図及び第7図は本発明の演詐を承り一実施例の)
【1−ブl7−1−1第8図は第6図の演咋にJ5りる
11811 III (a号波形図、第9図及び第10
図はそれぞれ本5L明の他の実施1ζ1の)Ll−チp
 −1〜、第11図は第10図の実施例の演筒にa3(
Jる制御信号波形図ぐある。 ?vト)の説明 1・・・1ノアクリープ 2・・・工7フ[1−メータ 3・・・ス【]ットル弁 4・・・右バンク吸気ボー1− 5・・・左バンク吸気ボート 6・・・右バンク噴q・1弁 7・・・ノIバンク噴射弁 8・・・右バンク気筒 9・・・ノ[バンク気筒 10・・・右バンク排気管 11・・・左バンク排気管 12・・・右バンク排気レンザ ′13・・・)薯バンク排気ヒンサ 14.15・・・触媒]ンバータ 16・・・マフラ 17・・・回転センサ 18・・・温度セン4ノ 19・・・制御装置 20・・・クランク軸 21・・・排気還流制御弁 22・・・補助空気弁 Aり561 (A) (B) 1 1′″81図 区IVIB−E闇A
The first cause is an example diagram of a conventional air-fuel ratio control 0++ device, Fig. 2 is a control 11 signal waveform diagram of the conventional device, Fig. 3 is a characteristic diagram of air-fuel ratio, output i, and torque, and Fig. 4 is a diagram of air-fuel ratio control 11 signal waveforms. Characteristic diagram of fuel ratio and catalytic conversion efficiency, Figure 5) shows the configuration of Kibutoaki [Figure 1, Figures 6 and 7 are one example of the present invention]
[1-B 17-1-1 Figure 8 is the waveform diagram of Figure 6, J5 Rir 11811 III (No. a waveform diagram, Figures 9 and 10)
The figures are respectively of other implementations 1ζ1 of this book 5L light) Ll-chip
-1~, Fig. 11 shows a3 (
There is a control signal waveform diagram. ? Explanation of v) 1...1 Noah creep 2...Mechanical 7 [1-Meter 3...S]Ttle valve 4...Right bank intake boat 1-5...Left bank intake boat 6 ...Right bank injection q.1 valve 7...I bank injection valve 8...Right bank cylinder 9...[Bank cylinder 10...Right bank exhaust pipe 11...Left bank exhaust pipe 12...Right bank exhaust lens '13...) Bank exhaust sensor 14.15...Catalyst] Inverter 16...Muffler 17...Rotation sensor 18...Temperature sensor 4-19... Control device 20...Crankshaft 21...Exhaust recirculation control valve 22...Auxiliary air valve A561 (A) (B) 1 1'''81 Diagram section IVIB-E Dark A

Claims (1)

【特許請求の範囲】 1、」−ンジンの排気ガス成分濃度を検出する手段の信
号に基づいて空燃比を所定値に保つように燃料供給量を
フィードバック制御し、かつ複数の気筒の排気系を第1
及び第2の2系統に分けたエンジンにおいて、第1系統
の排気系における排気ガス成分濃度を検出づる第1排気
検出手段と、該第1 JJI気検量検出手段出結果に基
づいて第1系統に供給する混合気の空燃比を所定値に保
つように補i1E 1ill illづる第1制御信号
を出力づる第1演算手段ど、上記第1制陣信号に応じて
補正した混合気を第1系統に供給りる第1混合気調齢手
段と、第2系統におりる空燃比の」−配所定値からのず
れを上記第1系統におりる上記すれど上記所定値を中心
として対称と覆るように補正制御する第2制御信号を出
力する第2演算手段と、上記第2制御信号に応じて補正
した混合気を第2系統に供給ジる第2混合気調量手段と
を備え、第1系統に属りる気筒と第2系統に属する気筒
とにおける9゛燃比の所定値からのずれが上記所定値を
中心として対称となるように制御することを特徴とづる
空燃比制御装置。 2、エンジンの排気ガス成分iH15tを検出する手段
の信号に基づいて空燃比を所定値に保つように燃料供給
量をフィードバック制御し、かつ少数の気筒の排気系を
第1及び第2の2系統に分けた]−ンジンにおいて、第
1系統の排気系におりる排気ガス成分濃度を検出する第
1排気検出手段と、該第1排気検出手段の検出結果に基
づいて第1系統に供給する混合気の空燃比を所定値に保
つように補正制御する第1制御信号を出カリ−る第1演
締手段と、上記第1制御信号に応じて補正した混合気を
第1系統に供給−りる第1混合気調量手段と、第2系統
の排気系における排気ガス成分m度を検出する第2排気
検出手段と、第2系統における空燃比の上記所定値から
のずれを上記第1系統にd5ける上記すれど上記所定値
を中心として対称とするように補正制御I 1.、、、
かつ第2系統の空燃比の全体的なレヘルを」紀第1排気
検出手段の検出結果と上記第2排気検出手段の検出結果
との相互関係に基づいて補正制御づ−る第2制御信号を
出力づる第2演幹手段と、上記第2制御信号に応じて補
正した混合気を第2系統に供給づる第2混合気調量手段
とを備え、第1系統に属する気筒と第2系統に属づる気
筒どにおfJ、る空燃比の所定値からのずれが上記所定
1irjを中心どしく処]称と4rるように制御し、か
つ第1系統と第2系統とに83 LJる空燃比の全体的
ずれを?ili if−りることを特徴とりる空燃比制
i11装置。 3、上記第1演紳手段は、−[ンジンの各挿運転変数に
応しく別途に演算した基本燃料供給量に、上記第1排気
検出手段の検出結果と所定111との偏差に基づいた第
1補正信号を乗算すること【こよって−上記11制御1
信号をい出りるbのであり、上記第1 HNN合気調子
手段、上記第1制till信号に応じた燃料を第1系統
に供給づる燃料噴射装置であり、上記第2演算手段は、
上記第1補正信号と所定値を中心として対称となる補正
信号に、−上記第1111気検出手段の検出結果が混合
見過1ll(リッチ)を承り状態から混合気希薄(リー
ン)を示す状態に変化したとぎに、上記第2排気検出手
段の検出結果がリーンである場合は燃料供給量を所定量
だけ増加させる信号を(=J加し、−[2第1排気検出
手段の検出結果がリーンからリッチに変化したとぎに、
上記第2排気検出手段の検出結果がリッチである場合は
燃料供給量を所定量たり減少させる信号をイ]加りるこ
とによって第2補1[信号を算出し、該第2補正信号を
上記基本燃料供給量に乗算することtごにつて上記第2
制御信号を演算するものであり、上記第2混合気調川手
段は、上記第2制御信号に応した燃料を第2系統に供給
づる燃料噴!lFI装置であることを特徴とする特許請
求の範囲第2■貞記載の空燃比制御装置。 4、上記第1演算手段は、エンジンの各種運転変数に応
じて別途に演算した基本燃料供給量に、上記第1混合気
調ffi手段は、上記第1制御信号に応じた燃料を第1
系統に供給り”る燃籾噴q・1装置ひあり、L配力2演
算手段は、−1−紀第1補正信号と所定値を中心として
対称となる補iF信号に、上記第1排気検出手段の検出
結果がリッチのどきに上記第2111気検出手段の検出
結果がリッチCある場合は燃料供給員を所定量だ1)減
少さける信号を付7111 L、」二記第101気検出
手段の検出結果がリーンのどきに上記第2 II気検出
手段の検出結果がり一ンである場合は、燃わ1供給吊を
所定量だり増加さける信号を(;J JJI+りること
にJ:っで第2?1n正信号をO出し、その第2補正信
号を[開基ホ燃料供給…に乗り4ることによって、第2
制i卸(8号を演算づるものくあり、上記第2沢合気調
絹手段は、上記第2制御信シづに応じた燃オ′11を第
2系統に供給する燃料噴射装置であることを特徴とする
特許請求の範囲第2 In記載の空燃比制御装置。
[Claims] 1.- Feedback control of the fuel supply amount to maintain the air-fuel ratio at a predetermined value based on a signal from a means for detecting the concentration of exhaust gas components of the engine, and controlling the exhaust system of a plurality of cylinders. 1st
and a second exhaust detection means for detecting the concentration of exhaust gas components in the exhaust system of the first system; A first calculation means outputs a first control signal to maintain the air-fuel ratio of the supplied air-fuel mixture at a predetermined value. The air-fuel ratio supplied to the first air-fuel mixture age adjustment means and the air-fuel ratio sent to the second system are arranged so that the deviation from the predetermined value is symmetrically reversed with respect to the predetermined value. a second calculation means for outputting a second control signal for correcting the second control signal; and a second air-fuel mixture metering means for supplying the air-fuel mixture corrected according to the second control signal to the second system; An air-fuel ratio control device characterized in that the air-fuel ratio control device performs control so that deviations of the 9° fuel ratio from a predetermined value in cylinders belonging to a system and cylinders belonging to a second system are symmetrical about the predetermined value. 2. Based on the signal from the means for detecting the engine exhaust gas component iH15t, the fuel supply amount is feedback-controlled to maintain the air-fuel ratio at a predetermined value, and the exhaust systems of a small number of cylinders are divided into two systems, the first and second systems. - In the engine, a first exhaust detection means for detecting the concentration of exhaust gas components entering the exhaust system of the first system, and a mixture supplied to the first system based on the detection result of the first exhaust detection means. a first controlling means for outputting a first control signal for correcting and controlling the air-fuel ratio of the air to maintain it at a predetermined value; a first air-fuel mixture adjusting means for detecting the m degree of exhaust gas component in the exhaust system of the second system; Correction control I1. ,,,
and a second control signal for correcting the overall air-fuel ratio of the second system based on the correlation between the detection result of the first exhaust detection means and the detection result of the second exhaust detection means. A second air-fuel mixture metering means supplies the air-fuel mixture corrected according to the second control signal to the second system, and the cylinders belonging to the first system and the second system are connected to each other. Control is performed so that the deviation of the air-fuel ratio from the predetermined value fJ in the cylinder to which it belongs is centered on the above-mentioned predetermined 1irj, and the air-fuel ratio is controlled to be 83LJ in the first system and the second system. Overall deviation in fuel ratio? An air-fuel ratio control i11 device characterized by ili if-li. 3. The above-mentioned first exhaust detection means is configured to -[a basic fuel supply amount calculated separately according to each injection operation variable of the engine, and a first exhaust detection means based on the deviation between the detection result of the first exhaust detection means and a predetermined value 111. 1 correction signal [Thus - above 11 control 1
The first HNN air conditioning means is a fuel injection device that supplies fuel to the first system in accordance with the first control till signal, and the second calculation means is
A correction signal that is symmetrical to the first correction signal about a predetermined value is changed from a state in which the detection result of the 1111th gas detection means indicates a mixture error of 1ll (rich) to a state indicating a lean mixture. When the detection result of the second exhaust detection means is lean, a signal to increase the fuel supply amount by a predetermined amount (=J is added, -[2 if the detection result of the first exhaust detection means is lean) is sent. As soon as it changes from rich to rich,
If the detection result of the second exhaust detection means is rich, a signal for reducing the fuel supply amount by a predetermined amount is calculated by adding a signal to reduce the fuel supply amount by a predetermined amount, and the second correction signal is The basic fuel supply amount is multiplied by the second
The second air-fuel mixture control means is a fuel injection system that supplies fuel corresponding to the second control signal to the second system. The air-fuel ratio control device according to claim 2, which is an IFI device. 4. The first calculation means calculates the basic fuel supply amount separately calculated according to various operating variables of the engine, and the first air-fuel mixture adjustment ffi means adjusts the fuel according to the first control signal to the first fuel supply amount.
There is a fuel injection q.1 device that supplies the fuel to the system, and the L power distribution 2 calculation means applies the first exhaust signal to the supplementary iF signal that is symmetrical about the -1-era first correction signal and a predetermined value. When the detection result of the detection means is rich and the detection result of the 2111th air detection means is rich C, a signal is attached to reduce the fuel supply by a predetermined amount. If the detection result of the above-mentioned second II air detection means is equal to the lean temperature, a signal is sent to increase the fuel supply by a predetermined amount or more. outputs the 2nd?1n positive signal at
The second control signal is a fuel injection device that supplies fuel to the second system in accordance with the second control signal. The air-fuel ratio control device according to claim 2, characterized in that:
JP4562984A 1984-03-12 1984-03-12 Air-fuel ratio control device Granted JPS60190631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4562984A JPS60190631A (en) 1984-03-12 1984-03-12 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4562984A JPS60190631A (en) 1984-03-12 1984-03-12 Air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS60190631A true JPS60190631A (en) 1985-09-28
JPH0338417B2 JPH0338417B2 (en) 1991-06-10

Family

ID=12724663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4562984A Granted JPS60190631A (en) 1984-03-12 1984-03-12 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS60190631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504661A (en) * 1988-06-24 1990-12-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for lambda control with multiple sondes
US5390650A (en) * 1993-03-15 1995-02-21 Ford Motor Company Exhaust gas oxygen sensor monitoring
US5462038A (en) * 1994-12-09 1995-10-31 Ford Motor Company Air/fuel phase control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148930A (en) * 1978-05-15 1979-11-21 Nippon Denso Co Ltd Air-to-fuel control device
JPS57119140A (en) * 1981-01-13 1982-07-24 Osaka Gas Co Ltd Engine with exhaust gas cleaned

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148930A (en) * 1978-05-15 1979-11-21 Nippon Denso Co Ltd Air-to-fuel control device
JPS57119140A (en) * 1981-01-13 1982-07-24 Osaka Gas Co Ltd Engine with exhaust gas cleaned

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504661A (en) * 1988-06-24 1990-12-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for lambda control with multiple sondes
US5390650A (en) * 1993-03-15 1995-02-21 Ford Motor Company Exhaust gas oxygen sensor monitoring
US5462038A (en) * 1994-12-09 1995-10-31 Ford Motor Company Air/fuel phase control

Also Published As

Publication number Publication date
JPH0338417B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
US5570574A (en) Air-fuel ratio control system for internal combustion engine
US7680586B2 (en) Mass air flow sensor signal compensation system
JPS60190631A (en) Air-fuel ratio control device
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
JP4539474B2 (en) Learning control device for internal combustion engine
WO2012020509A1 (en) Control device for internal combustion engine
JP2019152122A (en) Internal combustion engine system
JP2594943Y2 (en) Fuel control device for internal combustion engine
JPH0467575B2 (en)
JP4247730B2 (en) Air-fuel ratio control device for internal combustion engine
JPS61112760A (en) Method of controlling air-fuel ratio of internal combustion engine through learning
JPS5872631A (en) Air-fuel ratio control method of engine
JPS621399Y2 (en)
JPS645059Y2 (en)
JP2010053825A (en) Control unit of internal combustion engine
JPS6338637A (en) Air-fuel ratio control device for internal combustion engine
JP2618967B2 (en) Engine air-fuel ratio control device
JP3105230B2 (en) Fuel supply control device for internal combustion engine
JPS58150034A (en) Air-fuel ratio storage control method of internal-combustion engine
JPS59231145A (en) Method of controlling injection quantity of fuel
JPS63195343A (en) Air fuel ratio control equipment of engine
JPH0555704B2 (en)
JPS60252136A (en) Air-fuel ratio controller for multicylinder engine
JPS60249642A (en) Air-fuel ratio controller for multicylinder engine
JPS59224417A (en) Intake system of engine