JPH06200834A - Air-fuel ratio control device of internal combustion engine - Google Patents

Air-fuel ratio control device of internal combustion engine

Info

Publication number
JPH06200834A
JPH06200834A JP4361527A JP36152792A JPH06200834A JP H06200834 A JPH06200834 A JP H06200834A JP 4361527 A JP4361527 A JP 4361527A JP 36152792 A JP36152792 A JP 36152792A JP H06200834 A JPH06200834 A JP H06200834A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
bypass
control valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4361527A
Other languages
Japanese (ja)
Inventor
Takahiro Muramatsu
高浩 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP4361527A priority Critical patent/JPH06200834A/en
Publication of JPH06200834A publication Critical patent/JPH06200834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent the increase of NOx and to suppress the torque variation by composing the system to convert the air-fuel ratio instantly by a control means, when the air-fuel ratio of a mixture is converted from a lean air-fuel ratio scope to a logical air-fuel ratio scope, or reversely, and at the same time, to control a bypass air flow control valve and an EGR control valve. CONSTITUTION:A bypass passage 38 is provided to a suction passage 18, and the bypass air flow is controlled by a flow control valve 40. And an EGR passage 54 to recirculate a part of the exhaust gas of an internal combustion engine 2, and an EGR control valve 60 to control the recirculating exhaust gas are provided to the suction passage 18. When the air-fuel ratio is converted from a lean air-fuel ratio scope to a logical air-fuel ratio scope, the mixing ratio is converted temporarily by a controller 28, and at the same time, a flow control valve 44 is controlled to fully close, and the EGR control valve is controlled to open and close according to the operating condition. And when the air-fuel ratio is converted reversely to the above condition, the flow control valve 44 is opened or closed according to the operating condition, while the EGR control valve 60 is controlled to fully close. By such a control, the air-fuel ratio scope to generate plenty of NOx is never used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は内燃機関の空燃比制御
装置に係り、特に混合気の空燃比を希薄空燃比域から理
論空燃比域に変化させる際や理論空燃比域から希薄空燃
比域に変化させる際の急激なトルク変動を抑制し得てN
Oxの増加を防止し得る内燃機関の空燃比制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine, and more particularly, when changing the air-fuel ratio of an air-fuel mixture from a lean air-fuel ratio range to a stoichiometric air-fuel ratio range or from a stoichiometric air-fuel ratio range to a lean air-fuel ratio range. It is possible to suppress the sudden torque fluctuation when changing to N
The present invention relates to an air-fuel ratio control device for an internal combustion engine that can prevent an increase in Ox.

【0002】[0002]

【従来の技術】近時、車両に搭載される内燃機関には、
混合気の空燃比を理論空燃比域(リーン域)及び希薄空
燃比域(ストイキ域)に制御する空燃比制御装置を設け
たものがある。このような内燃機関の空燃比制御装置と
しては、図11に示すものがある。図において、402
は内燃機関、404は吸気通路、406は排気通路、4
08はスロットル弁、410は燃料噴射弁である。燃料
噴射弁410は、空燃比制御装置412の制御手段たる
御部414に接続されている。
2. Description of the Related Art Recently, internal combustion engines mounted on vehicles are
There is an air-fuel ratio control device for controlling the air-fuel ratio of the air-fuel mixture into a stoichiometric air-fuel ratio range (lean range) and a lean air-fuel ratio range (stoichiometric range). An air-fuel ratio control device for such an internal combustion engine is shown in FIG. In the figure, 402
Is an internal combustion engine, 404 is an intake passage, 406 is an exhaust passage, 4
Reference numeral 08 is a throttle valve, and 410 is a fuel injection valve. The fuel injection valve 410 is connected to the control unit 414 that is a control unit of the air-fuel ratio control device 412.

【0003】制御部414には、スロットル弁開度を検
出する開度センサ416と、吸気圧力を検出する圧力セ
ンサ418と、機関回転数を検出する回転数センサ42
0と、排気の空燃比を検出する空燃比センサ422と、
を接続している。制御部414は、各センサ416〜4
22の検出信号により燃料噴射弁410を駆動制御し、
空燃比センサ422の検出信号に基づき混合気の空燃比
を理論空燃比域及び希薄側空燃比域における目標値にな
るように制御する。
The control unit 414 includes an opening sensor 416 for detecting the throttle valve opening, a pressure sensor 418 for detecting the intake pressure, and a rotation speed sensor 42 for detecting the engine speed.
0, and an air-fuel ratio sensor 422 that detects the air-fuel ratio of exhaust gas,
Are connected. The control unit 414 controls the sensors 416-4.
Drive control of the fuel injection valve 410 by the detection signal of 22,
Based on the detection signal of the air-fuel ratio sensor 422, the air-fuel ratio of the air-fuel mixture is controlled to be the target value in the stoichiometric air-fuel ratio range and the lean side air-fuel ratio range.

【0004】前記内燃機関402には、吸気通路404
にバイパス空気を供給するバイパス通路424を設け、
このバイパス通路424のバイパス空気の流量を制御す
る流量制御弁426を設けている。流量制御弁426に
は、一端側を吸気通路402に連通するバイパス用導圧
通路428の他端側を連通している。バイパス用導圧通
路428には、バイパス用切換弁430を設けている。
バイパス用切換弁430は、前記制御部414に接続さ
れている。
The internal combustion engine 402 has an intake passage 404.
A bypass passage 424 for supplying bypass air to the
A flow rate control valve 426 is provided to control the flow rate of bypass air in the bypass passage 424. The flow control valve 426 communicates with the other end of a bypass pressure guiding passage 428 having one end communicating with the intake passage 402. A bypass switching valve 430 is provided in the bypass pressure guiding passage 428.
The bypass switching valve 430 is connected to the control unit 414.

【0005】また、この内燃機関402には、吸気通路
404に排気の一部を還流するEGR通路432を設
け、このEGR通路432の還流される排気の流量を制
御するEGR制御弁434を設けている。EGR制御弁
434には、一端側をバイパス用切換弁430よりも吸
気通路402側のバイパス用導圧通路428に連通する
EGR用導圧通路436の他端側を連通している。EG
R用導圧通路436には、EGR用切換弁438を設け
ている。EGR用切換弁438は、前記制御部414に
接続されている。
Further, the internal combustion engine 402 is provided with an EGR passage 432 for recirculating a part of exhaust gas in the intake passage 404, and an EGR control valve 434 for controlling a flow rate of recirculated exhaust gas in the EGR passage 432. There is. One end of the EGR control valve 434 is connected to the other end of an EGR pressure guiding passage 436 that communicates with a bypass pressure guiding passage 428 on the intake passage 402 side of the bypass switching valve 430. EG
An EGR switching valve 438 is provided in the R pressure guiding passage 436. The EGR switching valve 438 is connected to the control unit 414.

【0006】制御部414は、バイパス用・EGR用切
換弁430・438を駆動制御して流量制御弁426及
びEGR制御弁434に吸気負圧及び大気圧を給排し、
バイパス空気の流量及び還流される排気の流量を制御す
る。
The control unit 414 drives and controls the bypass / EGR switching valves 430 and 438 to supply / exhaust the intake negative pressure and the atmospheric pressure to / from the flow rate control valve 426 and the EGR control valve 434, respectively.
It controls the flow rate of bypass air and the flow rate of recirculated exhaust gas.

【0007】このような空燃比制御装置としては、特開
昭63−186945号公報や特開平4−36052号
公報に開示されるものがある。特開昭63−18694
5号公報に開示される空燃比制御装置は、目標出力値と
空燃比センサの出力値との差が所定範囲内にある場合
に、目標出力値の変化量が所定以上且つ前記目標値の変
化量と空燃比センサの出力値の変化量との差が所定値以
下のときには、空燃比センサが活性状態であると判定す
るものである。
As such an air-fuel ratio control device, there are those disclosed in JP-A-63-186945 and JP-A-4-36052. JP-A-63-18694
The air-fuel ratio control device disclosed in Japanese Patent Publication No. 5 has a change amount of the target output value equal to or more than a predetermined value and a change in the target value when the difference between the target output value and the output value of the air-fuel ratio sensor is within a predetermined range. When the difference between the amount and the change amount of the output value of the air-fuel ratio sensor is less than or equal to a predetermined value, it is determined that the air-fuel ratio sensor is in the active state.

【0008】また、特開平4−36052号公報に開示
される空燃比制御装置は、吸気通路にバイパス空気を供
給するバイパス通路を設けるとともにバイパス空気の流
量を制御する流量制御弁を設け、空燃比を理論空燃比域
のフィードバック制御から希薄空燃比域のフィードバッ
ク制御に切り換える際に、冷却水温度がフィードバック
開始水温以上、理論空燃比域のフィードバック制御以外
のモード、空燃比センサが活性化且つ正常である条件を
満足する場合には前記流量制御弁を開制御し、前記条件
を満足しない場合には前記流量制御弁を閉制御すること
により、理論空燃比域のフィードバック制御から希薄空
燃比域のフィードバック制御に切り換えた際のトルクの
減少を防止するみものである。
Further, the air-fuel ratio control device disclosed in Japanese Patent Application Laid-Open No. 4-36052 is provided with a bypass passage for supplying bypass air to the intake passage and a flow control valve for controlling the flow rate of the bypass air. When switching from the stoichiometric air-fuel ratio feedback control to the lean air-fuel ratio feedback control, the cooling water temperature is higher than the feedback start water temperature, the mode other than the stoichiometric air-fuel ratio feedback control, the air-fuel ratio sensor is activated and normal. When a certain condition is satisfied, the flow control valve is controlled to be opened, and when the condition is not satisfied, the flow control valve is controlled to be closed, so that the feedback control from the stoichiometric air-fuel ratio range to the feedback of the lean air-fuel ratio range is performed. This is to prevent a decrease in torque when switching to control.

【0009】[0009]

【発明が解決しようとする課題】ところで、内燃機関の
トルクは、図12に示す如く、同じ空気量においては、
希薄空燃比域(例えば、A/F=23)と理論空燃比域
(例えば、A/F=14.7)との間に30%の差があ
る。このため、空燃比を理論空燃比域から希薄空燃比域
に変化させた際や希薄空燃比域から理論空燃比域に変化
させた際には、トルク変動が発生する不都合がある。
By the way, as shown in FIG. 12, the torque of the internal combustion engine is as follows:
There is a 30% difference between the lean air-fuel ratio range (eg A / F = 23) and the theoretical air-fuel ratio range (eg A / F = 14.7). Therefore, when the air-fuel ratio is changed from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range or when changing from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, there is a disadvantage that torque fluctuation occurs.

【0010】そこで、このような問題に対処すべく、前
記特開平4−36052号公報に開示される空燃比制御
装置のように、バイパス通路の流量制御弁を制御してト
ルクの変動を減少させるものがある。
Therefore, in order to deal with such a problem, like the air-fuel ratio control device disclosed in Japanese Patent Laid-Open No. 4-36052, the flow control valve in the bypass passage is controlled to reduce the fluctuation of torque. There is something.

【0011】ところが、この公報に開示される空燃比制
御装置は、空燃比を理論空燃比域から希薄空燃比域に変
化させた際のトルクの減少変動のみを抑制するものであ
る。このため、希薄空燃比域から理論空燃比域に変化さ
せた際には、トルクの増大変動を抑制し得ず、ショック
を発生して乗車感を低下させる不都合がある。また、こ
の公報に開示される空燃比制御装置は、バイパス空気の
流量の制御のみによって、空燃比を理論空燃比域から希
薄空燃比域に変化させた際のトルクの減少変動を抑制し
ているため、NOxの増加を防止し得ない不都合があ
る。さらに、希薄空燃比域から理論空燃比域に変化させ
る場合には、図13に示す如く、空燃比を徐々に変化さ
せると、NOxを多く発生する空燃比域を経ることによ
り、NOxの増加を防止し得ない不都合がある。
However, the air-fuel ratio control device disclosed in this publication suppresses only the torque fluctuation when the air-fuel ratio is changed from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range. For this reason, when the lean air-fuel ratio range is changed to the stoichiometric air-fuel ratio range, it is not possible to suppress the increase fluctuation of the torque, and there is a disadvantage that a shock is generated and the riding comfort is deteriorated. Further, the air-fuel ratio control device disclosed in this publication suppresses the decrease fluctuation of the torque when the air-fuel ratio is changed from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range only by controlling the flow rate of the bypass air. Therefore, there is an inconvenience that an increase in NOx cannot be prevented. Further, when changing from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, if the air-fuel ratio is gradually changed, as shown in FIG. 13, NOx is increased by passing through the air-fuel ratio range in which a large amount of NOx is generated. There are inconveniences that cannot be prevented.

【0012】[0012]

【課題を解決するための手段】そこで、この発明は、上
述不都合を除去すべく、内燃機関の排気通路に排気の空
燃比を検出する空燃比センサを設け、この空燃比センサ
の検出信号に基づき混合気の空燃比を理論空燃比域及び
希薄空燃比域における目標値になるよう制御する内燃機
関の空燃比制御装置において、前記内燃機関の吸気通路
にバイパス空気を供給するバイパス通路を設けるととも
に前記バイパス空気の流量を制御する流量制御弁を設
け、前記内燃機関の吸気通路に排気の一部を還流するE
GR通路を設けるとともに還流される排気の流量を制御
するEGR制御弁を設け、前記混合気の空燃比を希薄空
燃比域から理論空燃比域に変化させる際には空燃比を瞬
時に変化させると同時に前記流量制御弁を全閉し且つ前
記EGR制御弁を前記内燃機関の運転状態に応じて開閉
すべく制御するとともに前記混合気の空燃比を理論空燃
比域から希薄空燃比域に変化させる際には空燃比を瞬時
に変化させると同時に前記流量制御弁を前記内燃機関の
運転状態に応じて開閉し且つ前記EGR制御弁を全閉す
べく制御する制御手段を設けたことを特徴とする。
Therefore, in order to eliminate the above-mentioned inconvenience, the present invention provides an air-fuel ratio sensor for detecting the air-fuel ratio of exhaust gas in the exhaust passage of an internal combustion engine, and based on the detection signal of this air-fuel ratio sensor. In an air-fuel ratio control device for an internal combustion engine, which controls an air-fuel ratio of an air-fuel mixture to be a target value in a stoichiometric air-fuel ratio region and a lean air-fuel ratio region, a bypass passage for supplying bypass air to an intake passage of the internal combustion engine is provided. A flow control valve for controlling the flow rate of the bypass air is provided, and a part of the exhaust gas is recirculated to the intake passage of the internal combustion engine E
A GR passage is provided, and an EGR control valve is provided to control the flow rate of the recirculated exhaust gas. When the air-fuel ratio of the air-fuel mixture is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, the air-fuel ratio is changed instantaneously. At the same time, the flow control valve is fully closed and the EGR control valve is controlled to open and close according to the operating state of the internal combustion engine, and the air-fuel ratio of the air-fuel mixture is changed from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range. Is provided with control means for instantaneously changing the air-fuel ratio and, at the same time, opening and closing the flow control valve according to the operating state of the internal combustion engine and controlling the EGR control valve to be fully closed.

【0013】[0013]

【作用】この発明の構成によれば、制御手段によって、
混合気の空燃比を希薄空燃比域から理論空燃比域に変化
させる際や理論空燃比域から希薄空燃比域に変化させる
際には、空燃比を瞬時に変化させることにより、NOx
を多く発生する空燃比領域を使用することがなく、ま
た、空燃比の変化と同時に吸気通路に供給されるバイパ
ス空気の流量及び吸気通路に還流される排気の流量を制
御することにより、NOxの増加を防止しつつトルク変
動を抑制することができる。
According to the structure of the present invention, the control means causes
When the air-fuel ratio of the air-fuel mixture is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range or when changing from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range, the air-fuel ratio is changed instantaneously to obtain NOx.
The air-fuel ratio region that generates a large amount of NOx is not used, and the flow rate of the bypass air supplied to the intake passage and the flow rate of the exhaust gas recirculated to the intake passage are controlled at the same time when the air-fuel ratio changes. The torque fluctuation can be suppressed while preventing the increase.

【0014】[0014]

【実施例】以下図面に基づいてこの発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0015】図1〜図5は、この発明による空燃比制御
装置の実施例を示すものである。図1において、2は内
燃機関、4はピストン、6は燃焼室、8は吸気ポート、
10は排気ポート、12は吸気弁、14は排気弁、16
は点火プラグ、18は吸気通路、20は排気通路、22
はスロットル弁である。内燃機関2は、燃焼室4に指向
させて吸気通路18に燃料噴射弁24を設けている。燃
料噴射弁24は、空燃比制御装置26の制御手段たる制
御部28に接続されている。
1 to 5 show an embodiment of an air-fuel ratio control device according to the present invention. In FIG. 1, 2 is an internal combustion engine, 4 is a piston, 6 is a combustion chamber, 8 is an intake port,
10 is an exhaust port, 12 is an intake valve, 14 is an exhaust valve, 16
Is a spark plug, 18 is an intake passage, 20 is an exhaust passage, 22
Is a throttle valve. The internal combustion engine 2 is provided with a fuel injection valve 24 in the intake passage 18 facing the combustion chamber 4. The fuel injection valve 24 is connected to a control unit 28 which is a control means of the air-fuel ratio control device 26.

【0016】制御部28には、スロットル開度θを検出
する開度センサ30と、吸気圧力Pを検出する圧力セン
サ32と、機関回転数Nを検出する回転数センサ34
と、排気の空燃比を検出する空燃比センサ36と、を接
続している。制御部28は、各センサ30〜36の検出
信号により燃料噴射弁24を駆動制御し、空燃比センサ
36の検出信号に基づき混合気の空燃比を理論空燃比域
(ストイキ域)及び希薄空燃比域(リーン域)における
目標値になるように制御する。
The control unit 28 has an opening sensor 30 for detecting the throttle opening θ, a pressure sensor 32 for detecting the intake pressure P, and a rotation speed sensor 34 for detecting the engine speed N.
And an air-fuel ratio sensor 36 that detects the air-fuel ratio of the exhaust gas. The control unit 28 drives and controls the fuel injection valve 24 based on the detection signals of the sensors 30 to 36, and based on the detection signal of the air-fuel ratio sensor 36, changes the air-fuel ratio of the air-fuel mixture to the stoichiometric air-fuel ratio range (stoichiometric range) and the lean air-fuel ratio. It is controlled to reach the target value in the range (lean range).

【0017】前記内燃機関2には、吸気通路18にバイ
パス空気を供給するバイパス通路38を設けている。バ
イパス通路38は、一端側をスロットル弁22上流側の
吸気通路18のバイパス入口40に連通し、他端側をス
ロットル弁22下流側の吸気通路18のバイパス出口4
2に連通している。
The internal combustion engine 2 is provided with a bypass passage 38 for supplying bypass air to the intake passage 18. The bypass passage 38 has one end communicating with a bypass inlet 40 of the intake passage 18 upstream of the throttle valve 22 and the other end of the bypass outlet 4 of the intake passage 18 downstream of the throttle valve 22.
It communicates with 2.

【0018】このバイパス通路38には、バイパス空気
の流量を制御する流量制御弁44を設けている。この流
量制御弁44は、例えば、デューティ制御される電磁弁
等から構成される。流量制御弁44は、本体46内のバ
イパス通路38に弁孔48を設け、弁孔48を開閉する
弁体50をデューティ駆動するソレノイド52を設けて
いる。この流量制御弁44は、制御部28に接続されて
いる。制御部28は、流量制御弁44を駆動制御して、
バイパス空気の流量を制御する。
The bypass passage 38 is provided with a flow rate control valve 44 for controlling the flow rate of bypass air. The flow control valve 44 is composed of, for example, a duty-controlled solenoid valve or the like. The flow rate control valve 44 is provided with a valve hole 48 in the bypass passage 38 in the main body 46, and a solenoid 52 for duty-driving a valve body 50 that opens and closes the valve hole 48. The flow control valve 44 is connected to the control unit 28. The control unit 28 drives and controls the flow control valve 44,
Controls the flow rate of bypass air.

【0019】また、この内燃機関2には、吸気通路20
に排気の一部を還流するEGR通路54を設けている。
EGR通路54は、一端側を排気通路20のEGR入口
56に連通し、他端側をバイパス通路38の途中のEG
R出口58に連通している。このEGR通路54には、
還流される排気の流量を制御するEGR制御弁60を設
けている。EGR制御弁60は、本体62内のEGR通
路54に弁孔64を設け、弁孔64を開閉する弁体66
をダイヤフラム68により支持し、このダイヤフラム6
8により圧力室70を区画して設け、弁孔64を閉止す
る方向に弁体66を押進させるべくダイヤフラム68を
付勢するばね72を設けている。
The internal combustion engine 2 also includes an intake passage 20.
Is provided with an EGR passage 54 that recirculates a part of the exhaust gas.
The EGR passage 54 has one end communicating with the EGR inlet 56 of the exhaust passage 20 and the other end EG in the middle of the bypass passage 38.
It communicates with the R outlet 58. In this EGR passage 54,
An EGR control valve 60 that controls the flow rate of the recirculated exhaust gas is provided. The EGR control valve 60 is provided with a valve hole 64 in the EGR passage 54 in the main body 62 and opens and closes the valve hole 64.
Is supported by a diaphragm 68, and the diaphragm 6
A pressure chamber 70 is defined by 8 and a spring 72 for urging the diaphragm 68 to push the valve body 66 in the direction of closing the valve hole 64 is provided.

【0020】前記EGR制御弁60の圧力室70には、
一端側をスロットル弁22下流側の吸気通路18に連通
する導圧通路74の他端側を連通している。導圧通路7
4には、圧力室70に吸気負圧及び大気圧を切換導入す
るEGR用切換弁76を設けている。EGR用切換弁7
6は、前記制御部28に接続されている。制御部28
は、EGR用切換弁76を駆動制御してEGR制御弁6
0の圧力室70に吸気負圧及び大気圧を給排し、還流さ
れる排気の流量を制御する。
In the pressure chamber 70 of the EGR control valve 60,
One end side communicates with the other end side of the pressure guide passage 74 that communicates with the intake passage 18 downstream of the throttle valve 22. Pressure passage 7
4 is provided with an EGR switching valve 76 for switching and introducing intake negative pressure and atmospheric pressure into the pressure chamber 70. EGR switching valve 7
6 is connected to the control unit 28. Control unit 28
Drives the EGR switching valve 76 to control the EGR control valve 6
The intake negative pressure and the atmospheric pressure are supplied to and discharged from the zero pressure chamber 70, and the flow rate of the recirculated exhaust gas is controlled.

【0021】この内燃機関2の空燃比制御装置26は、
前記制御部28によって、混合気の空燃比を希薄空燃比
域から理論空燃比域に変化させる際には、空燃比を瞬時
に変化させると同時に流量制御弁44を全閉し且つEG
R制御弁60を内燃機関2の運転状態に応じて開閉すべ
く制御する。また、この空燃比制御装置26は、制御部
28によって、混合気の空燃比を理論空燃比域から希薄
空燃比域に変化させる際には、空燃比を瞬時に変化させ
ると同時に流量制御弁44を内燃機関2の運転状態に応
じて開閉し且つEGR制御弁60を全閉すべく制御す
る。
The air-fuel ratio control device 26 of the internal combustion engine 2 is
When the air-fuel ratio of the air-fuel mixture is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range by the control unit 28, the air-fuel ratio is instantaneously changed and the flow control valve 44 is fully closed and EG
The R control valve 60 is controlled to open and close according to the operating state of the internal combustion engine 2. Further, when the air-fuel ratio control device 26 changes the air-fuel ratio of the air-fuel mixture from the stoichiometric air-fuel ratio region to the lean air-fuel ratio region by the control unit 28, it instantaneously changes the air-fuel ratio and, at the same time, the flow control valve 44. Is opened and closed according to the operating state of the internal combustion engine 2 and the EGR control valve 60 is fully closed.

【0022】即ち、この空燃比制御装置26は、混合気
の空燃比を希薄空燃比域から理論空燃比域に変化させる
際には、空燃比を瞬時に変化させると同時に、バイパス
空気を遮断して内燃機関2の運転状態に応じた量の排気
を吸気通路18に還流することにより、トルク変動を抑
制してNOxの増加を防止し、一方、混合気の空燃比を
理論空燃比域から希薄空燃比域に変化させる際には、空
燃比を瞬時に変化させると同時に、吸気通路18への排
気の還流を停止して内燃機関2の運転状態に応じた量の
バイパス空気を吸気通路に供給することにより、空気量
を増加させて希薄化にともなうトルク変動を抑制するも
のである。
That is, when changing the air-fuel ratio of the air-fuel mixture from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, the air-fuel ratio control unit 26 instantaneously changes the air-fuel ratio and shuts off the bypass air. By recirculating exhaust gas in an amount corresponding to the operating state of the internal combustion engine 2 to the intake passage 18, torque fluctuation is suppressed and NOx increase is prevented, while the air-fuel ratio of the air-fuel mixture is diluted from the stoichiometric air-fuel ratio range. When changing to the air-fuel ratio region, the air-fuel ratio is instantaneously changed, and at the same time, the exhaust gas recirculation to the intake passage 18 is stopped to supply the intake passage with an amount of bypass air according to the operating state of the internal combustion engine 2. By doing so, the amount of air is increased to suppress the torque fluctuation due to the dilution.

【0023】次に、この空燃比制御装置26による制御
を図2〜図5に従って説明する。
Next, the control by the air-fuel ratio control device 26 will be described with reference to FIGS.

【0024】図2において、制御がスタート(ステップ
100)すると、機関回転数Nを検出(ステップ10
1)し、吸気圧力Pを検出(ステップ102)し、スロ
ットル開度θを検出(ステップ103)し、流量制御弁
44のデューティ比を算出(ステップ104)し、算出
されたデューティ比により流量制御弁44を駆動制御し
てスロットル弁22下流側の吸気通路18にバイパス空
気を供給する。
In FIG. 2, when the control starts (step 100), the engine speed N is detected (step 10).
1) Then, the intake pressure P is detected (step 102), the throttle opening θ is detected (step 103), the duty ratio of the flow control valve 44 is calculated (step 104), and the flow control is performed by the calculated duty ratio. The valve 44 is drive-controlled to supply bypass air to the intake passage 18 downstream of the throttle valve 22.

【0025】次いで、制御モードを判定(ステップ10
5)する。この判定(ステップ105)おいて、混合気
の空燃比が希薄空燃比域から理論空燃比域に変化した場
合には、バイパス通路38を閉鎖すべく流量制御弁44
を全閉(ステップ106)に駆動制御し、EGR制御弁
60の圧力室70に吸気負圧を作用させて運転状態に応
じた量の排気を吸気通路18に還流すべくEGR用切換
弁76をON(ステップ107)に駆動制御し、空燃比
が理論空燃比域における目標値になるように理論空燃比
域マップによる燃料噴射弁24の駆動制御を開始(ステ
ップ108)し、終了(ステップ109)する。
Next, the control mode is judged (step 10
5) Do. In this determination (step 105), if the air-fuel ratio of the air-fuel mixture changes from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, the flow control valve 44 should be closed to close the bypass passage 38.
Is controlled to be fully closed (step 106), and the EGR switching valve 76 is operated to recirculate exhaust gas in an amount corresponding to the operating state to the intake passage 18 by causing an intake negative pressure to act on the pressure chamber 70 of the EGR control valve 60. The drive control is turned on (step 107), and the drive control of the fuel injection valve 24 based on the theoretical air-fuel ratio map is started (step 108) and finished (step 109) so that the air-fuel ratio becomes the target value in the theoretical air-fuel ratio range. To do.

【0026】一方、前記判定(ステップ105)おい
て、内燃機関2の運転状態が理論空燃比域から希薄空燃
比域に変化した場合には、バイパス通路38を開放して
運転状態に応じた量のバイパス空気を吸気通路18に供
給すべく流量制御弁44を開放(ステップ110)に駆
動制御し、EGR制御弁60の圧力室70に大気圧を作
用させて排気の還流を停止すべくEGR用切換弁76を
OFF(ステップ111)に駆動制御し、空燃比が希薄
空燃比域における目標値になるように希薄空燃比域マッ
プによる燃料噴射弁24の駆動制御を開始(ステップ1
12)し、終了(ステップ109)する。
On the other hand, in the judgment (step 105), when the operating state of the internal combustion engine 2 changes from the stoichiometric air-fuel ratio region to the lean air-fuel ratio region, the bypass passage 38 is opened and the amount corresponding to the operating state is opened. In order to supply the bypass air to the intake passage 18, the flow control valve 44 is opened (step 110), and the atmospheric pressure is applied to the pressure chamber 70 of the EGR control valve 60 to stop the exhaust gas recirculation. The switching valve 76 is controlled to be turned off (step 111), and the drive control of the fuel injection valve 24 based on the lean air-fuel ratio map is started so that the air-fuel ratio becomes the target value in the lean air-fuel ratio range (step 1).
12) and ends (step 109).

【0027】詳述すると、内燃機関2が希薄空燃比域に
おいて運転されている場合には、機関回転数Nと吸気圧
力Pとから吸気通路18を流れる空気量を算出し、算出
された空気量の約10〜30%の空気がバイパス空気と
してバイパス通路38を流れるように、流量制御弁44
を駆動制御している。
More specifically, when the internal combustion engine 2 is operated in the lean air-fuel ratio range, the amount of air flowing through the intake passage 18 is calculated from the engine speed N and the intake pressure P, and the calculated air amount is calculated. Of the flow control valve 44 so that about 10% to 30% of the air flows as bypass air through the bypass passage 38.
Drive control.

【0028】このとき、EGR用切換弁76は、EGR
制御弁60の圧力室70に大気圧を作用させるべくOF
Fに駆動制御され、EGR制御弁60を全閉させてい
る。したがって、内燃機関2の燃焼室6には、吸気通路
18のスロットル弁22を経た空気とともに、流量制御
弁44により計量されてバイパス通路38を流れるバイ
パス空気が供給される。燃料噴射弁24は、空燃比が希
薄空燃比域における目標値になるように希薄空燃比域マ
ップにより駆動制御されて燃料を噴射する。
At this time, the EGR switching valve 76 is
OF is applied to apply atmospheric pressure to the pressure chamber 70 of the control valve 60.
The EGR control valve 60 is fully closed by being driven and controlled by F. Therefore, the combustion chamber 6 of the internal combustion engine 2 is supplied with the air that has passed through the throttle valve 22 of the intake passage 18 and the bypass air that is measured by the flow rate control valve 44 and flows through the bypass passage 38. The fuel injection valve 24 is driven and controlled by the lean air-fuel ratio region map so that the air-fuel ratio becomes a target value in the lean air-fuel ratio region, and injects fuel.

【0029】このような運転状態からスロットル弁22
が開かれてスロットル開度θが大きくなり、内燃機関2
の運転状態が加速状態に移行した際には、内燃機関2の
要求する出力空燃比域とするために、図3に示す如く、
空燃比を希薄空燃比域から理論空燃比域に変化させるこ
とになる。あるいは、内燃機関2の負荷が徐々に大きく
なった場合には、空燃比を希薄空燃比域から理論空燃比
域に変化させることになる。
From such an operating state, the throttle valve 22
Is opened and the throttle opening θ increases, and the internal combustion engine 2
As shown in FIG. 3, in order to set the output air-fuel ratio range required by the internal combustion engine 2 when the operating state of is shifted to the acceleration state,
The air-fuel ratio is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range. Alternatively, when the load on the internal combustion engine 2 gradually increases, the air-fuel ratio is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range.

【0030】このように、空燃比を希薄空燃比域から理
論空燃比域に変化させて理論空燃比域制御に移行する際
には、図4に示す如く、流量制御弁44を全閉してバイ
パス通路38を閉鎖し、EGR制御弁60を運転状態に
応じて開閉して排気の一部を吸気通路18に還流させ、
同時に、直ちに理論空燃比域マップによる燃料噴射弁2
4の駆動制御を開始して理論空燃比域における目標値に
なるように燃料を噴射する。
As described above, when the air-fuel ratio is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range to shift to the stoichiometric air-fuel ratio range control, the flow control valve 44 is fully closed as shown in FIG. The bypass passage 38 is closed, and the EGR control valve 60 is opened / closed according to the operating state to recirculate a part of the exhaust gas to the intake passage 18,
At the same time, immediately the fuel injection valve 2 based on the theoretical air-fuel ratio map
The drive control of No. 4 is started, and the fuel is injected to reach the target value in the stoichiometric air-fuel ratio range.

【0031】前記スロットル弁22の開度θがさらに大
きくなると、吸気通路18の吸気負圧が弱まることによ
り、EGR用切換弁76をOFFにしてEGR制御弁6
0の圧力室70に大気圧を作用させ、排気の還流を停止
する。
When the opening degree θ of the throttle valve 22 further increases, the intake negative pressure in the intake passage 18 weakens, so the EGR switching valve 76 is turned off and the EGR control valve 6 is turned off.
The atmospheric pressure is applied to the zero pressure chamber 70 to stop the exhaust gas recirculation.

【0032】このように、混合気の空燃比を希薄空燃比
域から理論空燃比域に変化させる際には、空燃比を瞬時
に変化させることにより、NOxを多く発生する空燃比
領域を使用することがなく、また、空燃比の変化と同時
に吸気通路18に供給されるバイパス空気の流量を
「0」に制御し、吸気通路18に還流される排気の流量
を運転状態に応じて制御することにより、NOxの増加
を防止しつつトルク変動を抑制することができる。
As described above, when the air-fuel ratio of the air-fuel mixture is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, the air-fuel ratio is instantaneously changed to use the air-fuel ratio range in which a large amount of NOx is generated. In addition, the flow rate of the bypass air supplied to the intake passage 18 is controlled to "0" at the same time as the change of the air-fuel ratio, and the flow rate of the exhaust gas recirculated to the intake passage 18 is controlled according to the operating state. As a result, torque fluctuation can be suppressed while preventing an increase in NOx.

【0033】このため、図5に示す如く、混合気の空燃
比を希薄空燃比域から理論空燃比域に変化させる際の、
急激なトルク変動を抑制し得て、ショックの発生を防止
し得て乗車感を向上し得て、また、NOxの増加を防止
することができる。
Therefore, as shown in FIG. 5, when the air-fuel ratio of the air-fuel mixture is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range,
It is possible to suppress a sudden torque fluctuation, prevent a shock from occurring, improve a riding feeling, and prevent an increase in NOx.

【0034】一方、制御部28は、内燃機関2が理論空
燃比域において運転されている状態から負荷が徐々に小
さくなった場合には、空燃比を理論空燃比域から希薄空
燃比域に変化させることになる。
On the other hand, the controller 28 changes the air-fuel ratio from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range when the load gradually decreases from the state where the internal combustion engine 2 is operating in the stoichiometric air-fuel ratio range. I will let you.

【0035】空燃比を理論空燃比域から希薄空燃比域に
変化させて希薄空燃比域制御に移行する場合には、流量
制御弁44を運転状態に応じて開閉してバイパス空気を
バイパス通路38に流通させ、EGR制御弁60を全閉
して排気の還流を停止し、同時に、直ちに希薄空燃比域
マップによる燃料噴射弁24の駆動制御を開始して希薄
空燃比域における目標値になるように燃料を噴射する。
When the air-fuel ratio is changed from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range to shift to the lean air-fuel ratio range control, the flow control valve 44 is opened and closed according to the operating condition to bypass the bypass air 38. And exhaust gas recirculation is stopped by fully closing the EGR control valve 60, and at the same time, the drive control of the fuel injection valve 24 based on the lean air-fuel ratio region map is immediately started to reach the target value in the lean air-fuel ratio region. Inject fuel into.

【0036】このように、理論空燃比域から希薄空燃比
域に変化させる際には、空燃比を瞬時に変化させること
により、NOxを多く発生する空燃比領域を使用するこ
とがなく、また、空燃比の変化と同時に吸気通路18に
供給されるバイパス空気の流量を運転状態に応じて制御
し、吸気通路18に還流される排気の流量を「0」に制
御することにより、NOxの増加を防止しつつ希薄化に
よるトルク変動を空気量の増加により抑制することがで
きる。
As described above, when the stoichiometric air-fuel ratio range is changed to the lean air-fuel ratio range, the air-fuel ratio is changed instantaneously so that the air-fuel ratio range where a large amount of NOx is generated is not used, and At the same time as the change of the air-fuel ratio, the flow rate of the bypass air supplied to the intake passage 18 is controlled according to the operating state, and the flow rate of the exhaust gas recirculated to the intake passage 18 is controlled to "0" to increase the NOx. It is possible to suppress the torque fluctuation due to the leaning by increasing the air amount while preventing it.

【0037】このため、図5に示す如く、混合気の空燃
比を理論空燃比域から希薄空燃比域に変化させる際の、
急激なトルク変動を抑制し得て、ショックの発生を防止
し得て乗車感を向上し得て、また、NOxの増加を防止
することができる。しかも、流量制御弁44をデューテ
ィ制御していることにより、負荷の変動に対して適切に
対処し得て、最適なバイパス空気の流量を確保し得る。
Therefore, as shown in FIG. 5, when the air-fuel ratio of the air-fuel mixture is changed from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range,
It is possible to suppress a sudden torque fluctuation, prevent a shock from occurring, improve a riding feeling, and prevent an increase in NOx. Moreover, by controlling the duty of the flow rate control valve 44, it is possible to appropriately deal with the fluctuation of the load and to secure the optimum flow rate of the bypass air.

【0038】図6〜図10は、この発明の別の実施例を
示すものである。図6において、202は内燃機関、2
04はピストン、206は燃焼室、208は吸気ポー
ト、210は排気ポート、212は吸気弁、214は排
気弁、216は点火プラグ、218は吸気通路、220
は排気通路、222はスロットル弁である。内燃機関2
02は、燃焼室204に指向させて吸気通路218に燃
料噴射弁224を設けている。燃料噴射弁224は、空
燃比制御装置226の制御手段たる制御部228に接続
されている。
6 to 10 show another embodiment of the present invention. In FIG. 6, 202 is an internal combustion engine, 2
Reference numeral 04 is a piston, 206 is a combustion chamber, 208 is an intake port, 210 is an exhaust port, 212 is an intake valve, 214 is an exhaust valve, 214 is a spark plug, 218 is an intake passage, 220
Is an exhaust passage and 222 is a throttle valve. Internal combustion engine 2
02 has a fuel injection valve 224 in the intake passage 218 directed toward the combustion chamber 204. The fuel injection valve 224 is connected to a control unit 228 that is a control unit of the air-fuel ratio control device 226.

【0039】制御部228には、スロットル開度θを検
出する開度センサ230と、吸気圧力Pを検出する圧力
センサ232と、機関回転数Nを検出する回転数センサ
234と、排気の空燃比を検出する空燃比センサ236
と、を接続している。制御部228は、各センサ230
〜236の検出信号により燃料噴射弁224を駆動制御
し、空燃比センサ236の検出信号に基づき混合気の空
燃比を理論空燃比域(ストイキ域)及び希薄空燃比域
(リーン域)における目標値になるように制御する。
The control unit 228 includes an opening sensor 230 for detecting the throttle opening θ, a pressure sensor 232 for detecting the intake pressure P, a rotation speed sensor 234 for detecting the engine speed N, and an exhaust air-fuel ratio. Air-fuel ratio sensor 236 for detecting
And are connected. The control unit 228 controls each sensor 230.
To 236 drive control the fuel injection valve 224, and based on the detection signal of the air-fuel ratio sensor 236, set the air-fuel ratio of the air-fuel mixture to the target value in the stoichiometric air-fuel ratio range (stoichiometric range) and the lean air-fuel ratio range (lean range). Control to become.

【0040】前記内燃機関202には、吸気通路218
にバイパス空気を供給するバイパス通路238を設けて
いる。バイパス通路238は、一端側を閉鎖状態のスロ
ットル弁222の弁端222e近傍の吸気通路218の
バイパス入口240に連通し、他端側をスロットル弁2
22下流側の吸気通路218のバイパス出口242に連
通している。
The internal combustion engine 202 has an intake passage 218.
A bypass passage 238 for supplying bypass air is provided. The bypass passage 238 has one end communicating with the bypass inlet 240 of the intake passage 218 near the valve end 222e of the closed throttle valve 222, and the other end of the bypass passage 238.
22 is connected to the bypass outlet 242 of the intake passage 218 on the downstream side.

【0041】前記バイパス入口240は、図7〜図9に
示す如く、スロットルボディ244に弁軸246により
軸支されたスロットル弁222の、閉鎖状態のスロット
ル弁222の開動方向下流側に向かって漸次拡開する形
状に形成して設けている。即ち、バイパス入口240
は、閉鎖状態のスロットル弁222の下流側に開動する
弁端222e近傍を頂点とし、この弁端222eの開動
方向下流側に向かって漸次拡開する略二等辺三角形形状
に形成して設けている。
As shown in FIGS. 7 to 9, the bypass inlet 240 gradually tapers toward the downstream side in the opening direction of the closed throttle valve 222 of the throttle valve 222 pivotally supported by the throttle body 244 by the valve shaft 246. It is formed in a shape that expands. That is, the bypass inlet 240
Is formed in a substantially isosceles triangular shape having a vertex near the valve end 222e that opens downstream of the closed throttle valve 222 and gradually expanding toward the downstream side in the opening direction of the valve end 222e. .

【0042】前記バイパス通路238には、バイパス空
気の流量を制御する流量制御弁248を設けている。こ
の流量制御弁248は、本体250内のバイパス通路2
38に弁孔252を設け、弁孔252を開閉する弁体2
54をダイヤフラム256により支持し、このダイヤフ
ラム256により圧力室258を区画して設け、弁孔2
52を閉止する方向に弁体254を押進させるべくダイ
ヤフラム256を付勢するばね260を設けている。
A flow rate control valve 248 for controlling the flow rate of bypass air is provided in the bypass passage 238. The flow control valve 248 is used in the bypass passage 2 in the main body 250.
38 is provided with a valve hole 252 and opens and closes the valve hole 252.
54 is supported by the diaphragm 256, and the pressure chamber 258 is defined by the diaphragm 256.
A spring 260 for urging the diaphragm 256 to push the valve body 254 in the direction of closing the valve 52 is provided.

【0043】前記流量制御弁248の圧力室258に
は、スロットル弁222下流側の吸気通路218に一端
側を連通するバイパス用導圧通路262の他端側を連通
している。バイパス用導圧通路262には、圧力室25
8に吸気負圧及び大気圧を切換導入するバイパス用切換
弁264を設けている。バイパス用切換弁264は、前
記制御部228に接続されている。制御部228は、バ
イパス用切換弁264を駆動制御して流量制御弁248
の圧力室258に吸気負圧及び大気圧を給排し、バイパ
ス空気の流量を制御する。
The pressure chamber 258 of the flow rate control valve 248 communicates with the other end of a bypass pressure guiding passage 262 which communicates with the intake passage 218 downstream of the throttle valve 222. The pressure chamber 25 is provided in the bypass pressure passage 262.
8 is provided with a bypass switching valve 264 for switching and introducing intake negative pressure and atmospheric pressure. The bypass switching valve 264 is connected to the control unit 228. The controller 228 drives and controls the bypass switching valve 264 to control the flow rate control valve 248.
The intake negative pressure and the atmospheric pressure are supplied to and discharged from the pressure chamber 258 of (1) to control the flow rate of the bypass air.

【0044】また、この内燃機関2には、吸気通路22
0に排気の一部を還流するEGR通路266を設けてい
る。EGR通路266は、一端側を排気通路220のE
GR入口268に連通し、他端側をバイパス通路238
の途中のEGR出口270に連通している。このEGR
通路266には、還流される排気の流量を制御するEG
R制御弁272を設けている。
The internal combustion engine 2 also includes an intake passage 22.
An EGR passage 266 for recirculating a part of exhaust gas is provided at 0. The EGR passage 266 has one end side of the E
It communicates with the GR inlet 268 and the other end side is a bypass passage 238.
Communicating with the EGR outlet 270 on the way. This EGR
The passage 266 has an EG for controlling the flow rate of the recirculated exhaust gas.
An R control valve 272 is provided.

【0045】EGR制御弁272は、本体274内のE
GR通路266に弁孔276を設け、弁孔276を開閉
する弁体278をダイヤフラム280により支持し、こ
のダイヤフラム280により圧力室282を区画して設
け、弁孔276を閉止する方向に弁体278を押進させ
るべくダイヤフラム280を付勢するばね284を設け
ている。
The EGR control valve 272 is connected to the E in the main body 274.
A valve hole 276 is provided in the GR passage 266, a valve body 278 for opening and closing the valve hole 276 is supported by a diaphragm 280, the pressure chamber 282 is defined by the diaphragm 280, and the valve body 278 is closed in the direction to close the valve hole 276. A spring 284 is provided which biases the diaphragm 280 to push forward.

【0046】前記EGR制御弁272の圧力室282に
は、バイパス用切換弁264よりも吸気通路218側の
バイパス用導圧通路262に一端側を連通するEGR用
導圧通路286の他端側を連通している。EGR用導圧
通路286には、圧力室282に吸気負圧及び大気圧を
切換導入するEGR用切換弁288を設けている。EG
R用切換弁288は、前記制御部228に接続されてい
る。制御部228は、EGR用切換弁288を駆動制御
してEGR制御弁272の圧力室282に吸気負圧及び
大気圧を給排し、還流される排気の流量を制御する。
In the pressure chamber 282 of the EGR control valve 272, the other end side of the EGR pressure guiding passage 286 which communicates one end side with the bypass pressure guiding passage 262 closer to the intake passage 218 than the bypass switching valve 264 is provided. It is in communication. The EGR pressure guiding passage 286 is provided with an EGR switching valve 288 for switching and introducing intake negative pressure and atmospheric pressure into the pressure chamber 282. EG
The R switching valve 288 is connected to the control unit 228. The control unit 228 drives and controls the EGR switching valve 288 to supply / exhaust the intake negative pressure and the atmospheric pressure to / from the pressure chamber 282 of the EGR control valve 272 to control the flow rate of the recirculated exhaust gas.

【0047】この内燃機関202の空燃比制御装置22
6は、前記制御部228によって、混合気の空燃比を希
薄空燃比域から理論空燃比域に変化させる際には、空燃
比を瞬時に変化させると同時に流量制御弁248を全閉
し且つEGR制御弁272を内燃機関202の運転状態
に応じて開閉すべく制御する。また、空燃比制御装置2
26は、制御部228によって、混合気の空燃比を理論
空燃比域から希薄空燃比域に変化させる際には、空燃比
を瞬時に変化させると同時に流量制御弁248を内燃機
関202の運転状態に応じて開閉し且つEGR制御弁2
72を全閉すべく制御する。
Air-fuel ratio control device 22 of this internal combustion engine 202
When changing the air-fuel ratio of the air-fuel mixture from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range by the control unit 228, the air-fuel ratio is instantaneously changed and the flow control valve 248 is fully closed and EGR is performed. The control valve 272 is controlled to open and close according to the operating state of the internal combustion engine 202. In addition, the air-fuel ratio control device 2
When changing the air-fuel ratio of the air-fuel mixture from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range by the control unit 228, the control unit 228 instantaneously changes the air-fuel ratio and simultaneously causes the flow control valve 248 to operate the internal combustion engine 202. According to the EGR control valve 2
Control 72 to fully close.

【0048】即ち、この空燃比制御装置226は、混合
気の空燃比を希薄空燃比域から理論空燃比域に変化させ
る際には、空燃比を瞬時に変化させると同時に、バイパ
ス空気を遮断して内燃機関202の運転状態に応じた量
の排気を吸気通路218に還流することにより、トルク
変動を抑制してNOxの増加を防止し、一方、混合気の
空燃比を理論空燃比域から希薄空燃比域に変化させる際
には、空燃比を瞬時に変化させると同時に、吸気通路2
18への排気の還流を停止して内燃機関202の運転状
態に応じた量のバイパス空気を吸気通路に供給すること
により、空気量を増加させて希薄化にともなうトルク変
動を抑制するものである。
That is, when changing the air-fuel ratio of the air-fuel mixture from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, the air-fuel ratio control device 226 instantaneously changes the air-fuel ratio and shuts off the bypass air. By recirculating exhaust gas in an amount corresponding to the operating state of the internal combustion engine 202 to the intake passage 218, torque fluctuation is suppressed and NOx increase is prevented, while the air-fuel ratio of the air-fuel mixture is diluted from the stoichiometric air-fuel ratio range. When changing to the air-fuel ratio range, the air-fuel ratio is changed instantaneously and at the same time, the intake passage 2
The exhaust gas recirculation to 18 is stopped and the amount of bypass air corresponding to the operating state of the internal combustion engine 202 is supplied to the intake passage to increase the air amount and suppress the torque fluctuation due to the leaning. .

【0049】また、バイパス空気は、バイパス通路23
8のバイパス入口240の形状と流量制御弁248とに
より、流量を制御される。
The bypass air is supplied to the bypass passage 23.
The flow rate is controlled by the shape of the bypass inlet 240 and the flow rate control valve 248.

【0050】次に、この空燃比制御装置226による制
御を図10に従って説明する。
Next, the control by the air-fuel ratio control device 226 will be described with reference to FIG.

【0051】図10において、制御がスタート(ステッ
プ300)すると、機関回転数Nを検出(ステップ30
1)し、吸気圧力Pを検出(ステップ302)し、スロ
ットル開度θを検出(ステップ303)し、これらより
算出された値によりバイパス用切換弁264を駆動制御
して流量制御弁248の圧力室258に吸気負圧及び大
気圧を給排し、スロットル弁222下流側の吸気通路2
18にバイパス空気を供給する。
In FIG. 10, when the control starts (step 300), the engine speed N is detected (step 30).
1) Then, the intake pressure P is detected (step 302), the throttle opening θ is detected (step 303), and the bypass switching valve 264 is drive-controlled by the value calculated from these values to control the pressure of the flow control valve 248. The intake negative pressure and the atmospheric pressure are supplied to and discharged from the chamber 258, and the intake passage 2 on the downstream side of the throttle valve 222 is provided.
Bypass air is supplied to 18.

【0052】次いで、制御モードを判定(ステップ30
4)する。この判定(ステップ304)おいて、混合気
の空燃比が希薄空燃比域から理論空燃比域に変化した場
合には、流量制御弁248の圧力室258に作用する吸
気負圧を弱めてバイパス通路238を閉鎖すべくバイパ
ス用切換弁264をOFF(ステップ305)に駆動制
御し、EGR制御弁272の圧力室282に吸気負圧を
作用させて運転状態に応じた量の排気を吸気通路218
に還流すべくEGR用切換弁288をON(ステップ3
06)に駆動制御し、空燃比が理論空燃比域における目
標値になるように理論空燃比域マップによる燃料噴射弁
224の駆動制御を開始(ステップ307)し、終了
(ステップ308)する。
Next, the control mode is judged (step 30
4) Do. In this determination (step 304), when the air-fuel ratio of the air-fuel mixture changes from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, the intake negative pressure acting on the pressure chamber 258 of the flow control valve 248 is weakened to bypass the bypass passage. The bypass switching valve 264 is controlled to be turned off (step 305) so as to close the valve 238, and the negative pressure of the intake air is applied to the pressure chamber 282 of the EGR control valve 272 so that the amount of exhaust gas corresponding to the operating state is taken into the intake passage 218.
The EGR switching valve 288 is turned on (step 3
The driving control of the fuel injection valve 224 based on the theoretical air-fuel ratio map is started (step 307) and finished (step 308) so that the air-fuel ratio becomes the target value in the theoretical air-fuel ratio range.

【0053】一方、前記判定(ステップ304)おい
て、内燃機関2の運転状態が理論空燃比域から希薄空燃
比域に変化した場合には、流量制御弁248の圧力室2
58に作用する吸気負圧を強めてバイパス通路を開放す
べくバイパス用切換弁264をON(ステップ309)
に駆動制御し、EGR制御弁272の圧力室282に大
気圧を作用させて排気の還流を停止すべくEGR用切換
弁288をOFF(ステップ310)に駆動制御し、空
燃比が希薄空燃比域における目標値になるように希薄空
燃比域マップによる燃料噴射弁224の駆動制御を開始
(ステップ311)し、終了(ステップ308)する。
On the other hand, in the determination (step 304), when the operating state of the internal combustion engine 2 changes from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range, the pressure chamber 2 of the flow control valve 248 is changed.
The bypass switching valve 264 is turned on to increase the intake negative pressure acting on 58 and open the bypass passage (step 309).
Drive control is performed to control the EGR switching valve 288 to OFF (step 310) so that the atmospheric pressure is applied to the pressure chamber 282 of the EGR control valve 272 to stop the exhaust gas recirculation, and the air-fuel ratio is in the lean air-fuel ratio range. The drive control of the fuel injection valve 224 based on the lean air-fuel ratio region map is started (step 311) so as to reach the target value in (3), and is ended (step 308).

【0054】詳述すると、内燃機関202が希薄空燃比
域において運転されている場合には、機関回転数Nと吸
気圧力Pとから吸気通路218を流れる空気量を算出
し、算出された空気量の約10〜30%の空気がバイパ
ス空気としてバイパス通路238を流れるように、流量
制御弁248を制御している。
More specifically, when the internal combustion engine 202 is operating in the lean air-fuel ratio range, the amount of air flowing through the intake passage 218 is calculated from the engine speed N and the intake pressure P, and the calculated air amount is calculated. The flow rate control valve 248 is controlled so that approximately 10% to 30% of the air flows as bypass air through the bypass passage 238.

【0055】このとき、EGR用切換弁288は、EG
R制御弁272の圧力室282に大気圧を作用させるべ
くOFFに駆動制御され、EGR制御弁272を全閉さ
せている。したがって、内燃機関202の燃焼室206
には、吸気通路218のスロットル弁222を経た空気
とともに、バイパス入口240及び流量制御弁248に
より計量されてバイパス通路238を流れるバイパス空
気が供給される。燃料噴射弁224は、空燃比が希薄空
燃比域における目標値になるように希薄空燃比域マップ
により駆動制御されて燃料を噴射する。
At this time, the EGR switching valve 288 is set to the EG
The EGR control valve 272 is fully closed by being controlled to be turned off so that the atmospheric pressure acts on the pressure chamber 282 of the R control valve 272. Therefore, the combustion chamber 206 of the internal combustion engine 202
Is supplied with the air that has passed through the throttle valve 222 of the intake passage 218, as well as the bypass air that is measured by the bypass inlet 240 and the flow rate control valve 248 and flows through the bypass passage 238. The fuel injection valve 224 is drive-controlled by the lean air-fuel ratio region map so that the air-fuel ratio becomes a target value in the lean air-fuel ratio region, and injects fuel.

【0056】このような運転状態からスロットル弁22
2が開かれてスロットル開度θが大きくなり、内燃機関
2の負荷が大きくなり加速状態に移行した際には、内燃
機関202の要求する出力空燃比域とするために、図3
に示す如く、空燃比を希薄空燃比域から理論空燃比域に
変化させることになる。あるいは、内燃機関202の負
荷が徐々に大きくなった場合には、空燃比を希薄空燃比
域から理論空燃比域に変化させることになる。
From such an operating state, the throttle valve 22
2 is opened, the throttle opening θ is increased, the load of the internal combustion engine 2 is increased, and the engine enters the acceleration state, so that the output air-fuel ratio range required by the internal combustion engine 202 is set.
As shown in, the air-fuel ratio is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range. Alternatively, when the load on the internal combustion engine 202 gradually increases, the air-fuel ratio is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range.

【0057】このように、空燃比を希薄空燃比域から理
論空燃比域に変化させて理論空燃比域制御に移行する際
には、図4に示す如く、流量制御弁248を全閉してバ
イパス通路238を閉鎖し、EGR制御弁272を運転
状態に応じて開閉して排気の一部を吸気通路218に還
流させ、同時に、直ちに理論空燃比域マップによる燃料
噴射弁224の駆動制御を開始して理論空燃比域におけ
る目標値になるように燃料を噴射する。
As described above, when the air-fuel ratio is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range to shift to the stoichiometric air-fuel ratio range control, the flow control valve 248 is fully closed as shown in FIG. The bypass passage 238 is closed, the EGR control valve 272 is opened / closed according to the operating state to recirculate a part of the exhaust gas to the intake passage 218, and at the same time, the drive control of the fuel injection valve 224 based on the theoretical air-fuel ratio region map is immediately started. Then, the fuel is injected to reach the target value in the stoichiometric air-fuel ratio range.

【0058】前記スロットル弁222の開度θがさらに
大きくなると、吸気通路218の吸気負圧が弱まること
により、EGR用切換弁288をOFFにしてEGR制
御弁272の圧力室282に大気圧を作用させ、排気の
還流を停止する。
When the opening degree θ of the throttle valve 222 further increases, the intake negative pressure in the intake passage 218 weakens, and the EGR switching valve 288 is turned off to apply atmospheric pressure to the pressure chamber 282 of the EGR control valve 272. Then, the exhaust gas recirculation is stopped.

【0059】このように、混合気の空燃比を希薄空燃比
域から理論空燃比域に変化させる際には、空燃比を瞬時
に変化させることにより、NOxを多く発生する空燃比
領域を使用することがなく、また、空燃比の変化と同時
に吸気通路218に供給されるバイパス空気の流量を
「0」に制御し、吸気通路128に還流される排気の流
量を運転状態に応じて制御することにより、NOxの増
加を防止しつつトルク変動を抑制することができる。
As described above, when the air-fuel ratio of the air-fuel mixture is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, the air-fuel ratio is instantaneously changed to use the air-fuel ratio range where much NOx is generated. In addition, the flow rate of the bypass air supplied to the intake passage 218 at the same time as the change of the air-fuel ratio is controlled to "0", and the flow rate of the exhaust gas recirculated to the intake passage 128 is controlled according to the operating state. As a result, torque fluctuation can be suppressed while preventing an increase in NOx.

【0060】このため、図5に示す如く、混合気の空燃
比を希薄空燃比域から理論空燃比域に変化させる際の、
急激なトルク変動を抑制し得て、ショックの発生を防止
し得て乗車感を向上し得て、また、NOxの増加を防止
することができる。
Therefore, as shown in FIG. 5, when the air-fuel ratio of the air-fuel mixture is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range,
It is possible to suppress a sudden torque fluctuation, prevent a shock from occurring, improve a riding feeling, and prevent an increase in NOx.

【0061】一方、制御部228は、内燃機関202が
理論空燃比域において運転されている状態から負荷が徐
々に小さくなった場合には、空燃比を理論空燃比域から
希薄空燃比域に変化させることになる。
On the other hand, when the load gradually decreases from the state where the internal combustion engine 202 is operating in the stoichiometric air-fuel ratio range, the control section 228 changes the air-fuel ratio from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range. I will let you.

【0062】空燃比を理論空燃比域から希薄空燃比域に
変化させて希薄空燃比域制御に移行する場合には、流量
制御弁248を運転状態に応じて開閉してバイパス空気
をバイパス通路238に流通させ、EGR制御弁272
を全閉して排気の還流を停止し、同時に、直ちに希薄空
燃比域マップによる燃料噴射弁224の駆動制御を開始
して希薄空燃比域における目標値になるように燃料を噴
射する。
When changing the air-fuel ratio from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range and shifting to the lean air-fuel ratio range control, the flow rate control valve 248 is opened and closed according to the operating condition to bypass the bypass air 238. To the EGR control valve 272.
Is completely closed to stop the exhaust gas recirculation, and at the same time, the drive control of the fuel injection valve 224 based on the lean air-fuel ratio region map is immediately started to inject the fuel to the target value in the lean air-fuel ratio region.

【0063】このように、理論空燃比域から希薄空燃比
域に変化させる際には、空燃比を瞬時に変化させること
により、NOxを多く発生する空燃比領域を使用するこ
とがなく、また、空燃比の変化と同時に吸気通路218
に供給されるバイパス空気の流量を運転状態に応じて制
御し、吸気通路218に還流される排気の流量を「0」
に制御することにより、NOxの増加を防止しつつ希薄
化によるトルク変動を空気量の増加により抑制すること
ができる。
As described above, when the stoichiometric air-fuel ratio range is changed to the lean air-fuel ratio range, the air-fuel ratio is changed instantaneously so that the air-fuel ratio range where a large amount of NOx is generated is not used, and At the same time when the air-fuel ratio changes, the intake passage 218
The flow rate of the bypass air supplied to the intake passage 218 is controlled according to the operating state, and the flow rate of the exhaust gas recirculated to the intake passage 218 is set to "0".
By controlling to 1., it is possible to prevent the NOx increase and suppress the torque fluctuation due to the dilution by increasing the air amount.

【0064】このため、図5に示す如く、混合気の空燃
比を理論空燃比域から希薄空燃比域に変化させる際の、
急激なトルク変動を抑制し得て、ショックの発生を防止
し得て乗車感を向上し得て、また、NOxの増加を防止
することができる。
Therefore, as shown in FIG. 5, when the air-fuel ratio of the air-fuel mixture is changed from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range,
It is possible to suppress a sudden torque fluctuation, prevent a shock from occurring, improve a riding feeling, and prevent an increase in NOx.

【0065】また、この別の実施例においては、バイパ
ス通路238のバイパス入口240の形状と流量制御弁
248とにより、バイパス空気の流量を制御している。
バイパス入口240は、閉鎖状態のスロットル弁222
の下流側に開動する弁端222e近傍を頂点とし、この
弁端222eの開動方向下流側に向かって漸次拡開する
略二等辺三角形形状に形成して設けている。
In this alternative embodiment, the flow rate of the bypass air is controlled by the shape of the bypass inlet 240 of the bypass passage 238 and the flow rate control valve 248.
The bypass inlet 240 has a closed throttle valve 222.
Is formed in the shape of a substantially isosceles triangle having a vertex in the vicinity of the valve end 222e that opens to the downstream side and gradually expanding toward the downstream side in the opening direction of the valve end 222e.

【0066】これにより、バイパス空気量は、スロット
ル弁22の開度に応じて、バイパス入口22の面積が拡
縮されることにより、バイパス空気の流量を運転状態に
応じて設定することができる。このため、バイパス空気
は、流量制御弁248による制御と相俟って、流量を適
切に設定することができる。この結果、NOxの増加を
防止しつつトルク変動を抑制することができる。
As a result, the amount of bypass air can be set according to the operating state by expanding or contracting the area of the bypass inlet 22 according to the opening degree of the throttle valve 22. Therefore, the bypass air can appropriately set the flow rate in cooperation with the control by the flow rate control valve 248. As a result, torque fluctuations can be suppressed while preventing an increase in NOx.

【0067】[0067]

【発明の効果】このように、この発明によれば、混合気
の空燃比を希薄空燃比域から理論空燃比域に変化させる
際や理論空燃比域から希薄空燃比域に変化させる際に
は、空燃比を瞬時に変化させることにより、NOxを多
く発生する空燃比領域を使用することがなく、また、空
燃比の変化と同時に吸気通路に供給されるバイパス空気
の流量及び吸気通路に還流される排気の流量を制御する
ことにより、NOxの増加を防止しつつトルク変動を抑
制することができる。
As described above, according to the present invention, when the air-fuel ratio of the air-fuel mixture is changed from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range or when changing from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range. By changing the air-fuel ratio instantaneously, the air-fuel ratio region that generates a large amount of NOx is not used, and at the same time when the air-fuel ratio changes, the flow rate of the bypass air supplied to the intake passage and the flow back to the intake passage are increased. By controlling the flow rate of the exhaust gas, the torque fluctuation can be suppressed while preventing the increase of NOx.

【0068】このため、混合気の空燃比を希薄空燃比域
から理論空燃比域に変化させる際や理論空燃比域から希
薄空燃比域に変化させる際の、急激なトルク変動を抑制
し得て、ショックの発生を防止し得て乗車感を向上し得
て、また、NOxの増加を防止することができる。
Therefore, when changing the air-fuel ratio of the air-fuel mixture from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range or when changing the stoichiometric air-fuel ratio range to the lean air-fuel ratio range, it is possible to suppress a rapid torque fluctuation. Therefore, it is possible to prevent the occurrence of shock, improve the riding feeling, and prevent the increase of NOx.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す内燃機関の空燃比制御
装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an air-fuel ratio control device for an internal combustion engine showing an embodiment of the present invention.

【図2】空燃比制御装置の制御のフローチャートであ
る。
FIG. 2 is a flowchart of control of an air-fuel ratio control device.

【図3】スロットル開度と空燃比との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a throttle opening and an air-fuel ratio.

【図4】スロットル開度とバイパス空気の流量及び還流
される排気の流量との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a throttle opening, a flow rate of bypass air, and a flow rate of recirculated exhaust gas.

【図5】スロットル開度とトルクとの関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between throttle opening and torque.

【図6】この発明の別の実施例を示す内燃機関の空燃比
制御装置の概略構成図である。
FIG. 6 is a schematic configuration diagram of an air-fuel ratio control device for an internal combustion engine showing another embodiment of the present invention.

【図7】スロットルボディの拡大縦断面図である。FIG. 7 is an enlarged vertical sectional view of a throttle body.

【図8】スロットルボディの拡大横断面図である。FIG. 8 is an enlarged transverse sectional view of a throttle body.

【図9】図7の矢印〓による側面図である。9 is a side view taken along the arrow 〓 of FIG.

【図10】別の実施例の空燃比制御装置の制御のフロー
チャートである。
FIG. 10 is a flowchart of control of the air-fuel ratio control device according to another embodiment.

【図11】従来例を示す内燃機関の空燃比制御装置の概
略構成図である。
FIG. 11 is a schematic configuration diagram of an air-fuel ratio control device for an internal combustion engine showing a conventional example.

【図12】空燃比とトルクとの関係を示す図である。FIG. 12 is a diagram showing a relationship between an air-fuel ratio and torque.

【図13】空燃比とNOxとの関係を示す図である。FIG. 13 is a diagram showing a relationship between an air-fuel ratio and NOx.

【符号の説明】[Explanation of symbols]

2 内燃機関 18 吸気通路 20 排気通路 22 スロットル弁 24 燃料噴射弁 26 空燃比制御装置 28 制御部 30 開度センサ 32 圧力センサ 34 回転数センサ 36 空燃比センサ 38 バイパス通路 44 流量制御弁 54 EGR通路 60 EGR制御弁 74 導圧通路 76 EGR用切換弁 2 Internal Combustion Engine 18 Intake Passage 20 Exhaust Passage 22 Throttle Valve 24 Fuel Injection Valve 26 Air-Fuel Ratio Control Device 28 Control Unit 30 Opening Sensor 32 Pressure Sensor 34 Rotation Speed Sensor 36 Air-Fuel Ratio Sensor 38 Bypass Passage 44 Flow Control Valve 54 EGR Passage 60 EGR control valve 74 Pressure passage 76 EGR switching valve

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 43/00 N 7536−3G 45/00 301 G 7536−3G F 7536−3G F02M 23/04 301 C Continuation of the front page (51) Int.Cl. 5 Identification code Reference number within the agency FI Technical display location F02D 43/00 N 7536-3G 45/00 301 G 7536-3G F 7536-3G F02M 23/04 301 C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に排気の空燃比を検
出する空燃比センサを設け、この空燃比センサの検出信
号に基づき混合気の空燃比を理論空燃比域及び希薄空燃
比域における目標値になるよう制御する内燃機関の空燃
比制御装置において、前記内燃機関の吸気通路にバイパ
ス空気を供給するバイパス通路を設けるとともに前記バ
イパス空気の流量を制御する流量制御弁を設け、前記内
燃機関の吸気通路に排気の一部を還流するEGR通路を
設けるとともに還流される排気の流量を制御するEGR
制御弁を設け、前記混合気の空燃比を希薄空燃比域から
理論空燃比域に変化させる際には空燃比を瞬時に変化さ
せると同時に前記流量制御弁を全閉し且つ前記EGR制
御弁を前記内燃機関の運転状態に応じて開閉すべく制御
するとともに前記混合気の空燃比を理論空燃比域から希
薄空燃比域に変化させる際には空燃比を瞬時に変化させ
ると同時に前記流量制御弁を前記内燃機関の運転状態に
応じて開閉し且つ前記EGR制御弁を全閉すべく制御す
る制御手段を設けたことを特徴とする内燃機関の空燃比
制御装置。
1. An air-fuel ratio sensor for detecting an air-fuel ratio of exhaust gas is provided in an exhaust passage of an internal combustion engine, and an air-fuel ratio of an air-fuel mixture is set as a target in a stoichiometric air-fuel ratio range and a lean air-fuel ratio range based on a detection signal of the air-fuel ratio sensor. In an air-fuel ratio control device for an internal combustion engine that controls the intake air of the internal combustion engine, a bypass passage that supplies bypass air to the intake passage of the internal combustion engine is provided, and a flow rate control valve that controls the flow rate of the bypass air is provided. An EGR passage is provided in the intake passage for recirculating a part of the exhaust gas, and the EGR is for controlling the flow rate of the recirculated exhaust gas.
A control valve is provided, and when changing the air-fuel ratio of the air-fuel mixture from the lean air-fuel ratio range to the stoichiometric air-fuel ratio range, the air-fuel ratio is instantaneously changed, the flow control valve is fully closed, and the EGR control valve is opened. When controlling the air-fuel ratio of the air-fuel mixture to change from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range while controlling to open / close according to the operating state of the internal combustion engine, the air-fuel ratio is instantaneously changed and at the same time, the flow control valve. An air-fuel ratio control apparatus for an internal combustion engine, comprising: a control means for opening and closing the engine according to an operating state of the internal combustion engine and fully closing the EGR control valve.
【請求項2】 前記内燃機関の吸気通路にバイパス空気
を供給するバイパス通路は、閉鎖状態スロットル弁の弁
端近傍の吸気通路にバイパス入口を連通して設けるとと
もにこのバイパス入口を前記閉鎖状態スロットル弁の開
動方向下流側に向かって漸次拡開する形状に形成して設
けた請求項1に記載の内燃機関の空燃比制御装置。
2. A bypass passage for supplying bypass air to the intake passage of the internal combustion engine is provided with a bypass inlet communicating with an intake passage near a valve end of the closed throttle valve, and the bypass inlet is provided in the closed throttle valve. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the air-fuel ratio control device is formed to have a shape that gradually expands toward the downstream side in the opening movement direction.
JP4361527A 1992-12-28 1992-12-28 Air-fuel ratio control device of internal combustion engine Pending JPH06200834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4361527A JPH06200834A (en) 1992-12-28 1992-12-28 Air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4361527A JPH06200834A (en) 1992-12-28 1992-12-28 Air-fuel ratio control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06200834A true JPH06200834A (en) 1994-07-19

Family

ID=18473942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4361527A Pending JPH06200834A (en) 1992-12-28 1992-12-28 Air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06200834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345607B1 (en) 1994-07-25 2002-02-12 Hitachi, Ltd. Engine power train control method and control apparatus for a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345607B1 (en) 1994-07-25 2002-02-12 Hitachi, Ltd. Engine power train control method and control apparatus for a vehicle

Similar Documents

Publication Publication Date Title
US4563990A (en) Fuel supply control system for engine carburetors
US4383408A (en) Exhaust gas purifying method of an internal combustion engine
JPH06200834A (en) Air-fuel ratio control device of internal combustion engine
JPS6053653A (en) Supply device of secondary intake air internal- combustion engine
JPS58160540A (en) Control method for exhaust gas reflux in engine
JPS61275556A (en) Secondary intake air feeder for internal-combustion engine
US4584979A (en) Air-fuel ratio control system for an internal combustion engine with a three way catalytic converter
JPS59190450A (en) Air-fuel ratio controller for internal-combustion engine for car
JP2987675B2 (en) Intake control device for internal combustion engine
JP3260508B2 (en) Gas-fuel mixture mixture formation device
JPH02267340A (en) Air-fuel ratio control device for internal combustion engine
JPH06200835A (en) Air-fuel ratio control device of internal combustion engine
JPS59138735A (en) Fuel feeder for engine
JP3260505B2 (en) Gas-fuel mixture mixture formation device
JP3328887B2 (en) Operation control device for gaseous fuel engine
JPS6053654A (en) Supply device of secondary intake air in internal- combustion engine
JPS605782B2 (en) Internal combustion engine intake control device
JPS5882044A (en) Idling operation controlling apparatus for internal- combustion engine
JPH0544507A (en) Exhaust reflux device of diesel engine
JPH07189708A (en) Swirl control valve opening/closing control device
JPS5857062A (en) Egr control device of gasoline engine
JPS59229044A (en) Exhaust gas return control device for internal- combustion engine
JPS6113102B2 (en)
JPH08312400A (en) Intake air flow controller
JPS58176441A (en) Intake-air controlling apparatus for engine