JPS621399Y2 - - Google Patents

Info

Publication number
JPS621399Y2
JPS621399Y2 JP13698181U JP13698181U JPS621399Y2 JP S621399 Y2 JPS621399 Y2 JP S621399Y2 JP 13698181 U JP13698181 U JP 13698181U JP 13698181 U JP13698181 U JP 13698181U JP S621399 Y2 JPS621399 Y2 JP S621399Y2
Authority
JP
Japan
Prior art keywords
air
engine
exhaust
temperature
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13698181U
Other languages
Japanese (ja)
Other versions
JPS5842342U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13698181U priority Critical patent/JPS5842342U/en
Publication of JPS5842342U publication Critical patent/JPS5842342U/en
Application granted granted Critical
Publication of JPS621399Y2 publication Critical patent/JPS621399Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 本考案は2元燃料(気体燃料及び液体燃料)を
同時に使用するエンジンの空燃比制御回路の改良
に関し、詳細には中程度以下の負荷領域における
デイーゼルエンジンの空燃比制御性能を高めるこ
とにより同エンジンの出力効率を良好に維持する
ことのできる空燃比制御回路に関するものであ
る。
[Detailed description of the invention] This invention relates to the improvement of an air-fuel ratio control circuit for an engine that uses dual fuels (gaseous fuel and liquid fuel) at the same time. The present invention relates to an air-fuel ratio control circuit that can maintain good output efficiency of the engine by improving its performance.

気体燃料と主燃料とし、液体燃料を補助燃料
(例えば着火源として用いられる)とするデイー
ゼルエンジンにおいては、全負荷領域で良好な燃
焼状態が得られる為には、気体燃料量と空気量と
の比率いわゆる空燃比の厳密な制御が必要であ
る。これは気体燃料の燃焼限界が一般に非常に狭
い範囲にあるからで、この様な制御を行なう為の
回路の一つとしては、従来より排気温度を検出し
これに対して空気供給量(以下単に「給気量」と
いう)を一元的に制御する様な回路が採用されて
いる。本考案者も第1図に示す様な制御回路を先
に出願し、デイーゼルエンジンの給気系統4にお
ける空気冷却器9の出口部に給気温度検出器17
を連結し且つ該検出器17に排気制御温度演算器
18を連結する一方、前記エンジンの排気部には
排気温度検出器15aを連結し、更に該排気温度
検出器15aと前記排気制御温度演算器18を比
較出力器19に連結すると共に、該比較出力器
を、流体圧制御弁30及び流体機器31の滑子ク
ランク機構31a,32を経由して前記エンジン
の給気系統4における給気量制御弁8aに連結す
ることによつて、給気温度T0の変化を排気温度
の理想状態(即ち理論排気温度Tg′)からの誤差
として肥握し、該誤差が零になる様に給気量を増
減制御することにより空燃比の制御性能を効率良
く高めると共に、非常に簡単(従つてメンテナン
スも容易)且つ経済的な制御回路を既に出願して
いる。
In a diesel engine that uses gaseous fuel as the main fuel and liquid fuel as the auxiliary fuel (for example, used as an ignition source), in order to obtain good combustion conditions in the entire load range, the amount of gaseous fuel and the amount of air must be adjusted. Strict control of the air-fuel ratio is required. This is because the flammability limit of gaseous fuel is generally within a very narrow range, and one of the circuits for performing this kind of control has conventionally been to detect the exhaust temperature and determine the amount of air supply (hereinafter simply referred to as A circuit that centrally controls the amount of air (referred to as "supply air amount") is adopted. The inventor of the present invention also previously applied for a control circuit as shown in FIG.
and an exhaust control temperature calculator 18 is connected to the detector 17, while an exhaust temperature detector 15a is connected to the exhaust section of the engine, and the exhaust temperature detector 15a and the exhaust control temperature calculator 18 are connected to the exhaust section of the engine. 18 is connected to a comparison output device 19, and the comparison output device is used to control the air supply amount in the air supply system 4 of the engine via the fluid pressure control valve 30 and slider crank mechanisms 31a, 32 of the fluid equipment 31. By connecting the valve 8a, changes in the supply air temperature T 0 are interpreted as an error from the ideal state of the exhaust temperature (that is, the theoretical exhaust temperature Tg'), and the supply air amount is adjusted so that the error becomes zero. We have already filed an application for a control circuit that efficiently improves the control performance of the air-fuel ratio by controlling the increase or decrease of .

しかし上記の様な制御回路でも、中程度以下の
負荷領域では必ずしも十分満足し得る空燃比制御
は得られなかつた。その原因につき種々検討を重
ねた結果、中程度以下の負荷領域では第2図に示
す様に排気温度が負荷率の値によつて大きく影響
を受けて変化する為に、上記の如き負荷率を考慮
していない空燃比制御回路の下では、負荷率の影
響を受けている領域(即ち中程度以下の負荷領
域)に関する限り十分満足し得るほどの制御性能
が発揮されていないことが判明した。
However, even with the above-mentioned control circuit, sufficient air-fuel ratio control cannot always be obtained in a moderate or lower load range. As a result of various studies on the causes of this, we found that in the medium load range or below, the exhaust temperature changes greatly depending on the load factor value, as shown in Figure 2. It has been found that under the air-fuel ratio control circuit that is not taken into consideration, sufficient control performance is not exhibited as far as the region affected by the load factor (that is, the load region below the medium level) is concerned.

そこで本考案者はこうした問題点を解消する為
に更に鋭意検討を重ねた末、負荷率を考慮せずに
算出設定された理論排気温度Tg′に対して予め負
荷率の減少に伴なう排気温度の低下を考慮した補
正を行ない、ここに得られた理論排気温度Tg″を
温度制御要素として採用し、給気温度Toの変化
を、補正された理論排気温度Tg″からの誤差とし
て把握し、該誤差が零になる様に給気量を増減制
御することによつて中程度以下の負荷領域におい
ても空燃比制御を良好に行なうことができるに至
り、本考案を完成した。
Therefore, in order to solve these problems, the inventor of the present invention conducted further intensive studies, and found that the exhaust gas temperature associated with a decrease in the load factor was calculated in advance with respect to the theoretical exhaust temperature The theoretical exhaust temperature Tg'' obtained here is used as the temperature control element by making corrections that take the decrease in temperature into consideration, and changes in the supply air temperature To are understood as an error from the corrected theoretical exhaust temperature Tg''. By controlling the increase/decrease of the air supply amount so that the error becomes zero, it has become possible to perform air-fuel ratio control satisfactorily even in the medium or lower load range, and the present invention has been completed.

しかして本考案の空燃比制御回路は、2元燃料
エンジンの空気供給系統における空気冷却器の出
口部に給気温度検出器を設けると共に前記エンジ
ンの燃料供給系統には負荷率検出器を設け、更に
これら両検出器を排気制御温度演算器に夫々連結
する一方、前記エンジンの排気部には排気温度検
出器を連結し、更に該排気温度検出器と前記排気
制御温度演算器を比較出力器に連結すると共に、
該比較出力器を、流体圧制御弁及び流体機器の滑
子クランク機構を経由して前記エンジンの給気系
統における給気量制御弁に連結して構成した点に
要旨を有するものである。
Therefore, the air-fuel ratio control circuit of the present invention includes a supply air temperature detector provided at the outlet of the air cooler in the air supply system of the dual fuel engine, and a load factor detector provided in the fuel supply system of the engine. Further, both of these detectors are connected to exhaust control temperature calculators, while an exhaust temperature detector is connected to the exhaust section of the engine, and the exhaust temperature detector and the exhaust control temperature calculator are connected to a comparison output device. Along with connecting,
The gist is that the comparison output device is connected to the air supply amount control valve in the air supply system of the engine via the fluid pressure control valve and the slider crank mechanism of the fluid equipment.

以下本考案の実施例を図面(第3図)に基づい
て説明する。第3図において、1は2元燃料デイ
ーゼルエンジン(以下単に「エンジン」とい
う)、2及び3はエンジン1に接続された夫々気
体燃料配管、液体燃料配管である。又4は空気配
管系であつて、空気は本管5、空気流量測定用ノ
ズル6、過給機7(バイパス管8を含む)、空冷
器9及び給気管11を経てエンジン1内に送られ
る様になつている。又給気管11には給気温度検
知センサー17aが取付けられている。一方2は
気体燃料配管であつて気体燃料は気体燃料流量測
定用ノズル13を経てエンジン1内に送られ、配
管2の途中には負荷率検出器が設けられている。
負荷率検出器としては、例えば燃料噴射ポンプに
おける噴射調整用ラツクの移動量を測定する方法
を利用した検出器等が好適であるが、これに限定
されるものでない。更に液体燃料は液体燃料配管
3より図示しない適当な調節弁を介してエンジン
1内に送られる様になつている。尚エンジン1の
排気管14には排気温度検知センサー15aが接
続されている。
Embodiments of the present invention will be described below based on the drawings (FIG. 3). In FIG. 3, 1 is a dual fuel diesel engine (hereinafter simply referred to as the "engine"), and 2 and 3 are gas fuel pipes and liquid fuel pipes connected to the engine 1, respectively. Further, 4 is an air piping system, in which air is sent into the engine 1 via a main pipe 5, an air flow rate measuring nozzle 6, a supercharger 7 (including a bypass pipe 8), an air cooler 9, and an air supply pipe 11. It's becoming like that. Further, a supply air temperature detection sensor 17a is attached to the supply air pipe 11. On the other hand, 2 is a gaseous fuel pipe, and the gaseous fuel is sent into the engine 1 through a gaseous fuel flow rate measuring nozzle 13, and a load factor detector is provided in the middle of the pipe 2.
As the load factor detector, for example, a detector using a method of measuring the amount of movement of an injection adjustment rack in a fuel injection pump is suitable, but the present invention is not limited thereto. Furthermore, liquid fuel is sent into the engine 1 from the liquid fuel pipe 3 via a suitable control valve (not shown). Note that an exhaust gas temperature detection sensor 15a is connected to the exhaust pipe 14 of the engine 1.

さて何らかの原因で主燃料たる気体燃料の供給
に異常が生じて空燃比が変化し、排気温度の変化
を排気温度検出器15により確認した場合には、
エンジン1への給気量の過不足を連続的に制御
(即ちその時の気体燃料量に対する給気量を最適
に制御)することによつて再び空燃比を修正し、
エンジン1の運転を正常に維持する為の操作を行
なうが、この場合エンジン1内への給気量の制御
は、給気管11の内部圧力を調整することにより
行ない、その調整は空気配管系4内の空気を過給
機7の出口側から入口側にバイパスすることによ
り行なつている。又バイパス空気量は、バイパス
管8内に設けられた流量制御弁8aの開度を調整
することにより行なつており、該流量制御弁8a
の開度調整は下記の様な制御回路で行なつてい
る。
Now, if an abnormality occurs in the supply of gaseous fuel, which is the main fuel, for some reason and the air-fuel ratio changes, and the change in exhaust temperature is confirmed by the exhaust temperature detector 15,
The air-fuel ratio is corrected again by continuously controlling excess or deficiency of the amount of air supplied to the engine 1 (that is, optimally controlling the amount of air supplied to the amount of gaseous fuel at that time),
Operations are performed to maintain normal operation of the engine 1. In this case, the amount of air supplied to the engine 1 is controlled by adjusting the internal pressure of the air supply pipe 11, and the adjustment is made by adjusting the internal pressure of the air piping system 4. This is done by bypassing the air inside from the outlet side of the supercharger 7 to the inlet side. The amount of bypass air is controlled by adjusting the opening degree of a flow control valve 8a provided in the bypass pipe 8.
The opening degree is adjusted by the control circuit shown below.

即ち給気温度Toは温度検知センサー17aを
通じて給気温度検出器17により検出された後排
気制御温度演算器18に送られ、該演算器18で
は現実の給気温度Toに見合う理論排気温度Tg′が
計算されるが、同時に負荷率検出器20によつて
検出されたエンジン1の負荷率を排気制御温度演
算器18に送る様にしているので、特に中程度以
下の負荷領域においては第2図に示した様な負荷
率の減少に伴なう排気温度の低下分を考慮した補
正計算を更に行なつて補正理論排気温度Tg″を算
出し、電流信号に変換された後比較出力器19に
送られる一方、エンジン1の排気温度Tgは排気
管14に取付けた排気温度検知センサー15aを
通じて排気温度検出器15により検出された後、
比較出力器19に送られる。従つて給気温度To
が変化した場合には、比較出力器19内で補正理
論排気温度Tg″と現実の排気温度Tgとの偏差Δ
Tg(ΔTg=1Tg″−Tg1)が直ちに比較且つ修正
計算(排気温度変化に対応する給気量の増減計
算)され、該計算値が一定の電流制御信号として
出力部19′に伝えられる。出力部19′を出た該
制御信号は電磁弁30を介して油圧シリンダ31
によりバイパス管8内における流量制御弁8aを
開閉してバイパス空気量を調節するので、最適の
空燃比が得られる様に給気量の制御が行なわれ
る。
That is, the supply air temperature To is detected by the supply air temperature detector 17 through the temperature detection sensor 17a, and then sent to the exhaust control temperature calculator 18, where the calculator 18 calculates the theoretical exhaust temperature Tg' corresponding to the actual supply air temperature To. At the same time, the load factor of the engine 1 detected by the load factor detector 20 is sent to the exhaust control temperature calculator 18, so especially in the medium or lower load region, the load factor of the engine 1 detected by the load factor detector 20 is calculated. The corrected theoretical exhaust temperature Tg'' is calculated by further performing a correction calculation that takes into account the decrease in exhaust temperature due to a decrease in the load factor as shown in Fig. 2. Meanwhile, the exhaust temperature Tg of the engine 1 is detected by the exhaust temperature detector 15 through the exhaust temperature detection sensor 15a attached to the exhaust pipe 14, and then
It is sent to the comparison output device 19. Therefore, the supply air temperature To
changes, the comparison output device 19 calculates the deviation Δ between the corrected theoretical exhaust temperature Tg'' and the actual exhaust temperature Tg.
Tg (ΔTg = 1Tg'' - Tg1) is immediately compared and corrected (calculation of increase or decrease in supply air amount corresponding to change in exhaust gas temperature), and the calculated value is transmitted to the output section 19' as a constant current control signal.Output The control signal leaving the section 19' is transmitted to the hydraulic cylinder 31 via the solenoid valve 30.
Since the amount of bypass air is adjusted by opening and closing the flow rate control valve 8a in the bypass pipe 8, the amount of air supply is controlled so as to obtain the optimum air-fuel ratio.

本考案は概略以上の様に構成されるが、要は排
気温度が負荷率の影響を受ける領域(即ち中程度
以下の領域において、負荷率の減少に伴なう排気
温度の低下を予め考慮した補正を行なつて得られ
た理論排気温度Tg″を温度制御要素として採用
し、給気温度Toの変化を、補正された理論排気
温度Tg″からの誤差として把握し、該誤差が零に
なる様に給気量を増減制御する様にしたので、中
程度以下の負荷領域においても2元燃料デイーゼ
ルエンジンの空燃比制御性能を高めることがで
き、同エンジンの出力効率を良好に維持できる様
になつた。
The present invention is constructed as described above, but the key point is that in the region where the exhaust temperature is affected by the load factor (i.e., in the region below the medium range), the reduction in the exhaust temperature as the load factor decreases is taken into account in advance. The theoretical exhaust temperature Tg'' obtained through correction is adopted as the temperature control element, and changes in the supply air temperature To are understood as an error from the corrected theoretical exhaust temperature Tg'', and the error becomes zero. By controlling the increase/decrease of the intake air amount in a similar manner, it is possible to improve the air-fuel ratio control performance of the dual fuel diesel engine even in the medium-low load range, and to maintain the engine's output efficiency at a good level. Summer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2元燃料デイーゼルエンジンに
おける空燃比制御回路を示し、第2図は同エンジ
ン負荷率と排気温度の関係説明図、第3図は本考
案に係る同エンジンの空燃比制御回路を夫々示
す。 1……2元燃料デイーゼルエンジン、2……気
体燃料配管、3……液体燃料配管、4……空気配
管系、5……空気本管、8a……流量制御弁、1
1……給気管、15……排気温度検出器、17…
…給気温度検出器、18……排気制御温度演算
器、19……比較出力器、20……負荷率検出
器。
Fig. 1 shows an air-fuel ratio control circuit in a conventional dual-fuel diesel engine, Fig. 2 is an explanatory diagram of the relationship between engine load factor and exhaust temperature, and Fig. 3 shows an air-fuel ratio control circuit in the same engine according to the present invention. are shown respectively. DESCRIPTION OF SYMBOLS 1... Dual fuel diesel engine, 2... Gaseous fuel piping, 3... Liquid fuel piping, 4... Air piping system, 5... Air main pipe, 8a... Flow rate control valve, 1
1...Air supply pipe, 15...Exhaust temperature detector, 17...
...Supplement air temperature detector, 18...Exhaust control temperature calculator, 19...Comparison output device, 20...Load factor detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 2元燃料エンジンの空気供給系統における空気
冷却器の出口部に給気温度検出器を設けると共に
前記エンジンの燃料供給系統には負荷率検出器を
設け、更にこれら両検出器を排気制御温度演算器
に夫々連結する一方、前記エンジンの排気部には
排気温度検出器を連結し、更に該排気温度検出器
と前記排気制御温度演算器を比較出力器に連結す
ると共に、該比較出力器を、流体圧制御弁及び流
体機器の滑子クランク機構を経由して前記エンジ
ンの給気系統における給気量制御弁に連結して構
成したことを特徴とする2元燃料エンジンの空燃
比制御回路。
A supply air temperature detector is provided at the outlet of the air cooler in the air supply system of the dual fuel engine, and a load factor detector is provided in the fuel supply system of the engine, and both of these detectors are connected to an exhaust control temperature calculator. An exhaust temperature sensor is connected to the exhaust section of the engine, and the exhaust temperature sensor and the exhaust control temperature calculator are connected to a comparison output device, and the comparison output device is connected to a fluid An air-fuel ratio control circuit for a dual fuel engine, characterized in that the air-fuel ratio control circuit is connected to an air supply amount control valve in an air supply system of the engine via a pressure control valve and a slip crank mechanism of a fluid device.
JP13698181U 1981-09-14 1981-09-14 Air-fuel ratio control circuit for dual fuel engine Granted JPS5842342U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13698181U JPS5842342U (en) 1981-09-14 1981-09-14 Air-fuel ratio control circuit for dual fuel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13698181U JPS5842342U (en) 1981-09-14 1981-09-14 Air-fuel ratio control circuit for dual fuel engine

Publications (2)

Publication Number Publication Date
JPS5842342U JPS5842342U (en) 1983-03-22
JPS621399Y2 true JPS621399Y2 (en) 1987-01-13

Family

ID=29930281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13698181U Granted JPS5842342U (en) 1981-09-14 1981-09-14 Air-fuel ratio control circuit for dual fuel engine

Country Status (1)

Country Link
JP (1) JPS5842342U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755155B2 (en) * 2007-08-30 2011-08-24 三菱重工業株式会社 Integrated control method and apparatus for gas engine
KR102568487B1 (en) 2018-04-16 2023-08-21 주식회사 케이티 Apparatus and method for controlling energy storagy system

Also Published As

Publication number Publication date
JPS5842342U (en) 1983-03-22

Similar Documents

Publication Publication Date Title
JPS621399Y2 (en)
JPH0310343Y2 (en)
JPS636463Y2 (en)
JPH0137171Y2 (en)
JPS618444A (en) Air-fuel ratio control device
JPH0415976Y2 (en)
JP3082445B2 (en) Multi-fuel engine cooling system
JPH0429074Y2 (en)
JPH027249Y2 (en)
JPS60190631A (en) Air-fuel ratio control device
JPS61138840A (en) Air-fuel ratio controller for gas engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH025074Y2 (en)
JPS61192811A (en) Suctiom apparatus for engine
JPH037573Y2 (en)
JPH01313647A (en) Idle revolution speed control for internal combustion engine
JPS61138871A (en) Control method of exhaust gas recirculation in diesel engine
JPS6143954Y2 (en)
JPS63147951A (en) Method of controlling supply of fuel for internal combustion engine
JPH034738B2 (en)
JPS6336059A (en) Recirculation control device for exhaust gas of diesel engine
JPH0364637A (en) Fuel injection amount control method of internal combustion engine
JPS5828560A (en) Method of controlling air fuel ratio of spark-ignited engine
JPH0133650B2 (en)
JPS58117345A (en) Fuel-air mixture control device of reformed alcohol gas engine