JPH0414318B2 - - Google Patents

Info

Publication number
JPH0414318B2
JPH0414318B2 JP59044611A JP4461184A JPH0414318B2 JP H0414318 B2 JPH0414318 B2 JP H0414318B2 JP 59044611 A JP59044611 A JP 59044611A JP 4461184 A JP4461184 A JP 4461184A JP H0414318 B2 JPH0414318 B2 JP H0414318B2
Authority
JP
Japan
Prior art keywords
gas
concentration
pcv
analyzer
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59044611A
Other languages
Japanese (ja)
Other versions
JPS60187893A (en
Inventor
Michimitsu Mochizuki
Yutaka Ozawa
Ichitaro Miura
Mitsuoki Kondo
Yutaka Mitarai
Hiroaki Watake
Toshimasa Saito
Kazuo Fukase
Toshiaki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc, Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP59044611A priority Critical patent/JPS60187893A/en
Publication of JPS60187893A publication Critical patent/JPS60187893A/en
Publication of JPH0414318B2 publication Critical patent/JPH0414318B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、ガス成分濃度を測定して例えば原子
炉系の異常等を監視するガス濃度測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas concentration measuring device that measures the concentration of gas components to monitor abnormalities in, for example, a nuclear reactor system.

[発明の技術的背景およびその問題点] 原子炉の運転中に冷却材喪失事故が発生した場
合、原子炉格納容器(以下、PCVと指称する)
内にはH2ガスとO2ガスが増加してくる。従つて、
原子炉の安全管理の面からガス濃度の測定は不可
欠なものである。
[Technical background of the invention and its problems] When a loss of coolant accident occurs during operation of a nuclear reactor, the reactor containment vessel (hereinafter referred to as PCV)
Inside, H 2 gas and O 2 gas increase. Therefore,
Measuring gas concentration is essential from the standpoint of nuclear reactor safety management.

ところで、従来の沸騰水形原子炉(以下、
BWRと指称する)等では、ガス濃度の測定手段
として、隔膜ガルバニ電池式検出器を採用し、か
つ、当該検出器の大半はPCV内に直接設置して
いる。この隔膜ガルバニ電池式検出器は、第1図
に示すように検出基体1の前面側凹部にガスを透
過する樹脂製隔膜2を挟むように押え蓋3が装着
され、この押え蓋3は測定対象ガスGを前記隔膜
2側へ導入するガス導入口4を有し、また検出基
体1の内部側には検知電極5、電解質液6および
対極7が配置されている。なお、樹脂製隔膜2
は、Oリング等のシール部材を介して検出基体1
に装着され、電解質液6がガス導入口4側に漏れ
出ない構造となつている。
By the way, conventional boiling water reactors (hereinafter referred to as
(referred to as BWR), etc., employ a diaphragm galvanic cell type detector as a means of measuring gas concentration, and most of these detectors are installed directly inside the PCV. In this diaphragm galvanic cell type detector, as shown in Fig. 1, a presser cover 3 is attached to a concave portion on the front side of a detection base 1 so as to sandwich a gas-permeable resin diaphragm 2. It has a gas introduction port 4 for introducing gas G into the diaphragm 2 side, and a detection electrode 5, an electrolyte solution 6, and a counter electrode 7 are arranged inside the detection substrate 1. In addition, the resin diaphragm 2
is the detection substrate 1 via a sealing member such as an O-ring.
The structure is such that the electrolyte solution 6 does not leak out to the gas inlet 4 side.

しかして、以上のような検出器を測定対象ガス
雰囲気内に設置すると、その測定対象ガス成分
は、そのガス雰囲気内分圧に比例して隔膜2を透
過した後、内部において酸化或いは還元反応を起
こし、これにより検出器の検知電極5および対極
7間から測定対象成分の濃度に応じた電流を取り
出すことができる。
Therefore, when the above-mentioned detector is installed in an atmosphere of a gas to be measured, the components of the gas to be measured pass through the diaphragm 2 in proportion to the partial pressure in the gas atmosphere, and then undergo an oxidation or reduction reaction inside. As a result, a current corresponding to the concentration of the component to be measured can be extracted from between the sensing electrode 5 and the counter electrode 7 of the detector.

しかし、実際上、冷却材喪失事故が発生した場
合、PCV内の雰囲気としては高温(約170℃)、
高圧(4.5Kg/cm2・ゲージ圧)、高湿(水蒸気過飽
和)の状態となるほか、放射能レベルも高くなる
ことが予想されている。
However, in reality, when a loss of coolant accident occurs, the atmosphere inside the PCV is high (approximately 170℃),
In addition to high pressure (4.5 kg/cm 2 gauge pressure) and high humidity (water vapor supersaturation), radioactivity levels are also expected to rise.

従つて、隔膜ガルバニ電池式検出器はPCV内
のかかる雰囲気によつて直接曝されると、吸湿に
よる寿命の低下、内部の液の放射能分解による指
示誤差の発生および応答速度の遅れなどが発生す
る。
Therefore, if a diaphragm galvanic cell type detector is directly exposed to such an atmosphere inside the PCV, it will shorten its life due to moisture absorption, cause reading errors due to radioactive decomposition of the internal liquid, and slow response speed. do.

そこで、以上のような不具合を除去するため
に、従来、PCV内から測定対象ガスを取り出し
て冷却器にて冷却除湿した後、酸素濃度および水
素濃度を測定してPCV内に返送する一方、この
冷却除湿されたドレンをそのままドレン受け、つ
まり排水口に流す方式か、或いはPCVの遮蔽壁
に貫通孔を開けてサンプリングガス収集部とする
とともに、このサンプリングガス収集部に冷却管
を配設することにより、PCV内の測定対象ガス
を該冷却管で冷却除湿した後、PCV外部に取り
出して酸素濃度および水素濃度を測定する方式が
ある(特開昭56−160694号公報)。
Therefore, in order to eliminate the above-mentioned problems, conventionally, the gas to be measured is taken out from inside the PCV, cooled and dehumidified in a cooler, and then the oxygen and hydrogen concentrations are measured and returned to the PCV. Either the cooled and dehumidified drain is directly sent to the drain, that is, it is allowed to flow into the drain, or a through hole is made in the shielding wall of the PCV to serve as a sampling gas collection section, and a cooling pipe is installed in this sampling gas collection section. Accordingly, there is a method in which the gas to be measured inside the PCV is cooled and dehumidified using the cooling pipe, and then taken out to the outside of the PCV to measure the oxygen concentration and hydrogen concentration (Japanese Patent Laid-Open No. 160694/1982).

従つて、以上のような装置によれば、PCV内
の雰囲気を直接受けることがないので、以上のよ
うな不具合を除去することができるものの、特に
前者のものは冷却除湿されたドレンを排水口に流
す方式であるので、放射能の濃度が高いとき排水
口の下流を汚染する問題があり、また後者の場合
には冷却除湿されたドレンを自然流下方式で
PCV内へ戻すようにしているので、PCV内の圧
力によつてドレンの自重だけでなかなか戻りにく
いこと、またサンプリングガス収集部の気密性に
十分な注意を払う必要がある。
Therefore, according to the above-mentioned device, the above-mentioned problems can be eliminated because it is not directly exposed to the atmosphere inside the PCV. This method causes the problem of contaminating the downstream of the drain when the concentration of radioactivity is high, and in the latter case, the cooled and dehumidified drain is drained by gravity
Since the drain is returned to the PCV, due to the pressure inside the PCV, it is difficult to return due to the weight of the drain alone, and it is necessary to pay sufficient attention to the airtightness of the sampling gas collection section.

[発明の目的] 本発明は上記実情に鑑みてなされたもので、隔
膜ガルバニ電池方式を用いずにPCV外部で所要
とする測定条件の下に適切にガス成分濃度を測定
でき、冷却除湿されたドレンをPCV内へ確実に
戻すことができ、かつ、気密性の問題を少なくし
うるガス濃度測定装置を提供することにある。
[Object of the invention] The present invention has been made in view of the above-mentioned circumstances, and it is possible to appropriately measure the concentration of gas components under the required measurement conditions outside the PCV without using the diaphragm galvanic cell method, and it is possible to properly measure the concentration of gas components under the required measurement conditions without using the diaphragm galvanic cell method. An object of the present invention is to provide a gas concentration measuring device that can reliably return drain into a PCV and reduce airtightness problems.

[発明の概要] 本発明は、PCV内に存在するガスを例えばサ
ンプルポンプ等で外部に取り出すとともに、その
ガスを冷却器で冷却除湿し、その冷却除湿した後
のガスを分析計の入力条件を満たすように調整
(例えば温度、流量、圧力)し、ここで調整され
たガスを分析計に供給してガス成分濃度を測定で
きるようにし、また濃度測定後のガスをPCVへ
返送する返送ポンプの吐出圧を利用して、前記冷
却除湿されたドレンも同時に前記PCVへ返送す
ることにより、上記目的を達成せんとするガス濃
度測定装置である。
[Summary of the Invention] The present invention extracts the gas existing in the PCV to the outside using a sample pump, etc., cools and dehumidifies the gas with a cooler, and adjusts the input conditions of the analyzer to the cooled and dehumidified gas. The adjusted gas is supplied to the analyzer to measure the concentration of gas components, and the return pump returns the gas to the PCV after concentration measurement. This gas concentration measuring device attempts to achieve the above object by simultaneously returning the cooled and dehumidified drain to the PCV using discharge pressure.

[発明の実施例] 以下、本発明の一実施例について第2図を参照
して説明する。校正用ガスまたは測定対象ガス
は、それぞれ電磁弁11,12を経て1次フイル
タ13に供給され、ここで粗いごみが取り除かれ
る。14は1次フイルタ13を経て入力されたガ
スを冷却水によつて冷却除湿する冷却器である。
15は測定対象ガスをサンプリングするために吸
引するサンプルポンプであり、このポンプ15の
両端には電磁弁16を設けたバイパスライン17
が接続されている。このサンプルポンプ15の出
力ラインには、微細なごみを取り除く2次フイル
タ18、ガスを後述の分析計の測定条件を満たす
ように調整するための調圧弁19、圧力計20お
よび分析計として機能するための酸素(O2)計
21、水素(H2)計22が順次配置されている。
23は分析計を通過した測定対象ガスの流量を測
定する流量計、24は分析計の測定条件を満足す
るようにガス条件を調整する調圧弁、25は測定
後のガスを再びPCV内に返送する返送ポンプ、
26はストツプ弁である。27はドレンポツトで
あつて、これは冷却器14で除湿されたガス中の
水分を補集し前記返送ポンプ25の吐出圧を利用
してPCV内へ返送するためのものである。この
ドレンポツト27の出入口部には電磁弁28,2
9が設けられている。30はレベル計、31は電
磁弁、32〜34はストツプ弁である。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. 2. The calibration gas or the gas to be measured is supplied to a primary filter 13 via electromagnetic valves 11 and 12, respectively, where coarse dust is removed. A cooler 14 cools and dehumidifies the gas input through the primary filter 13 using cooling water.
Reference numeral 15 denotes a sample pump that sucks the gas to be measured in order to sample it, and a bypass line 17 is provided at both ends of this pump 15 with a solenoid valve 16.
is connected. The output line of the sample pump 15 includes a secondary filter 18 for removing minute dust, a pressure regulating valve 19 for adjusting the gas to meet the measurement conditions of the analyzer described later, a pressure gauge 20, and a pressure gauge 20 for functioning as an analyzer. An oxygen (O 2 ) meter 21 and a hydrogen (H 2 ) meter 22 are arranged in this order.
23 is a flow meter that measures the flow rate of the gas to be measured that has passed through the analyzer, 24 is a pressure regulating valve that adjusts the gas conditions to satisfy the measurement conditions of the analyzer, and 25 is a gas that returns the measured gas to the PCV. return pump,
26 is a stop valve. A drain pot 27 is used to collect moisture in the gas dehumidified by the cooler 14 and return it to the PCV using the discharge pressure of the return pump 25. At the entrance and exit of this drain pot 27, there are solenoid valves 28, 2.
9 is provided. 30 is a level meter, 31 is a solenoid valve, and 32 to 34 are stop valves.

次に、以上のように構成されたガス濃度測定装
置の作用を説明する。先ず、測定対象ガスを採集
する場合について述べる。この場合、ストツプ弁
34を開いた後、サンプルポンプ15を稼働して
サンプルガスを吸引すると、測定対象ガスはスト
ツプ弁34および電磁弁12を通つて1次フイル
タ13に入り、ここでごみが取り除かれた後、冷
却器14により冷却除湿され、更に2次フイルタ
18で微細なごみを取り除いて後続ライン側へ送
り込む。このとき、調圧弁19によつてライン内
の圧力が調整されているので、2次フイルタ18
を通過したガスは調圧弁19で調整された圧力で
酸素計21および水素計22へ導入され、ここで
O2ガスとH2ガスの濃度が測定される。なお、測
定対象ガスの元圧が高い場合には、サンプルポン
プ15およびバイパスライン17を通して酸素計
21および水素計22に導入する。
Next, the operation of the gas concentration measuring device configured as above will be explained. First, the case of collecting the gas to be measured will be described. In this case, after opening the stop valve 34, when the sample pump 15 is operated to suck in the sample gas, the gas to be measured passes through the stop valve 34 and the solenoid valve 12 and enters the primary filter 13, where dust is removed. After that, it is cooled and dehumidified by the cooler 14, and further, fine dust is removed by the secondary filter 18 and sent to the subsequent line side. At this time, since the pressure in the line is adjusted by the pressure regulating valve 19, the secondary filter 18
The gas that has passed is introduced into an oxygen meter 21 and a hydrogen meter 22 at a pressure adjusted by a pressure regulating valve 19, where it is
The concentrations of O 2 and H 2 gases are measured. Note that when the source pressure of the gas to be measured is high, it is introduced into the oxygen meter 21 and hydrogen meter 22 through the sample pump 15 and bypass line 17.

しかして、測定対象ガスは放射能をもつている
ので、濃度測定後のガスは返送ポンプ25により
再びPCV内へ返送される。このとき、返送ポン
プ25の吸引力の影響が酸素計21および水素計
22へかかるのを防ぐために、調圧弁24は分析
計21,22を流れるガスを一定条件に保持して
いる。
Since the gas to be measured has radioactivity, the gas after the concentration measurement is returned to the PCV by the return pump 25. At this time, in order to prevent the suction force of the return pump 25 from affecting the oxygen meter 21 and the hydrogen meter 22, the pressure regulating valve 24 maintains the gas flowing through the analyzers 21 and 22 at a constant condition.

一方、冷却器14により除湿されたガス中の水
分はドレンポツト27で補集されるが、このドレ
ンもPCV内へ返送される。なお、この返送時の
条件は、ドレン量が一定レベルに達したとき、レ
ベル計30から信号を出して電磁弁31,29を
開くと同時に電磁弁28を閉じ、返送ポンプ25
の吐出圧を利用してドレンポツト27内のドレン
をPCV内へ送り込むようにしている。
On the other hand, moisture in the gas dehumidified by the cooler 14 is collected in the drain pot 27, but this drain is also returned to the PCV. The conditions for this return are that when the drain amount reaches a certain level, a signal is output from the level meter 30, the solenoid valves 31 and 29 are opened, and at the same time the solenoid valve 28 is closed, and the return pump 25 is opened.
The drain in the drain pot 27 is sent into the PCV using the discharge pressure.

従つて、以上のような構成によれば、測定対象
ガスは、元圧が大気圧から5Kg/cm2(ゲージ圧)
の間で変動し、しかも湿分が相対湿度100%とい
う高湿状態となつても、冷却器14で冷却除湿す
るとともに調圧弁19で所定圧力に調整したの
で、分析計への供給ガスは大気圧付近の一定圧に
常時保持することができる。従つて、分析計の寿
命を延長し得、ガス濃度の高精度測定を実現でき
る。また、測定後のガスおよび除湿により発生し
たドレン等の総てを一台の返送ポンプ25でサン
プル源に返送する構成であるので、完全閉ループ
システムとすることができ、放射能の危険からも
回避できる。また、元圧に応じてサンプルポンプ
15を動作させるか、或いはサンプルポンプ15
を停止状態にしてバイパスライン17を経由して
ガスを採集可能であり、システムの状態に合せて
実用に供し得るものである。
Therefore, according to the above configuration, the gas to be measured has an original pressure of 5 kg/cm 2 (gauge pressure) from atmospheric pressure.
Even if the humidity fluctuates between It can always maintain a constant pressure near atmospheric pressure. Therefore, the life of the analyzer can be extended and highly accurate measurement of gas concentration can be realized. In addition, since the configuration is such that all of the gas after measurement and condensate generated by dehumidification are returned to the sample source using a single return pump 25, it is possible to create a completely closed loop system and avoid the risk of radioactivity. can. In addition, the sample pump 15 may be operated depending on the source pressure, or the sample pump 15 may be operated depending on the source pressure.
It is possible to collect gas via the bypass line 17 with the system in a stopped state, and it can be put to practical use depending on the state of the system.

次に、酸素計21および水素計22の校正を行
う場合は、電磁弁12を閉じた後、電磁弁11を
開き、このラインから校正用ガスを導入して酸素
計21および水素計22に与え、これらの計器2
1,22の校正を行う。これらの操作は総て別体
的に設けた遠隔地の制御盤で自動的に行う。
Next, when calibrating the oxygen meter 21 and hydrogen meter 22, close the solenoid valve 12, then open the solenoid valve 11, and introduce the calibration gas from this line to supply it to the oxygen meter 21 and hydrogen meter 22. , these instruments 2
Perform calibrations 1 and 22. All these operations are performed automatically from a separately installed remote control panel.

なお、応答速度が速く、耐震性および耐圧性に
有利なものとして、酸素計21は例えば磁器風式
のものを、水素計22は例えば熱伝導度式のもの
を使用する。また、上記実施例では酸素計21と
水素計22とについて述べたが、それ以外の分析
計でもよく、或いは一種類の分析計であつてもよ
い。
Note that the oxygen meter 21 is of a porcelain style type, for example, and the hydrogen meter 22 is of a thermal conductivity type, for example, as they have a fast response speed and are advantageous in earthquake resistance and pressure resistance. Further, in the above embodiment, the oxygen meter 21 and the hydrogen meter 22 were described, but other analyzers may be used, or it may be one type of analyzer.

なお、本発明の一実施例において冷却器は一台
のみ記載したが、冷却能力により複数台を備え、
これらを直列または並列接続して冷却能力の向上
を図つてもよい。また、上記実施例では、2次フ
イルタ18、調圧弁19および圧力計20の順序
で配管接続したが、これに限らず配列順序を変え
て実施してもよい。さらに、流量計、調圧弁を用
いて被測定ガスを所定の圧力、流量に調整してい
るが、これに限定せず、流量コントローラを用い
るように構成してもよい。また、校正用ガスの導
入場所は、一実施例に限定せず、ポンプ15の後
或いは分析計21の直前でもよい。
In addition, although only one cooler is described in one embodiment of the present invention, multiple coolers may be provided depending on the cooling capacity.
These may be connected in series or in parallel to improve the cooling capacity. Further, in the above embodiment, the secondary filter 18, the pressure regulating valve 19, and the pressure gauge 20 are connected via piping in this order, but the arrangement is not limited to this, and the arrangement order may be changed. Furthermore, although the gas to be measured is adjusted to a predetermined pressure and flow rate using a flow meter and a pressure regulating valve, the present invention is not limited thereto, and a flow rate controller may be used. Further, the introduction location of the calibration gas is not limited to one embodiment, and may be after the pump 15 or immediately before the analyzer 21.

以上説明したように本発明によれば、異常状態
発生時のPCV内の雰囲気が高温、高圧および高
湿の状態であつても、これらの雰囲気の影響を与
えることなくPCV内のガスを分析計に供給する
ことができる。従つて、分析計の寿命を延長する
ことができ、また高レベル放射能の雰囲気に直接
曝されるようなことがなく、しかも分析計の内部
液の放射能分解による指示誤差という不具合も解
決できる。また、PCVの外部でPCV内のガス濃
度を測定できるため、定期点検以外であつてもア
クセス可能であり、さらにサンプルガスはPCV
内に再び返送するため放射能の影響を受けずにガ
ス濃度を測定できる。また、測定ガスを返送する
返送ポンプの吐出圧を利用して、冷却除湿後のド
レンをPCVへ返送するので、PCVに確実にドレ
ンを戻すことができ、しかも従来のようにPCV
の壁に貫通孔を設けて特別な除湿機能を組込む必
要がなく、気密性に特別な注意を払う必要がな
い。
As explained above, according to the present invention, even if the atmosphere inside the PCV is high temperature, high pressure, and high humidity when an abnormal condition occurs, the gas inside the PCV can be analyzed without being affected by these atmospheres. can be supplied to Therefore, the life of the analyzer can be extended, the analyzer is not directly exposed to an atmosphere of high-level radioactivity, and the problem of reading errors due to radioactive decomposition of the internal liquid of the analyzer can be solved. . In addition, since the gas concentration inside the PCV can be measured outside the PCV, it can be accessed even outside of regular inspections, and the sample gas can also be accessed outside the PCV.
The gas concentration can be measured without being affected by radioactivity because the gas is sent back into the atmosphere. In addition, since the discharge pressure of the return pump that returns the measured gas is used to return the condensate after cooling and dehumidification to the PCV, it is possible to reliably return the condensate to the PCV.
There is no need to provide a special dehumidification function by providing a through hole in the wall, and there is no need to pay special attention to airtightness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来一般的に使用されているガス検出
器の断面図、第2図は本発明に係るガス濃度測定
装置の一実施例を示す全体構成図である。 11,12……電磁弁、13……1次フイル
タ、14……冷却器、15……サンプルポンプ、
17……バイパスライン、18……2次フイル
タ、19……調圧弁、21……酸素計、22……
水素計、23……流量計、24……調圧弁、25
……返送ポンプ、27……ドレンポツト。
FIG. 1 is a sectional view of a conventionally commonly used gas detector, and FIG. 2 is an overall configuration diagram showing an embodiment of a gas concentration measuring device according to the present invention. 11, 12... Solenoid valve, 13... Primary filter, 14... Cooler, 15... Sample pump,
17... Bypass line, 18... Secondary filter, 19... Pressure regulating valve, 21... Oxygen meter, 22...
Hydrogen meter, 23... Flow meter, 24... Pressure regulating valve, 25
...Return pump, 27...Drain pot.

Claims (1)

【特許請求の範囲】 1 原子炉格納容器内に存在する成分ガスの濃度
を測定するガス濃度測定装置において、前記原子
炉格納容器内から外部へ導き出されたガスを除湿
する除湿手段と、この除湿手段によつて除湿され
たガスを所要の測定条件を満たすように調整する
調整手段と、この調整手段によつて調整されたガ
スの成分濃度を測定する分析計と、この分析計に
よる濃度測定後のガスを所定の吐出圧で前記原子
炉格納容器内へ返送する返送ポンプと、前記除湿
手段によつて得られた除湿ドレンを前記返送ポン
プの所定の吐出圧を利用して前記原子炉格納容器
内へ返還する除湿ドレン返還手段とを備えたこと
を特徴とするガス濃度測定装置。 2 調整手段は、分析計の前後に設けたことを特
徴とする特許請求の範囲第1項記載のガス濃度測
定装置。
[Scope of Claims] 1. A gas concentration measuring device for measuring the concentration of component gases present in a reactor containment vessel, comprising: a dehumidifying means for dehumidifying gas led out from inside the reactor containment vessel; an adjusting means for adjusting the gas dehumidified by the means to satisfy required measurement conditions; an analyzer for measuring the component concentration of the gas adjusted by the adjusting means; and an analyzer for measuring the concentration of the gas after the concentration is measured by the analyzer. a return pump that returns the gas into the reactor containment vessel at a predetermined discharge pressure; A gas concentration measuring device characterized by comprising a dehumidifying drain return means for returning the dehumidifying drain to the inside. 2. The gas concentration measuring device according to claim 1, wherein the adjusting means is provided before and after the analyzer.
JP59044611A 1984-03-08 1984-03-08 Measuring device for concentration of gas Granted JPS60187893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044611A JPS60187893A (en) 1984-03-08 1984-03-08 Measuring device for concentration of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044611A JPS60187893A (en) 1984-03-08 1984-03-08 Measuring device for concentration of gas

Publications (2)

Publication Number Publication Date
JPS60187893A JPS60187893A (en) 1985-09-25
JPH0414318B2 true JPH0414318B2 (en) 1992-03-12

Family

ID=12696233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044611A Granted JPS60187893A (en) 1984-03-08 1984-03-08 Measuring device for concentration of gas

Country Status (1)

Country Link
JP (1) JPS60187893A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002784A (en) * 1998-04-16 2000-01-07 Toshiba Corp Monitor for atmosphere inside container
JP2017049060A (en) * 2015-08-31 2017-03-09 株式会社東芝 Atmosphere monitoring system and atmosphere monitoring method
JP6664276B2 (en) * 2016-05-20 2020-03-13 日立Geニュークリア・エナジー株式会社 Combustible gas concentration measuring device and combustible gas concentration measuring method
JP6825992B2 (en) * 2017-05-31 2021-02-03 株式会社東芝 Oxygen measurement method in the reactor containment vessel
JP7242493B2 (en) * 2019-09-26 2023-03-20 株式会社東芝 Nuclear reactor measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160694A (en) * 1980-05-15 1981-12-10 Tokyo Shibaura Electric Co Device for circulating sampling gas in nuclear reactor container
JPS60157085A (en) * 1984-01-27 1985-08-17 株式会社東芝 Monitor device for gas in housing vessel for reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160694A (en) * 1980-05-15 1981-12-10 Tokyo Shibaura Electric Co Device for circulating sampling gas in nuclear reactor container
JPS60157085A (en) * 1984-01-27 1985-08-17 株式会社東芝 Monitor device for gas in housing vessel for reactor

Also Published As

Publication number Publication date
JPS60187893A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
US5080693A (en) Tritium monitor and collection system
CN106342210B (en) A kind of for measuring the sampling analytical system of concentration of hydrogen in containment vessel
US5345479A (en) Sensitivity enhancement for airborne radioactivity monitoring system to detect reactor coolant leaks
JPS62204141A (en) Measuring device for gas dissolved into water
CN109031390A (en) It is a kind of complexity gaseous environment in different shape tritium monitoring method
US3890100A (en) Gas conditioning and analyzing system
JPH0414318B2 (en)
RU2070343C1 (en) Nuclear reactor plant with device for checking air exhausted into ventilation pipe
US4835395A (en) Continuous aqueous tritium monitor
US3783268A (en) Device for measuring activity concentration in primary circulation systems of nuclear reactors
US3940618A (en) Sampling device for the analysis of a fluid
US4838098A (en) Contained radiological analytical chemistry module
Jalbert A new tritium monitor for the Tokamak Fusion Test Reactor
US4909065A (en) Contained radiological analytical chemistry module
JPS60157085A (en) Monitor device for gas in housing vessel for reactor
CN113023919B (en) Pressurized water reactor sample water gas-liquid separation device and fission gas measurement method
JP2001153956A (en) Apparatus for measuring radioactivity concentration of gas
GB2120782A (en) Radioactivity monitoring
Carroll et al. Techniques for In-Pile Measurements of Fission-Gas Release
JPH0151937B2 (en)
JP2011137700A (en) Leakage detector
Holmes et al. Sodium technology at EBR-II
JPH02306141A (en) Automatic measuring apparatus of hydrogen and oxygen concentration
JPS6212831A (en) Sample collecting system
SU813213A1 (en) Method of determination of boron concentration

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term