JPH037573Y2 - - Google Patents
Info
- Publication number
- JPH037573Y2 JPH037573Y2 JP6742283U JP6742283U JPH037573Y2 JP H037573 Y2 JPH037573 Y2 JP H037573Y2 JP 6742283 U JP6742283 U JP 6742283U JP 6742283 U JP6742283 U JP 6742283U JP H037573 Y2 JPH037573 Y2 JP H037573Y2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- pressure
- engine
- negative pressure
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 120
- 238000002347 injection Methods 0.000 claims description 32
- 239000007924 injection Substances 0.000 claims description 32
- 239000000498 cooling water Substances 0.000 claims description 13
- 238000012937 correction Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000008859 change Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000002828 fuel tank Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【考案の詳細な説明】
[考案の技術分野]
本考案は電子制御燃料噴射装置つきエンジンの
燃料供給系の燃料圧力制御装置に係り、特にスロ
ツトルバルブの負圧信号源をプレツシヤレギユレ
ータに作用させてエンジン高温時のアイドル持続
性を向上し得るようにした燃料圧力制御装置に関
する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel pressure control device for a fuel supply system of an engine equipped with an electronically controlled fuel injection device, and particularly to a pressure regulator for controlling a negative pressure signal source of a throttle valve. The present invention relates to a fuel pressure control device that can improve the idling durability of an engine at high temperatures by acting on a fuel pressure regulator.
[考案の背景技術]
電子制御燃料噴射装置とは、キヤブレータに代
つて電気的に燃料の供給量を制御しエンジン内へ
噴射させる装置をいう。この装置では、特に燃料
流量制御精度を高めるために燃料ポンプから燃料
噴射弁までの燃料圧力を一定に保つことが必要と
なる。燃料噴射弁における燃料流量制御精度を高
めるため、吸気管内圧と燃料圧力との差圧を一定
値に保つプレツシヤレギユレータを有する低圧燃
料噴射方式の場合、燃料圧力の絶対圧はエンジン
負荷により変化し、アイドルの最低、全負荷で最
高となる。[Background Art of the Invention] An electronically controlled fuel injection device is a device that, in place of a carburetor, electrically controls the amount of fuel supplied and injects it into the engine. In this device, it is necessary to keep the fuel pressure from the fuel pump to the fuel injection valve constant, especially in order to improve the accuracy of fuel flow control. In order to improve the accuracy of fuel flow control in the fuel injection valve, in the case of a low-pressure fuel injection system that has a pressure regulator that maintains the differential pressure between the intake pipe internal pressure and the fuel pressure at a constant value, the absolute pressure of the fuel pressure is determined by the engine load. It varies depending on the conditions, with the lowest at idle and highest at full load.
ところで、燃料となるガソリンの性状は地域、
季節、メーカーによつて異なる。特に沸点の低い
成分が混入している場合、エンジンの冷却水温が
高温におけるアイドル時は、燃料流量が少なく、
新しい燃料との入れ替えが遅いため、換言すれば
燃料噴射弁付近の燃料配管内での燃料移動が遅い
ため、燃料も過熱される。この燃料過熱によりア
イドル時の低い燃料圧力に対し燃料の低沸点成分
の蒸気圧がその沸点を超えると蒸気の泡を発生
し、(特に燃料噴射弁近傍で蒸気の泡を発生す
る)、これがため燃料の流通を妨げる所謂ベーパ
ロツクを起こし、空燃比を過薄とし、アイドル持
続性を悪くすることがあつた。 By the way, the properties of gasoline used as fuel vary depending on the region,
Varies depending on season and manufacturer. In particular, if components with low boiling points are mixed in, the fuel flow rate will be low during idle when the engine cooling water temperature is high.
Since the replacement with new fuel is slow, in other words, the movement of fuel within the fuel pipe near the fuel injection valve is slow, so the fuel is also overheated. Due to this fuel overheating, when the vapor pressure of the low boiling point component of the fuel exceeds its boiling point in response to the low fuel pressure at idle, steam bubbles are generated (particularly steam bubbles are generated near the fuel injection valve). A so-called vapor lock occurs, which impedes fuel flow, resulting in an air-fuel ratio that is too lean and poor idling durability.
そこで、これを是正するため冷却水温が高温に
なるとプレツシヤレギユレータに吸気管負圧を導
く管路を、大気圧に開放する装置が過去に発表さ
れている(実開昭57−193965号公報)。これは高
温時に管路を大気圧に開放することによつて、燃
料圧力の絶対圧を全負荷時なみに上昇させ蒸気の
泡を発生しにくくして、蒸気の泡に起因するアイ
ドル持続性不良を防ぎ、一方燃料圧力上昇に伴な
う噴射量の増加傾向に対してはO2センサを用い
たクローズドループ空燃比制御装置で補正するよ
うにしたものである。 Therefore, in order to correct this, a device has been announced in the past that opens the pipe line that leads the intake pipe negative pressure to the pressure regulator to atmospheric pressure when the cooling water temperature becomes high (Utility Model Publication No. 57-193965). Publication No.). By opening the pipe line to atmospheric pressure at high temperatures, the absolute pressure of the fuel increases to the same level as under full load, making it difficult to generate steam bubbles, resulting in poor idle durability caused by steam bubbles. On the other hand, a closed-loop air-fuel ratio control device using an O 2 sensor compensates for the tendency of the injection amount to increase due to an increase in fuel pressure.
しかし、本来燃料圧力を吸気管負圧に応じて変
化させているのは、燃料噴射弁の開弁時間と噴射
量を正しく対応させるためであり、この機能を前
述のごとくクローズドループ空燃比補正で代替し
た場合、アイドル等の定常運転では補正が有効と
なるものの、急激なアクセル操作による負荷の急
変(吸気管負圧の急変)時には、O2センサによ
るクローズドループ空燃比補正装置では追従しき
れず、補正が無効となつてしまう。このため、排
気ガスの悪化、燃料の余分な消費又は追加補正制
御を招くことによる煩雑化等の問題があつた。
尚、関連する技術として、「燃料噴射式エンジン
の燃料供給装置」(実開昭57−11266号公報)が提
案されている。
However, the reason why the fuel pressure is originally changed according to the intake pipe negative pressure is to ensure that the opening time of the fuel injection valve and the injection amount correspond correctly, and this function can be achieved by using the closed-loop air-fuel ratio correction as described above. If replaced, the correction will be effective during steady operation such as idling, but when the load suddenly changes due to sudden accelerator operation (sudden change in intake pipe negative pressure), the closed-loop air-fuel ratio correction device using the O 2 sensor will not be able to keep up. The correction becomes invalid. For this reason, there have been problems such as deterioration of exhaust gas, excessive consumption of fuel, and complexity due to additional correction control.
Incidentally, as a related technique, "Fuel supply device for fuel injection type engine" (Japanese Utility Model Publication No. 11266/1983) has been proposed.
[考案の目的]
本考案は上記事情に鑑みてなされ、その目的と
するところは、エンジン高温時において、ベーパ
ロツクを有効に防止してアイドル持続性の向上を
図ると共に、急激なアクセル操作による負荷の急
変があつても排ガスの悪化、無駄な燃料消費を有
効に防止することができる燃料圧力制御装置を提
供するにある。[Purpose of the invention] The present invention was made in view of the above circumstances, and its purpose is to effectively prevent vapor lock when the engine is at high temperature, improve idling sustainability, and reduce the load caused by sudden accelerator operation. To provide a fuel pressure control device that can effectively prevent deterioration of exhaust gas and wasteful fuel consumption even if there is a sudden change.
[考案の概要]
上記目的は、本考案によれば、次のようにして
達成される。即ち、スロツトルバルブの近傍に設
けられ、スロツトルバルブとスロツトルボアとの
隙間に生じる負圧をプレツシヤーレギユレータに
導く副系路と、吸気負圧をプレツシヤレギユレー
タに導く主系路とが制御弁を介して接続されてお
り、前記制御弁はエンジン冷却水温が所定の温度
上限値に達したときに主系路を閉じ幅系路をプレ
ツシヤレギユレータに切替接続するように構成し
たことを特徴とする。これにより、エンジン温度
に応じて通常は吸気管負圧にて燃料圧力を変化さ
せ、エンジン高温時にはスロツトルバルブから伝
わる負圧信号で燃料圧力を変化させるようにし、
エンジン高温時のアイドル持続性を可及的に向上
するようにしたものである。[Summary of the invention] According to the invention, the above object is achieved as follows. In other words, there is a sub-path installed near the throttle valve that guides the negative pressure generated in the gap between the throttle valve and the throttle bore to the pressure regulator, and a main path that guides the intake negative pressure to the pressure regulator. The system is connected to the pressure regulator via a control valve, and the control valve closes the main system when the engine cooling water temperature reaches a predetermined temperature upper limit, and switches and connects the width system to the pressure regulator. It is characterized by being configured to do so. As a result, the fuel pressure is normally changed by the intake pipe negative pressure according to the engine temperature, and when the engine temperature is high, the fuel pressure is changed by the negative pressure signal transmitted from the throttle valve.
This is designed to improve as much as possible the idling durability when the engine is at high temperature.
[考案の実施例]
以下、本考案に係る燃料噴射エンジンの燃料供
給系の燃料圧力制御装置の好適一実施例を添付図
面に基いて説明する。[Embodiment of the invention] Hereinafter, a preferred embodiment of a fuel pressure control device for a fuel supply system of a fuel injection engine according to the invention will be described with reference to the accompanying drawings.
第1図は本考案の一実施例を示す電子制御燃料
噴射エンジンの燃料圧力制御装置のシステム図で
ある。 FIG. 1 is a system diagram of a fuel pressure control device for an electronically controlled fuel injection engine showing one embodiment of the present invention.
図示する如く、1は燃料タンク、2は燃料ポン
プ、3は燃料噴射弁であり、燃料は燃料タンク1
より燃料ポンプ2に吸入され圧送される。そし
て、燃料フイルタ4でゴミや水分が濾過された
後、燃料噴射弁3へ流れて行き、燃料噴射弁3の
先端より、各気筒の吸気管5内へ同時噴射され
る。また、噴射されずに残つた燃料は、プレツシ
ヤレギユレータ6を通つて、燃料タンク1内に戻
る。上記プレツシヤレギユレータ6は燃料噴射弁
3に加わる燃料圧力を調整するもので、ダイヤフ
ラム7が内部をダンパ室8と燃料室9との区画形
成している。ダンパ室8にはダイヤフラム7を押
し下げ燃料室9の出口を塞ぐスプリング10と、
このスプリング10の力を調整する負圧信号が入
る制御ポート11とが設けられている。燃料はプ
レツシヤレギユレータ6の入口から燃料室9に入
り、燃料圧力が高ければスプリング10の力に打
ち勝つてダイヤフラム7を押し上げ、出口を開い
て燃料タンク1へ戻るが、圧力が低ければ出口は
塞がれたままとなり燃料タンク1へは戻らないよ
うになつており、この作用により燃料ポンプ2か
ら燃料噴射弁3までの燃料圧力が一定に保たれ
る。 As shown in the figure, 1 is a fuel tank, 2 is a fuel pump, and 3 is a fuel injection valve.
The fuel is sucked into the fuel pump 2 and fed under pressure. After dust and moisture are filtered by the fuel filter 4, the fuel flows to the fuel injection valve 3, and is simultaneously injected from the tip of the fuel injection valve 3 into the intake pipe 5 of each cylinder. Further, the remaining fuel that has not been injected passes through the pressure regulator 6 and returns into the fuel tank 1. The pressure regulator 6 is used to adjust the fuel pressure applied to the fuel injection valve 3, and a diaphragm 7 divides the interior into a damper chamber 8 and a fuel chamber 9. The damper chamber 8 includes a spring 10 that pushes down the diaphragm 7 and closes the outlet of the fuel chamber 9.
A control port 11 is provided to receive a negative pressure signal to adjust the force of the spring 10. Fuel enters the fuel chamber 9 from the inlet of the pressure regulator 6, and if the fuel pressure is high, it overcomes the force of the spring 10 and pushes up the diaphragm 7, opens the outlet and returns to the fuel tank 1, but if the pressure is low, the fuel enters the fuel chamber 9. The outlet remains blocked and does not return to the fuel tank 1, and this action keeps the fuel pressure from the fuel pump 2 to the fuel injection valve 3 constant.
上記制御ポート11には吸気管5から分岐形成
した主系路12が接続され、前記ダンパ室8内に
送る負圧信号をこの主系路12から伝わつて来る
吸気管負圧で形成して、該吸気管負圧に応じてス
プリング10の力を調整し燃料圧力を変化させる
ようになつている。また、上記制御ポート11に
は吸気流量を制御するスロツトルバルブ24の直
近で且つスロツトルバルブ24より上流側位置の
吸気管5より分岐形成した副系路14が接続さ
れ、この副系路14を介してスロツトルバルブ2
4とスロツトルボア25との隙間に発生する負圧
信号を前記ダンパ室8内に伝えるように構成され
ている。このスロツトルバルブ24の負圧信号
は、アイドル時は吸気管負圧によりも大気圧に近
く、スロツトル開弁と共に急速に吸気管内圧に近
付く特性を有している。副系路14と上記主系路
12とは共に吸気管5より分岐形成されている
が、幅系路14は上述のようにスロツトルバルブ
24よりも上流側に位置し、主系路12はスロツ
トルバルブ24よりも下流側に位置している点で
異なる。 A main line 12 branched from the intake pipe 5 is connected to the control port 11, and a negative pressure signal sent to the damper chamber 8 is formed by the intake pipe negative pressure transmitted from the main line 12. The force of the spring 10 is adjusted in accordance with the intake pipe negative pressure to change the fuel pressure. Further, a sub-system path 14 is connected to the control port 11, which is formed by branching from the intake pipe 5 in the vicinity of the throttle valve 24 that controls the intake flow rate and at a position upstream of the throttle valve 24. Throttle valve 2 through
The damper chamber 8 is configured to transmit a negative pressure signal generated in the gap between the damper chamber 4 and the throttle bore 25 to the inside of the damper chamber 8. The negative pressure signal of the throttle valve 24 has a characteristic that during idling, it is closer to atmospheric pressure than the intake pipe negative pressure, and rapidly approaches the intake pipe internal pressure as the throttle valve opens. The sub-system path 14 and the main system path 12 are both branched from the intake pipe 5, but the width path 14 is located upstream of the throttle valve 24 as described above, and the main system path 12 is The difference is that it is located downstream of the throttle valve 24.
プレツシヤレギユレータ6へ吸気管負圧を導く
上記主系路12と、スロツトルバルブ24とスロ
ツトルボア25との隙間に発生する負圧信号を導
く上記副系路14との接続部に、その作動に伴な
い該主系路12を閉じ上記プレツシヤレギユレー
タ66へ吸気管負圧とは異なる副系路14からの
負圧信号を導く為の制御弁13が介設されてい
る。この制御弁13は、例えば、切替信号aによ
り作動し、プレツシヤレギユレータ6の制御ポー
ト11を、主系路12あるいは副系路14へ選択
的に接続する電磁三方弁により構成される。上記
切替信号aは、エンジン温度を間接的に検知する
ために設けられた温度センサ、たとえば吸気管5
又はエンジン本体15の水冷ジヤケツト16に設
けられた温度センサ17からの検知信号に基いて
形成される。すなわち、温度センサ17から得ら
れる検知信号は、他の各種センサ、例えばエアフ
ローセンサ18、スロツトルバルブスイツチ1
9、O2センサ20、イグニツシユンキースイツ
チ21、車速センサ22等の信号と共に、これら
の信号を処理する制御部23に送られる。この制
御部23は、上記温度センサ17により検知され
るエンジン温度が所定の上限温度を超えた場合、
即ち冷却水が高温時の場合、プレツシヤレギユレ
ータ6の制御ポート11を副系路14へ接続する
ON切替信号を出力し、逆に冷却水温が低温時の
場合にはプレツシヤレギユレータ6の制御ポート
11を主系路12へ接続するOFF切替信号を出
力するように制御弁13を作動させる。 At the connection point between the main line 12 that guides the intake pipe negative pressure to the pressure regulator 6 and the auxiliary line 14 that guides the negative pressure signal generated in the gap between the throttle valve 24 and the throttle bore 25, A control valve 13 is interposed to close the main line 12 upon its operation and to guide a negative pressure signal from the sub line 14, which is different from the intake pipe negative pressure, to the pressure regulator 66. . This control valve 13 is configured, for example, by an electromagnetic three-way valve that is activated by a switching signal a and selectively connects the control port 11 of the pressure regulator 6 to the main line 12 or the sub-line 14. . The switching signal a is generated by a temperature sensor provided to indirectly detect the engine temperature, such as the intake pipe 5.
Alternatively, it is formed based on a detection signal from a temperature sensor 17 provided in the water cooling jacket 16 of the engine body 15. That is, the detection signal obtained from the temperature sensor 17 is transmitted to various other sensors such as the air flow sensor 18 and the throttle valve switch 1.
9, the signals from the O 2 sensor 20, the ignition switch 21, the vehicle speed sensor 22, etc. are sent to the control unit 23, which processes these signals. This control unit 23 controls, when the engine temperature detected by the temperature sensor 17 exceeds a predetermined upper limit temperature,
That is, when the cooling water is at a high temperature, the control port 11 of the pressure regulator 6 is connected to the sub-system path 14.
The control valve 13 is operated to output an ON switching signal and, conversely, to output an OFF switching signal that connects the control port 11 of the pressure regulator 6 to the main line 12 when the cooling water temperature is low. let
なお、上記O2センサ20は、クローズドルー
プ空燃比制御に用いられ、燃料圧力上昇に伴う噴
射量の増加傾向を、O2センサ20からの検知信
号に基いて制御部23から燃料噴射弁3の開弁時
間を制御するパルスを出すことにより、補正でき
るようになつている。 The O 2 sensor 20 is used for closed-loop air-fuel ratio control, and the control unit 23 controls the fuel injection valve 3 based on the detection signal from the O 2 sensor 20 to detect the tendency of the injection amount to increase as the fuel pressure increases. This can be corrected by issuing a pulse that controls the valve opening time.
以上の構成よりなる本装置の作用について述べ
る。。 The operation of this device having the above configuration will now be described. .
エンジン冷却水温が低温時、すなわち温度セン
サ17により検知されるエンジン温度が所定の温
度上限値を下回つている時、制御部23は低水温
を検知してOFF切替信号を制御弁13に送り、
プレツシヤレギユレータ6の制御ポート11を主
系路12に接続する。制御ポート11が主系路1
2に接続されると、プレツシヤレギユレータ6に
は吸気管負圧による負圧信号が加わり、燃料圧力
を吸気管負圧に応じて変化させる。したがつて、
このような通常水温時にあつては燃料圧力と吸気
管負圧との差圧が一定となるので、燃料噴射弁の
開弁時間と噴射量とを正しく対応させることがで
きる。エンジン冷却水温が高温時、すなわち温度
センサ17により検知されるエンジン温度が所定
の温度上限値を超えた時、従来では、プレツシヤ
レギユレータ6の制御ポート11を大気に開放さ
せ、第2図に示す如く、燃料圧力の絶対値をエン
ジン負荷状態に拘わらず常時一定にする結果、第
3図に示す如く、燃料圧力と吸気管負圧との差圧
がエンジン負荷の増大と共に通常水温時における
差圧に漸近することとなるので、特に急激なアク
セル操作による負荷の急変があると、O2センサ
20によるクロースドループ空燃比補正が追従で
きなくなり、排気ガスの悪化や燃料の余分な消費
をもたらしていた。これに対して本考案では、プ
レツシヤレギユレータ6の制御ポート11を幅系
路14に接続するのでプレツシヤレギユレータ6
にはそれまで加わつていた吸気管負圧に代つてス
ロツトルバルブ24の負圧信号が加わる。このス
ロツトルバルブ24の負圧信号は既述のようにア
イドルで大気圧、スロツトル開度が大となるに従
い吸気管負圧に近付く特性をもつているため、プ
レツシヤレギユレータ6で調整される燃料圧力は
第2図に示す如く、通常水温時の特性から本考案
の高水温時の特性へと変化する。即ち、アイドル
時は燃料圧力の絶対値を上昇させベーパロツクを
防止してアイドル持続性を向上させる。この場合
において、燃料圧力の上昇により燃料噴射弁3の
流量特性は増加するが、O2センサ20によるク
ローズドループシステムの作用により、自動的に
流量の補正がなされる。一方、アクセル急変によ
る過渡状態においては、スロツトルバルブ24の
負圧信号の特性上、スロツトル開弁と共に急速に
通常作動の正規燃料圧力に近付くことになるの
で、燃料噴射弁3の開弁時間と噴射量を正しく対
応させることができ、排気ガスの悪化、無駄な燃
料消費を有効、且つ容易に防止することができ
る。また、この場合、部分負荷領域では、アイド
ルより燃料圧力が下がる領域も有するが、燃料消
費がアイドルより多い分、燃料噴射弁3近傍での
燃料配管中の流れが早く、単位流量当りの加熱量
を減少すること、及びフアン風量増加或いは走行
風によるエンジンルーム冷却によりベーパロツク
はアイドル時より起こりにくくなつており問題と
はならない。 When the engine cooling water temperature is low, that is, when the engine temperature detected by the temperature sensor 17 is below a predetermined temperature upper limit, the control section 23 detects the low water temperature and sends an OFF switching signal to the control valve 13,
The control port 11 of the pressure regulator 6 is connected to the main line 12. Control port 11 is main path 1
2, a negative pressure signal based on the intake pipe negative pressure is applied to the pressure regulator 6, and the fuel pressure is changed in accordance with the intake pipe negative pressure. Therefore,
At such normal water temperature, the differential pressure between the fuel pressure and the intake pipe negative pressure is constant, so the opening time of the fuel injection valve and the injection amount can be made to correspond correctly. Conventionally, when the engine cooling water temperature is high, that is, when the engine temperature detected by the temperature sensor 17 exceeds a predetermined upper temperature limit, the control port 11 of the pressure regulator 6 is opened to the atmosphere, and the second As shown in the figure, as a result of keeping the absolute value of the fuel pressure constant regardless of the engine load condition, the differential pressure between the fuel pressure and the intake pipe negative pressure increases as the engine load increases, as shown in Figure 3. Therefore, if there is a sudden change in load due to a particularly rapid accelerator operation, the closed-loop air-fuel ratio correction by the O 2 sensor 20 will not be able to follow up, resulting in worsening of exhaust gas and excessive fuel consumption. It was bringing. In contrast, in the present invention, since the control port 11 of the pressure regulator 6 is connected to the width line 14, the pressure regulator 6
A negative pressure signal from the throttle valve 24 is applied instead of the intake pipe negative pressure that had been applied until then. As mentioned above, the negative pressure signal of the throttle valve 24 has a characteristic that it is atmospheric pressure at idle and approaches the intake pipe negative pressure as the throttle opening increases, so it is adjusted by the pressure regulator 6. As shown in FIG. 2, the fuel pressure applied changes from the characteristic at normal water temperature to the characteristic at high water temperature according to the present invention. That is, during idling, the absolute value of fuel pressure is increased to prevent vapor lock and improve idling durability. In this case, the flow rate characteristic of the fuel injection valve 3 increases due to the increase in fuel pressure, but the flow rate is automatically corrected by the action of the closed loop system using the O 2 sensor 20. On the other hand, in a transient state caused by a sudden change in the accelerator pedal, due to the characteristics of the negative pressure signal of the throttle valve 24, the fuel pressure rapidly approaches the normal operating normal fuel pressure as soon as the throttle opens. Injection amounts can be matched correctly, and deterioration of exhaust gas and wasteful fuel consumption can be effectively and easily prevented. In this case, in the partial load region, there is also a region where the fuel pressure is lower than that at idle, but since the fuel consumption is higher than at idle, the flow in the fuel pipe near the fuel injection valve 3 is fast, and the amount of heating per unit flow rate is By reducing the engine speed and cooling the engine room by increasing the airflow rate of the fan or cooling the engine room by the running wind, vapor lock becomes less likely to occur than when the engine is idling, so it is not a problem.
このように、プレツシヤレギユレータ6の制御
ポート11に加わる信号を、制御弁13を介して
エンジン冷却水温に応じ、通常は吸気管負圧源、
冷却水高温時には、スロツトルバルブ24の負荷
信号源に切り替えるようにしたので、高水温時の
定常のアイドル中は燃圧を上昇させてベーパロツ
クを有効に防止しアイドル持続性の向上を図るこ
とができるとともに、アクセル急変による過度状
態にあつても排気ガスの悪化や無駄な燃料消費を
有効に防止することができる。 In this way, a signal applied to the control port 11 of the pressure regulator 6 is sent via the control valve 13 to the intake pipe negative pressure source, depending on the engine cooling water temperature.
When the coolant temperature is high, the load signal source is switched to the throttle valve 24, so during steady idling when the water temperature is high, the fuel pressure can be increased to effectively prevent vapor lock and improve idling sustainability. At the same time, even in an excessive state due to a sudden change in the accelerator pedal, deterioration of exhaust gas and wasteful fuel consumption can be effectively prevented.
なお、上記実施例では、高水温時の燃料圧力上
昇に伴う燃料噴射弁3を流量補正としてO2セン
サ20によるクローズドループ補正装置を採用し
たが、これによらず冷却水温による流量補正を燃
料圧力通常時と上昇時とで別なデータを予め制御
部23に記憶させ、この記憶データに基いて燃料
噴射弁3の流量補正をするようにしてもよい。ま
た上記実施例においては燃料圧力の上昇をアイド
ル時のみに限定するため、制御信号の切替信号を
スロツトルバルブスイツチ19のアイドル接点信
号と温度センサ17の検出信号とのANDから形
成するようにしてもよい。 In the above embodiment, a closed-loop correction device using the O 2 sensor 20 is used to correct the flow rate of the fuel injection valve 3 due to an increase in fuel pressure at high water temperature. It is also possible to store different data in advance in the control unit 23 for normal times and for rising times, and to correct the flow rate of the fuel injection valve 3 based on this stored data. Further, in the above embodiment, in order to limit the increase in fuel pressure only to the idle time, the switching signal of the control signal is formed from the AND of the idle contact signal of the throttle valve switch 19 and the detection signal of the temperature sensor 17. Good too.
第4図は第1図の実施例の変形例を示すもの
で、プレツシヤレギユレータ6の制御ポート11
を、エンジン冷却水温に応じて、制御弁13を介
して吸気管負圧を導く主系路12又はスロツトル
バルブ24の負圧信号を導く副系路14と選択的
に接続する代りに、制御ポート11に至る主系路
12に直接副系路14を接続し、水温検知式負圧
弁31の採用により高冷却水温時のみ、プレツシ
ヤレギユレータ6にスロツトルバルブ24の負圧
信号を流し込むように構成したものである。この
場合、燃料圧力の上昇による空燃比の濃化傾向に
対し、吸気管負圧源より主系路12を伝わつて流
入する空気がキヤンセルする方向に働き、同図に
示す主系路12に設けたオリフイス30径を適切
に選ぶことにより、クローズドループ空燃比補正
装置に依存することなく、空燃比を適切に維持す
ることができる。また、同時に燃料圧力上昇によ
る噴射量増加と吸気管負圧源より流入する空気と
で全体の吸入混合気量が増加するため、アイドル
回転が上昇し、クーリンフアンの回転数も比例し
て上昇するため、フアン風量が増加して冷却能力
が向上する利点がある。なお、上記オリフイス3
0は、各配管径、長さを適切に選ぶことにより省
略も可能である。 FIG. 4 shows a modification of the embodiment shown in FIG. 1, in which the control port 11 of the pressure regulator 6
, depending on the engine cooling water temperature, instead of selectively connecting it to the main line 12 which leads the intake pipe negative pressure via the control valve 13 or the sub-line 14 which leads the negative pressure signal of the throttle valve 24. The auxiliary line 14 is directly connected to the main line 12 leading to the port 11, and by employing a water temperature detection type negative pressure valve 31, a negative pressure signal from the throttle valve 24 is sent to the pressure regulator 6 only when the cooling water temperature is high. It is designed to be poured. In this case, the air flowing from the intake pipe negative pressure source through the main system path 12 acts in a direction to cancel the tendency of the air-fuel ratio to become enriched due to an increase in fuel pressure. By appropriately selecting the diameter of the orifice 30, the air-fuel ratio can be maintained appropriately without relying on a closed-loop air-fuel ratio correction device. At the same time, the overall intake air-fuel mixture volume increases due to the increase in injection volume due to the increase in fuel pressure and the air flowing in from the intake pipe negative pressure source, so the idle speed increases and the rotation speed of the cooling fan increases proportionally. Therefore, there is an advantage that the fan air volume increases and the cooling capacity improves. In addition, the above orifice 3
0 can be omitted by appropriately selecting the diameter and length of each pipe.
また、上記両実施例においては、エンジン温度
の検出部位として、共に冷却水を選んだが、必ず
しもこれに限定されず、特に第5図から明らかな
ように吸気温度もエンジンの負荷状態に応じて冷
却水温と同様な傾向を示すことから、冷却水温を
検知する代りに吸気温度を検出するようにしても
よい。また、エンジンの雰囲気温度を検知するよ
うにしてもよいことは勿論である。 In addition, in both of the above embodiments, the cooling water was selected as the engine temperature detection site, but this is not necessarily the case.As is clear from FIG. 5, the intake air temperature is also cooled depending on the engine load condition. Since it shows the same tendency as the water temperature, the intake air temperature may be detected instead of the cooling water temperature. Of course, the ambient temperature of the engine may also be detected.
[考案の効果]
以上要するに本考案によれば次のような優れた
効果を発揮する。[Effects of the invention] In summary, the present invention provides the following excellent effects.
(1) エンジン高温時における通常のアイドル中は
燃料圧力を上昇させてベーパロツクを防ぐこと
ができるので、エンジン高温時のアイドル持続
性を可及的に向上させることができると共に、
アクセル急変による過渡状態においてはスロツ
トル開弁と共に急速に通常作動の正規燃料圧力
に近付けることができるので排気ガスの悪化や
無駄な燃料消費を有効に防止できる。(1) During normal idling when the engine is at high temperature, the fuel pressure can be increased to prevent vapor lock, so it is possible to improve the idling sustainability when the engine is at high temperature as much as possible.
In a transient state caused by a sudden change in the accelerator pedal, the throttle valve can be opened and the fuel pressure can be quickly brought close to the normal fuel pressure for normal operation, so deterioration of exhaust gas and wasteful fuel consumption can be effectively prevented.
(2) 急速な燃料圧力上昇に伴う噴射量の増加に対
する補正を複雑な補正制御を行うことなく、単
に、スロツトルバルブ近傍に発生する負圧信号
をプレツシヤレギユレータに導くという簡単な
構成のみで行うことができる。(2) Correction of the increase in injection amount due to a rapid rise in fuel pressure can be made simply by guiding the negative pressure signal generated near the throttle valve to the pressure regulator, without performing complex correction control. This can be done by configuration alone.
第1図は本考案に係る燃料噴射エンジンの燃料
供給系の燃料圧力制御装置の好適一実施例を示す
システム図、第2図はエンジン負荷に対して従来
と本考案との燃料圧力を比較した燃料絶対圧特性
図、第3図は同じく従来と本考案との燃料圧力と
吸気管負圧との差圧を比較した差圧特性図、第4
図は本考案に係る燃料圧力制御装置の他の実施例
を示すシステム図、第5図はエンジン負荷に対す
る各種部位の温度特性図である。
尚、図中1は燃料タンク、2は燃料ポンプ、3
は燃料噴射弁、5は吸気管、6はプレツシヤレギ
ユレータ、11は制御ポート、12は主系路、1
3は制御弁、14は副系路、15はエンジン本
体、16は水冷ジヤケツト、17は温度センサ、
20はO2センサ、23は制御部、24はスロツ
トルバルブ、25はスロツトルボアである。
Fig. 1 is a system diagram showing a preferred embodiment of the fuel pressure control device for the fuel supply system of a fuel injection engine according to the present invention, and Fig. 2 compares the fuel pressure of the conventional and the present invention with respect to engine load. Figure 3 is a fuel absolute pressure characteristic diagram, and Figure 4 is a differential pressure characteristic diagram comparing the differential pressure between fuel pressure and intake pipe negative pressure between the conventional and the present invention.
The figure is a system diagram showing another embodiment of the fuel pressure control device according to the present invention, and FIG. 5 is a diagram showing temperature characteristics of various parts with respect to engine load. In the figure, 1 is the fuel tank, 2 is the fuel pump, and 3 is the fuel tank.
1 is a fuel injection valve, 5 is an intake pipe, 6 is a pressure regulator, 11 is a control port, 12 is a main system path, 1
3 is a control valve, 14 is a sub-system, 15 is an engine body, 16 is a water cooling jacket, 17 is a temperature sensor,
20 is an O 2 sensor, 23 is a control section, 24 is a throttle valve, and 25 is a throttle bore.
Claims (1)
ルバルブとスロツトルボアとの隙間に生じる負圧
をプレツシヤーレギレータに導く副系路と、吸気
負圧をプレツシヤレギレータに導く主系路とが制
御弁を介して接続されており、前記制御弁はエン
ジン冷却水温が所定の温度上限値に達したときに
主系路を閉じ副系路をプレツシヤレギユレータに
切替接続するように構成したことを特徴とする燃
料噴射エンジンの燃料供給系の燃料圧力制御装
置。 A sub-path is provided near the throttle valve and leads the negative pressure generated in the gap between the throttle valve and the throttle bore to the pressure regulator, and a main path leads the intake negative pressure to the pressure regulator. The control valve is connected through a control valve, and the control valve is configured to close the main path and switch the sub-system path to the pressure regulator when the engine cooling water temperature reaches a predetermined temperature upper limit value. A fuel pressure control device for a fuel supply system of a fuel injection engine, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6742283U JPS59174340U (en) | 1983-05-07 | 1983-05-07 | Fuel pressure control device for fuel supply system of fuel injection engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6742283U JPS59174340U (en) | 1983-05-07 | 1983-05-07 | Fuel pressure control device for fuel supply system of fuel injection engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59174340U JPS59174340U (en) | 1984-11-21 |
JPH037573Y2 true JPH037573Y2 (en) | 1991-02-25 |
Family
ID=30197611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6742283U Granted JPS59174340U (en) | 1983-05-07 | 1983-05-07 | Fuel pressure control device for fuel supply system of fuel injection engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59174340U (en) |
-
1983
- 1983-05-07 JP JP6742283U patent/JPS59174340U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59174340U (en) | 1984-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0137188B1 (en) | Engine induction system | |
CA1182354A (en) | Carburetor with means for adjusting the idling speed | |
US4563990A (en) | Fuel supply control system for engine carburetors | |
JP2885936B2 (en) | Air supply system for internal combustion engines | |
JPH0696997B2 (en) | Engine controller | |
JPH037573Y2 (en) | ||
JPS6248055B2 (en) | ||
CA2007857C (en) | Fuel injection control apparatus for internal combustion engine | |
JP2987675B2 (en) | Intake control device for internal combustion engine | |
JP3284718B2 (en) | Opening / closing control device for swirl control valve | |
JP2621032B2 (en) | Fuel injection control device | |
JPH055474A (en) | Fuel pressure control device for engine | |
JPH1182181A (en) | Exhaust control device for internal combustion engine | |
JP3235313B2 (en) | Open / close control device for swirl control valve | |
JPS6139106Y2 (en) | ||
KR950011691B1 (en) | Fuel injecting pressure controlling apparatus | |
JPH08189391A (en) | Fuel feed device for internal combustion engine | |
JP3328887B2 (en) | Operation control device for gaseous fuel engine | |
JPH0734194Y2 (en) | Auxiliary air amount control device for internal combustion engine | |
JPH0227167Y2 (en) | ||
JPS6340266B2 (en) | ||
JPS5945825B2 (en) | Internal combustion engine speed control device | |
KR830002147A (en) | Control device of carburetor type internal combustion engine | |
JPH06200834A (en) | Air-fuel ratio control device of internal combustion engine | |
KR19980028046A (en) | Exhaust gas return supply control device for reducing exhaust gas emission |