JPS60187893A - Measuring device for concentration of gas - Google Patents

Measuring device for concentration of gas

Info

Publication number
JPS60187893A
JPS60187893A JP59044611A JP4461184A JPS60187893A JP S60187893 A JPS60187893 A JP S60187893A JP 59044611 A JP59044611 A JP 59044611A JP 4461184 A JP4461184 A JP 4461184A JP S60187893 A JPS60187893 A JP S60187893A
Authority
JP
Japan
Prior art keywords
gas
analyzer
dehumidifying
concentration
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59044611A
Other languages
Japanese (ja)
Other versions
JPH0414318B2 (en
Inventor
望月 宙充
小沢 裕
三浦 市太郎
近藤 光興
御手洗 裕
輪竹 宏昭
斉藤 年正
深瀬 一男
敏明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc, Chugoku Electric Power Co Inc, Chubu Electric Power Co Inc, Hokuriku Electric Power Co, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP59044611A priority Critical patent/JPS60187893A/en
Publication of JPS60187893A publication Critical patent/JPS60187893A/en
Publication of JPH0414318B2 publication Critical patent/JPH0414318B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、ガス成分濃度を測定して例えば原子炉系の異
常等を監視するガス11i1度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas 11i1 degree measuring device that measures the concentration of gas components to monitor, for example, abnormalities in a nuclear reactor system.

[発明の技術的背景およびその問題点」原子炉の運転中
に冷却材喪失事故が発生した場合、原子炉格納容器(以
下、PCvと指称する)内にはH2ガスと02ガスが増
加してくる。従って、原子炉の安全管理の点より、ガス
濃度の測定は不可欠なものである。
[Technical background of the invention and its problems] When a loss of coolant accident occurs during operation of a nuclear reactor, H2 gas and 02 gas increase in the reactor containment vessel (hereinafter referred to as PCv). come. Therefore, from the standpoint of nuclear reactor safety management, measurement of gas concentration is essential.

ところで、従来の沸騰水形原子炉(以下、BWRと称す
る)等では、ガスIIIUの測定手段として、隔膜ガル
バニ電池式検出器を採用し、かつ同検出器の大半はPC
v内に直接設置している。この隔膜ガルバニ電池式検出
器は、第1図に示すように検出基体1の前面側凹部にガ
スを透過する樹脂製隔膜2を挾むように押え蓋3が装着
され、この押えM3は測定対象ガスGを上記隔膜2側へ
導入するガス導入口4を有し、また検出基体1の内部側
には検知電極5、電解質液6および対極7が配置されて
いる。なお、樹脂製隔膜2は、O−リング等のシール部
材を介して検出基体1に装着され、電解質液6がガス導
入口4側に漏れない構造になっている。
By the way, in conventional boiling water reactors (hereinafter referred to as BWRs), diaphragm galvanic cell type detectors are used as a means of measuring gas IIIU, and most of these detectors are PC-based.
It is installed directly inside v. As shown in FIG. 1, in this diaphragm galvanic battery type detector, a presser cover 3 is attached to a concave portion on the front side of a detection base 1 so as to sandwich a gas-permeable resin diaphragm 2. It has a gas introduction port 4 for introducing gas into the diaphragm 2 side, and a detection electrode 5, an electrolyte solution 6, and a counter electrode 7 are arranged inside the detection substrate 1. Note that the resin diaphragm 2 is attached to the detection base 1 via a sealing member such as an O-ring, and has a structure that prevents the electrolyte solution 6 from leaking to the gas inlet 4 side.

而して、以上のような検出器を測定対象ガス雰囲気内に
設置すると、その測定対象ガス成分は、そのガス雰囲気
内分圧に比例して隔膜2を透過した後、内部において酸
化あるいは還元反応を起こし、これにより検出器の検知
電極5および対極7間から測定対象成分の211度に応
じた電流を取り出すことができる。
When the above-mentioned detector is installed in the atmosphere of the gas to be measured, the components of the gas to be measured pass through the diaphragm 2 in proportion to the partial pressure in the gas atmosphere, and then undergo an oxidation or reduction reaction inside. As a result, a current corresponding to 211 degrees of the component to be measured can be extracted from between the sensing electrode 5 and the counter electrode 7 of the detector.

しかし、実際上、冷却材喪失事故が発生した場合、PV
C内の雰囲気としては高温(約170℃)、高圧(約4
.5kg/cm2−ゲージ圧)、高m(水蒸気過飽和)
の状態となるほか、放射能レベルも高くなることが予想
されている。
However, in practice, if a coolant loss accident occurs, the PV
The atmosphere inside C is high temperature (approx. 170°C) and high pressure (approx.
.. 5kg/cm2-gauge pressure), high m (water vapor supersaturation)
It is expected that the situation will be worse, and that radioactivity levels will also increase.

従って、隔膜ガルバニ電池式検出器はPCM内のかかる
雰囲気によって直接曝されると、吸湿による寿命の低下
、内部の液の放射能分解による指示誤差の発生および応
答速度の遅れ等を生じる場合がある。
Therefore, if a diaphragm galvanic battery type detector is directly exposed to such an atmosphere inside the PCM, it may shorten its lifespan due to moisture absorption, cause reading errors due to radioactive decomposition of the internal liquid, and delay response speed. .

[発明の目的] 本発明は上記実情にかんがみてなされたもので、隔膜ガ
ルバニ電池方式を用いず応答速度にすぐれ、放射能の影
響を受けずにガス成分濃度を高精度に測定するガス濃度
測定装置を提供することにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and provides a gas concentration measurement method that does not use a diaphragm galvanic cell method, has excellent response speed, and can measure gas component concentrations with high accuracy without being affected by radioactivity. The goal is to provide equipment.

[発明の概要] 本発明は、PCM内に存在するガスを例えばサンプルポ
ンプ等で外部に取り出すとともに、そのガスを冷却器で
冷却除湿し、冷却除湿した後のガスを分析計の入力条件
を満すように調整([’えば温度、流量、圧力)し、調
整されたガスを分析計に供給するようにしてガス成分濃
度を測定できるようにし、また濃度測定後のガスおよび
前記冷却除湿したドレンを前記PCVへ返送することに
より、上記目的を達成せんとするガス濃度測定装置であ
る。
[Summary of the Invention] The present invention extracts the gas present in the PCM to the outside using, for example, a sample pump, cools and dehumidifies the gas with a cooler, and uses the cooled and dehumidified gas to meet the input conditions of an analyzer. The adjusted gas is supplied to the analyzer so that the concentration of gas components can be measured, and the gas after the concentration measurement and the cooled and dehumidified drain are supplied to the analyzer. This gas concentration measuring device aims to achieve the above objective by returning the gas to the PCV.

[発明の実施例] 以下、本発明の一実施例について第2図を参照して説明
する。校正用ガスまたは測定対象ガスは、それぞれ電磁
弁11.12を経て1次フィルタ13に供給され、ここ
で粗いごみが取り除かれる。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. 2. The calibration gas or the gas to be measured is supplied via electromagnetic valves 11, 12 to the primary filter 13, where coarse particles are removed.

14は1次フィルタ13を経て入力されたガスを冷却水
によって冷却除湿する冷却器である。15は測定対象ガ
スをサンプリングするために吸引するサンプルポンプで
ありミこのポンプ15間には電磁弁16を設けたバイパ
スラインド7が接続されている。このサンプルポンプ1
5の出力ラインには、微細ごみを取り除く2次フィルタ
18、ガスを後述の分析計の測定条件を満すように調整
するための一圧弁19、圧力計20および分析計と1し
て機能する酸素(02)計21、水素(H2)形22が
順次配置されている。23は分析計を通過した測定対象
ガスの流量を測定する流量計、24は分析計の測定条件
を満足するようにガス条件を調整する調圧弁、25は測
定後のガスを再びPCM内へ返送する返送ポンプ、26
はストップ弁である。27はドレンポットであって、こ
れは冷却器14で除湿されたガス中の水分を捕集し前記
返送ポンプ25の吐出圧を利用してPCM内へ返送する
ためのものである。このドレンポット27の出入口部に
は電磁弁28.29が設りられている。30はレベル計
、31は電′磁弁、32〜+34はストップ弁である。
A cooler 14 cools and dehumidifies the gas input through the primary filter 13 with cooling water. Reference numeral 15 denotes a sample pump that sucks the gas to be measured in order to sample it, and a bypass line 7 provided with a solenoid valve 16 is connected between the pumps 15 . This sample pump 1
The output line of No. 5 includes a secondary filter 18 for removing fine dust, a single-pressure valve 19 for adjusting the gas to meet the measurement conditions of the analyzer, which will be described later, and a pressure gauge 20, which functions as an analyzer. An oxygen (02) meter 21 and a hydrogen (H2) meter 22 are arranged in this order. 23 is a flow meter that measures the flow rate of the gas to be measured that has passed through the analyzer; 24 is a pressure regulating valve that adjusts the gas conditions to satisfy the measurement conditions of the analyzer; and 25 is a gas that returns the measured gas to the PCM. return pump, 26
is a stop valve. A drain pot 27 is used to collect moisture in the gas dehumidified by the cooler 14 and return it to the PCM using the discharge pressure of the return pump 25. Solenoid valves 28 and 29 are provided at the inlet and outlet portions of the drain pot 27. 30 is a level meter, 31 is an electromagnetic valve, and 32 to +34 are stop valves.

次に、以上のように構成されたガス濃度測定装置の作用
を説明する。先ず、測定対象ガスを採集する場合にOい
て述べる。この場合、ストップ弁34を開いた後、サン
プルポンプ15を稼働してサンプルガスを吸引すると、
測定対象ガスはストップ弁34および電磁弁12を通っ
て1次フィルタ13に入り、ここでごみが取り除かれた
後、冷却器14により冷却除湿され、更に2次フィルタ
18で微細ごみを取り除いて後続ライン側へ送り込む。
Next, the operation of the gas concentration measuring device configured as above will be explained. First, the case of collecting the gas to be measured will be described. In this case, after opening the stop valve 34, when the sample pump 15 is operated to suck the sample gas,
The gas to be measured passes through the stop valve 34 and the electromagnetic valve 12 and enters the primary filter 13. After removing dust there, it is cooled and dehumidified by the cooler 14, and further fine dust is removed by the secondary filter 18 before passing through the subsequent filter. Feed it to the line side.

このとき、調圧弁19によってライン内の圧力が調整さ
れているので、2次フィルタ18を通過したガスは調圧
弁19で調整された圧力で酸素計21および水素計22
へ導入され、ここで02ガスと1」2ガスの81度が測
定される。なお、測定対象ガスの元圧が高い場合には、
サンプルポンプ15およびバイパスライン17を通して
酸素計21および水素計22に導入する。
At this time, since the pressure in the line is regulated by the pressure regulating valve 19, the gas that has passed through the secondary filter 18 is sent to the oxygen meter 21 and hydrogen meter 22 at the pressure regulated by the pressure regulating valve 19.
, where 81 degrees of 02 gas and 1''2 gas are measured. In addition, if the source pressure of the gas to be measured is high,
It is introduced into an oxygen meter 21 and a hydrogen meter 22 through a sample pump 15 and a bypass line 17.

而して、測定対象ガスは放射能をもっているので、濃度
測定後のカスは返送ポンプ25により再びpcv内へ返
送覆るようにしている。このとき、返送ポンプ25の吸
引力の影響が酸素側21および水索泪22へかかるのを
防くために、調圧弁24は分析1t21.22を流れる
ガスを一定条件に保持している。
Since the gas to be measured has radioactivity, the residue after the concentration measurement is returned to the PCV by the return pump 25 to cover it. At this time, in order to prevent the influence of the suction force of the return pump 25 from being applied to the oxygen side 21 and the water line 22, the pressure regulating valve 24 maintains the gas flowing through the analysis sections 21 and 22 under a constant condition.

一方、冷Nj器14により除湿されたガス中の水分はド
レンボット27で捕集されるが、このドレンもpcv内
へ返送する。なお、この返送時の条件は、ドレン石が一
定レベルに達したとき、レベルit 30から信号を出
して電磁弁31.29を開くと同時に電磁弁28を閉じ
、返送ポンプ25の吐出圧を利用してドレンボット27
内のドレンをpcv内へ送り込むようにしている。
On the other hand, moisture in the gas dehumidified by the cold NJ device 14 is collected by the drain bot 27, but this drain is also returned to the PCV. The conditions for this return are that when the drain stone reaches a certain level, a signal is issued from the level it 30, the solenoid valve 31.29 is opened, and at the same time the solenoid valve 28 is closed, and the discharge pressure of the return pump 25 is used. Drenbot 27
The drain inside is sent into the PCV.

従って、以上のような構成に覆れば、測定対象ガスは、
元圧が大気圧から5 kg/ cm2 (ゲージ圧)の
間で変動し、しかも湿分が相対湿度100%という高湿
状態となっても、冷却器14で冷却除湿するとともに調
圧弁19で所定圧力に調整したので、分析計への供給ガ
スは大気几付近の一定圧に常時保持することができる。
Therefore, with the above configuration, the gas to be measured is
Even if the original pressure fluctuates between atmospheric pressure and 5 kg/cm2 (gauge pressure) and the humidity reaches a high humidity state of 100% relative humidity, the cooler 14 cools and dehumidifies, and the pressure regulating valve 19 maintains the specified level. Since the pressure is adjusted, the gas supplied to the analyzer can be maintained at a constant pressure near atmospheric pressure at all times.

従って、分析側のか命を延長し得、ガス濃度の高精度測
定を実現できる。また、測定後のガスおよび除湿により
発生したドレン等の総てを一台の返送ポンプ25でザン
ブル源に返送する構成であるので、完全閉ループシステ
ムとすることができ、放射能の危険からも回避できる。
Therefore, the life of the analyzer can be extended, and highly accurate measurement of gas concentration can be realized. In addition, since the configuration is such that all of the gas after measurement and condensate generated by dehumidification are returned to the Zamburu source using one return pump 25, it is possible to create a completely closed loop system and avoid the risk of radioactivity. can.

また、元圧に応じ−Cサンプルポンプ15を動作させる
か、或いはサンプルポンプ15を停止状態にしてバイパ
スライン17を経由してガスを採集可能であり、システ
ムの状態に合せて実用に供し得るものである。
In addition, it is possible to operate the -C sample pump 15 depending on the source pressure, or to stop the sample pump 15 and collect gas via the bypass line 17, which can be put to practical use depending on the system condition. It is.

次に、酸素計21および水素計22の校正を行なう場合
は、電磁弁12を閉じた後、電磁弁11を開き、このラ
インから校正用ガスを導入して酸素計21および水素計
22に与え、これらのバ1器21.22の校正を行なう
。これらの操作は総て別体的に設けた遠隔地の制御盤で
自動的に行なう。
Next, when calibrating the oxygen meter 21 and hydrogen meter 22, close the solenoid valve 12, then open the solenoid valve 11, and introduce the calibration gas from this line to supply it to the oxygen meter 21 and hydrogen meter 22. , and calibrate these valves 21 and 22. All these operations are automatically performed from a separately installed remote control panel.

なお、応答速度が速く、耐@性および耐圧性に有利なも
のとして、酸素計21は例えば磁器風式−、−/ ’(
X 、水素計22は例えば熱伝導度式のものを使用する
。また、上記実施例では酸素側21と水素3122どに
ついて述べたが、そりれ以外の分析計でもよく、或いは
一種類の分析計であってもよい。
The oxygen meter 21 is, for example, a porcelain style type -, -/' (
For example, a thermal conductivity type hydrogen meter 22 is used. Further, in the above embodiment, the oxygen side 21 and the hydrogen 3122 were described, but an analyzer other than the warp type may be used, or a single type of analyzer may be used.

なお、本願発明の一実゛施例において冷却器は一台のみ
記載したが、冷II能力により複数台を備え、これらを
直列または並列接続して冷却能力の向上を計ってもよ0
゜また本願発明の一実施例において2次フィルター18
、調圧弁19および圧力計をこのような順序に配管接続
したがこれに限らず配列順序を変えて実施されてもJ:
い。さらに本願発明の一実施例において酸素計21.水
素計22の順に配列するように記)ホしたが、水素計、
酸素計の順に配列してもよい。さらにまた本願発明の一
実施例において流量計、調圧弁を用いて被測定ガスを所
定圧力、流量に調整しているがこれに限定せず、流量コ
ントローラを用いるように構成されて実施してもよい。
Although only one cooler is described in one embodiment of the present invention, it is also possible to provide a plurality of coolers with cooling II capability and connect them in series or parallel to improve the cooling capacity.
゜Also, in one embodiment of the present invention, the secondary filter 18
, the pressure regulating valve 19 and the pressure gauge are connected via piping in this order, but the arrangement is not limited to this, and even if the arrangement order is changed, J:
stomach. Furthermore, in one embodiment of the present invention, an oxygen meter 21. I wrote it so that it was arranged in the order of hydrogen meter 22), but the hydrogen meter,
They may be arranged in the order of oxygen meters. Furthermore, in one embodiment of the present invention, the gas to be measured is adjusted to a predetermined pressure and flow rate using a flow meter and a pressure regulating valve, but the present invention is not limited to this, and it may also be implemented using a flow controller. good.

ざらにまた本願発明の一実施例において、校正用ガスの
導入場所は、一実施例に限定せず、ポンプ15の後ある
いは分析計21の直前でもよい。
Furthermore, in one embodiment of the present invention, the location where the calibration gas is introduced is not limited to the one embodiment, and may be after the pump 15 or just before the analyzer 21.

以上詳記したJ:うに本発明によれば、異常状態発生時
のpcv内の雰囲気が高温、高圧および高湿の状態であ
っても、これらの雰囲気の状態を与えることなくpcv
内のガスを分析計に供給することができる。従って、分
析itの寿命を延長することができ、また高レベル放射
能の雰囲気に直接曝されるようなことがなくしかも分析
口の内部液の放射能分解による指示誤差という不具合も
解決できる。また、PCVの外部でpcv内のガス濃度
を測定できるため、定期点検以外であってもアクセス可
能であり、さらにサンプルガスはpcv内に再び返送す
るため放射能の影響を受けずにガス濃度を測定できるガ
スS度測定装置を提供できる。
According to the present invention, even if the atmosphere inside the PCV is high temperature, high pressure, and high humidity when an abnormal condition occurs, the PCV is
The gas within can be supplied to the analyzer. Therefore, the life of the analyzer IT can be extended, and it is not directly exposed to an atmosphere of high-level radioactivity, and the problems of reading errors due to radioactive decomposition of the internal liquid in the analysis port can also be solved. In addition, since the gas concentration inside the PCV can be measured outside the PCV, it can be accessed even for purposes other than regular inspections.Furthermore, since the sample gas is returned to the PCV, the gas concentration can be measured without being affected by radioactivity. It is possible to provide a gas S degree measuring device that can measure S degree.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来一般に使用されでいるガス検出器の断面図
、第2図は本発明に係るガス濃度測定装置の一実施例を
示す全体構成図である。 11.12・・・電磁弁、13・・・1次フィルタ、1
4・・・冷却器、15・・・サンプルポンプ、17・・
・バイパスライン、18・・・2次フィルタ、19・・
・調圧弁、21・・・酸素計、22・・・水素計、23
・・・流量削、24・・・調圧弁、25・・・返送ポン
プ、27・・・ドレンポット。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a sectional view of a conventionally commonly used gas detector, and FIG. 2 is an overall configuration diagram showing an embodiment of a gas concentration measuring device according to the present invention. 11.12... Solenoid valve, 13... Primary filter, 1
4...Cooler, 15...Sample pump, 17...
・Bypass line, 18...secondary filter, 19...
・Pressure regulating valve, 21...Oxygen meter, 22...Hydrogen meter, 23
...Flow rate cutter, 24...Pressure regulating valve, 25...Return pump, 27...Drain pot. Applicant's agent Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉格納容器内に存在する成分ガスの濃度を測
定する装置において、前記原子炉格納容器内から外部へ
導き出されたガスを除湿する除湿手段と、この手段によ
って除湿されたガスを所要条件に調整する調整手段と、
この手段によって調整されたガスの成分濃度を測定する
分析計と、この分析ル1による温度測定後のガスを前記
原子炉格納容器へ返送する返送ポンプと、前記除湿手段
によって得られた除湿ドレンを前記原子炉格納容器へ返
還する除湿ドレン返還手段とを備えていることを特徴と
するガス濃度測定装置。
(1) An apparatus for measuring the concentration of component gases present in a reactor containment vessel, which requires a dehumidifying means for dehumidifying the gas led outside from the reactor containment vessel, and a dehumidifying means for dehumidifying the gas dehumidified by this means. adjustment means for adjusting to conditions;
An analyzer that measures the component concentration of the gas adjusted by this means, a return pump that returns the gas after temperature measurement by this analyzer 1 to the reactor containment vessel, and a dehumidifying drain obtained by the dehumidifying means. A gas concentration measuring device comprising a dehumidifying drain return means for returning to the reactor containment vessel.
(2)w4整手段を分析計の前後に設けたことを特徴と
する特許請求の範囲第1項記載のガス濃度測定装置。
(2) The gas concentration measuring device according to claim 1, characterized in that w4 adjustment means are provided before and after the analyzer.
JP59044611A 1984-03-08 1984-03-08 Measuring device for concentration of gas Granted JPS60187893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044611A JPS60187893A (en) 1984-03-08 1984-03-08 Measuring device for concentration of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044611A JPS60187893A (en) 1984-03-08 1984-03-08 Measuring device for concentration of gas

Publications (2)

Publication Number Publication Date
JPS60187893A true JPS60187893A (en) 1985-09-25
JPH0414318B2 JPH0414318B2 (en) 1992-03-12

Family

ID=12696233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044611A Granted JPS60187893A (en) 1984-03-08 1984-03-08 Measuring device for concentration of gas

Country Status (1)

Country Link
JP (1) JPS60187893A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002784A (en) * 1998-04-16 2000-01-07 Toshiba Corp Monitor for atmosphere inside container
JP2017049060A (en) * 2015-08-31 2017-03-09 株式会社東芝 Atmosphere monitoring system and atmosphere monitoring method
WO2017199650A1 (en) * 2016-05-20 2017-11-23 日立Geニュークリア・エナジー株式会社 Flammable gas concentration measurement apparatus and flammable gas concentration measurement method
JP2018205040A (en) * 2017-05-31 2018-12-27 株式会社東芝 Nuclear reactor facility and method of measuring oxygen in nuclear reactor containment vessel
JP2021056006A (en) * 2019-09-26 2021-04-08 株式会社東芝 Nuclear reactor measurement system, and soundness check method of nuclear reactor measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160694A (en) * 1980-05-15 1981-12-10 Tokyo Shibaura Electric Co Device for circulating sampling gas in nuclear reactor container
JPS60157085A (en) * 1984-01-27 1985-08-17 株式会社東芝 Monitor device for gas in housing vessel for reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160694A (en) * 1980-05-15 1981-12-10 Tokyo Shibaura Electric Co Device for circulating sampling gas in nuclear reactor container
JPS60157085A (en) * 1984-01-27 1985-08-17 株式会社東芝 Monitor device for gas in housing vessel for reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002784A (en) * 1998-04-16 2000-01-07 Toshiba Corp Monitor for atmosphere inside container
JP2017049060A (en) * 2015-08-31 2017-03-09 株式会社東芝 Atmosphere monitoring system and atmosphere monitoring method
WO2017199650A1 (en) * 2016-05-20 2017-11-23 日立Geニュークリア・エナジー株式会社 Flammable gas concentration measurement apparatus and flammable gas concentration measurement method
JP2017207448A (en) * 2016-05-20 2017-11-24 日立Geニュークリア・エナジー株式会社 Combustible gas concentration measuring apparatus and combustible gas concentration measurement method
JP2018205040A (en) * 2017-05-31 2018-12-27 株式会社東芝 Nuclear reactor facility and method of measuring oxygen in nuclear reactor containment vessel
JP2021056006A (en) * 2019-09-26 2021-04-08 株式会社東芝 Nuclear reactor measurement system, and soundness check method of nuclear reactor measurement system

Also Published As

Publication number Publication date
JPH0414318B2 (en) 1992-03-12

Similar Documents

Publication Publication Date Title
CN106342210B (en) A kind of for measuring the sampling analytical system of concentration of hydrogen in containment vessel
US3890100A (en) Gas conditioning and analyzing system
JPS60187893A (en) Measuring device for concentration of gas
US4092541A (en) Method for determining the activity concentration in waste gases for specific nuclides
US3468764A (en) Method and apparatus for measuring the concentration of boron
RU2070343C1 (en) Nuclear reactor plant with device for checking air exhausted into ventilation pipe
Mays et al. Distribution and behavior of tritium in the coolant-salt technology facility
US3788813A (en) Gas conditioning and analyzing system
US3783268A (en) Device for measuring activity concentration in primary circulation systems of nuclear reactors
CN114113483B (en) Method and system for collecting products of fission products released by lead bismuth alloy
Langer et al. Mass Spectrometric Differential Thermal Analysis.
US3564237A (en) Infrared automatic analyzing method for blast furnace gas
JPS60157085A (en) Monitor device for gas in housing vessel for reactor
US4838098A (en) Contained radiological analytical chemistry module
CN113023919B (en) Pressurized water reactor sample water gas-liquid separation device and fission gas measurement method
US4909065A (en) Contained radiological analytical chemistry module
CZ282516B6 (en) Apparatus for monitoring atmosphere inside a nuclear plant safety tank
Carroll et al. Techniques for In-Pile Measurements of Fission-Gas Release
JPH1183767A (en) Density measurement device for specified element in fluid
JPS599549A (en) Measurement of gas concentration
JPH02306141A (en) Automatic measuring apparatus of hydrogen and oxygen concentration
JPS6042690A (en) Gas analyzer in container for nuclear reactor
Smith et al. On-line sodium and cover as purity monitors gas operating tools at EBR-II
Nieder Requirements of, and operating experience with, gas analyses on high temperature reactors
SU1220493A1 (en) Meter of steam content in the first circuit of nuclear reactor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term