JP2001153956A - Apparatus for measuring radioactivity concentration of gas - Google Patents

Apparatus for measuring radioactivity concentration of gas

Info

Publication number
JP2001153956A
JP2001153956A JP33385499A JP33385499A JP2001153956A JP 2001153956 A JP2001153956 A JP 2001153956A JP 33385499 A JP33385499 A JP 33385499A JP 33385499 A JP33385499 A JP 33385499A JP 2001153956 A JP2001153956 A JP 2001153956A
Authority
JP
Japan
Prior art keywords
gas
measurement
radioactivity
measuring
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33385499A
Other languages
Japanese (ja)
Inventor
Takao Kawashima
孝雄 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP33385499A priority Critical patent/JP2001153956A/en
Publication of JP2001153956A publication Critical patent/JP2001153956A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for measuring the radioactivity concentration of gas continuously and having a wide sensitivity in which increase of measurement value is suppressed even for a high radioactivity concentration only with a low range monitor. SOLUTION: In order to suppress increase in the measurement value of an apparatus for measuring radioactivity concentration of gas, radioactivity quantity being brought to a gas measuring container 7 is limited utilizing the fact that the radioactivity quantity is proportional to the measurement value. The inventive apparatus for measuring radioactivity concentration of gas is provided with a gas measuring container 13 of different capacity. Furthermore, a purge line for replacing with clean air is provided in order to eliminate the effect of background radiation due to radioactive substances brought into a measuring container on the non-measuring side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力施設内等の
放射線を監視する気体放射能濃度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas radioactivity concentration measuring device for monitoring radiation in a nuclear facility or the like.

【0002】[0002]

【従来の技術】原子力発電設備の気体放射能濃度を測定
する装置としては、測定容器に設置された放射線検出器
で連続的に放射線を測定し、この放射線レベルを指示記
録する方法が採られている。気体放射能濃度測定装置を
用いて放射性物質の増加を検知し、プラントの安全性、
環境への放射線影響を評価すためには、微小な放射能濃
度から高放射能濃度までの計測範囲を精度良く測定する
ことが課題とされている。
2. Description of the Related Art As a device for measuring the concentration of gaseous radioactivity in a nuclear power plant, a method has been adopted in which radiation is continuously measured by a radiation detector installed in a measurement container and the radiation level is indicated and recorded. I have. Using a gas radioactivity concentration measurement device to detect an increase in radioactive materials,
In order to evaluate the effects of radiation on the environment, it is important to accurately measure a measurement range from a minute radioactivity concentration to a high radioactivity concentration.

【0003】このような課題を解決した気体放射能濃度
測定装置の公知例としては、特開平10−200040
号のように一般的には、計測範囲の異なる検出器と測定
容器を設置して精度良く測定している。
[0003] As a known example of a gas radioactivity concentration measuring device which has solved such a problem, Japanese Patent Laid-Open No. 10-200040 is known.
In general, detectors and measurement containers with different measurement ranges are installed and measurement is performed with high accuracy.

【0004】このほかに公開されている例としては、特
開昭53−142283号のように、測定容器内の気体
の圧力を制御し、測定容器内の気体放射能を圧縮・希釈
することにより計測範囲を拡大する気体放射能濃度測定
装置がある。
[0004] In addition, as another disclosed example, as disclosed in JP-A-53-142283, by controlling the pressure of gas in a measurement container and compressing and diluting gas radioactivity in the measurement container. There is a gas radioactivity concentration measurement device that expands the measurement range.

【0005】[0005]

【発明が解決しようとする課題】原子力発電所の気体放
射能濃度測定装置の一つである排気筒モニタは、連続的
に希ガスからの放射線を低レンジモニタと高レンジモニ
タをそれぞれの測定容器に設けて測定しているため2種
類の検出器とそれぞれ個別の測定容器が必要となる。
An exhaust gas monitor, which is one of the gas radioactivity concentration measuring devices of a nuclear power plant, continuously monitors a low range monitor and a high range monitor for radiation from a rare gas in respective measurement vessels. Since two types of detectors are used for measurement, separate measurement containers are required.

【0006】また、特開昭53−142283号のよう
な方法が提案されているが、この方法は一つの検出器で
計測範囲を拡大できるが、間欠測定であるため連続モニ
タリングには適してない。
Further, a method as disclosed in Japanese Patent Application Laid-Open No. Sho 53-142283 has been proposed. This method can expand the measurement range with one detector, but is not suitable for continuous monitoring because of intermittent measurement. .

【0007】そこで本発明では、低レンジモニタのみで
高放射能濃度においても計測値の増加を抑制した広範囲
な感度を持つ連続計測可能な気体放射能濃度測定装置を
提供することを目的とする。
Accordingly, an object of the present invention is to provide a gas radioactivity concentration measuring device capable of continuous measurement with a wide range of sensitivity in which an increase in the measured value is suppressed even at a high radioactivity concentration using only a low range monitor.

【0008】[0008]

【課題を解決するための手段】本発明では、気体放射能
濃度測定装置の計測値の増加を抑えるするために、放射
能量と計測値が比例することを利用し、気体測定容器に
持ち込む放射能量を制限させるものとする。このため、
本発明の気体放射能濃度測定装置には、容量の異なる気
体測定容器部を設けるものとする。
According to the present invention, in order to suppress an increase in the measured value of the gas radioactivity concentration measuring device, the radioactivity is taken into the gas measuring container by utilizing the fact that the radioactivity is proportional to the measured value. Shall be restricted. For this reason,
The gas radioactivity concentration measurement device of the present invention is provided with gas measurement containers having different capacities.

【0009】また、非測定側の気体測定容器に持ち込ま
れた放射能からのバックグラウンド放射線の影響を排除
するため清浄気体に置換するパージラインを備える。
In addition, a purge line is provided for purging with a clean gas in order to eliminate the influence of background radiation from radioactivity brought into the non-measurement side gas measurement container.

【0010】請求項1の発明は、プロセス配管と、この
プロセス配管に接続されたサンプリング配管と、前記サ
ンプリング配管の途中に配置された気体放射能濃度測定
容器と、この測定容器の放射線を監視する放射線検出器
と指示警報表示する信号処理部を備えたものにおいて、
前記測定容器の下端に高濃度測定用の測定容器を備え、
信号処理部に接続した弁切替信号発生部と測定容器を非
放射性気体に置換する配管と弁切替信号により開閉する
弁を設けたことを特徴とする。
According to a first aspect of the present invention, there is provided a process pipe, a sampling pipe connected to the process pipe, a gas radioactivity concentration measuring vessel disposed in the middle of the sampling pipe, and monitoring radiation of the measuring vessel. In those equipped with a signal processing unit for displaying a radiation detector and an instruction alarm,
A measurement container for high concentration measurement is provided at the lower end of the measurement container,
A valve switching signal generator connected to the signal processor, a pipe for replacing the measurement container with a non-radioactive gas, and a valve that opens and closes with a valve switching signal are provided.

【0011】[0011]

【発明の実施の形態】以下図面を参照して本発明の実施
例を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1に本発明請求項1の実施例を示す。プ
ロセス配管1の放射性気体は、プロセス配管1に接続さ
れたサンプリング配管2を通り、サンプリング配管2に
設置された低濃度測定容器7を経て、低濃度測定容器7
の下流に接続したサンプルポンプ12からプロセス配管
1に戻される。低濃度測定容器7に導かれた放射性気体
は、放射線検出器7で連続的に計測され、その信号は信
号処理部10で指示・記録される。本発明は、低濃度測
定容器7の下端に高濃度測定用の測定容器13を備え、
パージフィルタ5およびパージ空気入口弁4を測定容器
入口のサンプリング配管2に接続し、この測定容器に非
放射性気体を供給する。低濃度測定容器7の出入り口配
管に弁切替信号により開閉する低濃度測定容器出入口弁
6と高濃度測定容器13の出入り口配管に弁切替信号に
より開閉する高濃度測定容器出入口弁12を取付け、信
号処理部10に接続した検出器の測定レベルにより前記
の弁を作動させる弁切替信号発生部14を設けたことを
特徴とする。
FIG. 1 shows an embodiment of the present invention. The radioactive gas in the process pipe 1 passes through the sampling pipe 2 connected to the process pipe 1, passes through the low-concentration measuring vessel 7 installed in the sampling pipe 2, and then passes through the low-concentration measuring vessel 7.
Is returned to the process pipe 1 from the sample pump 12 connected downstream. The radioactive gas guided to the low-concentration measurement container 7 is continuously measured by the radiation detector 7, and its signal is indicated and recorded by the signal processing unit 10. The present invention includes a measurement container 13 for measuring high concentration at the lower end of the low concentration measurement container 7,
The purge filter 5 and the purge air inlet valve 4 are connected to the sampling pipe 2 at the inlet of the measurement container, and a non-radioactive gas is supplied to the measurement container. A low-concentration measurement container inlet / outlet valve 6 that opens and closes by a valve switching signal at an entrance / exit pipe of the low-concentration measurement container 7 and a high-concentration measurement container entrance / exit valve 12 that opens and closes by a valve switching signal at an entrance / exit pipe of the high-concentration measurement container 13 are attached. A valve switching signal generating section for operating the valve according to a measurement level of a detector connected to the section is provided.

【0013】本図1は、通常時の低放射能測定の運転状
態を示している。プロセス配管1の放射性気体はサンプ
ル入口弁3、低濃度測定容器入口弁6より低濃度測定容
器7に流入し放射線検出器7で計測される。放射性気体
の放射能濃度が上昇し計測値を信号処理部10で判定し
計測上限値に近接した時に、弁切替信号発生部14から
パージ空気入口弁4の開信号、さらにサンプル入口弁3
の閉の信号を発し、非放射性気体を低濃度測定容器7に
導入する。測定容器のガス置換が完了した後、高濃度測
定容器出入口弁12を開、低濃度測定容器入口弁6を閉
としサンプリング流路を切替えた後、サンプル入口弁3
を開、パージ空気入口弁4を閉しパージを停止する。プ
ロセス配管の高放射性気体は、高濃度測定容器13に導
入され放射線検出器7で計測を継続することができる。
これにより低濃度測定容器7内の残留放射性気体を非放
射性気体に置換し、残留放射能によるバックグラウンド
放射線を除却することが期待できる。また、気体が低放
射能レベルに戻った時は、放射性気体の放射能が減少し
計測値を信号処理部10で判定し計測下限値に近接した
時に、弁切替信号発生部14から前述の弁の切替え信号
を発して図1の状態とする。これらにより、計測範囲の
拡大と計測精度向上が期待できる。
FIG. 1 shows an operation state of low radioactivity measurement in a normal state. The radioactive gas in the process pipe 1 flows into the low-concentration measurement container 7 from the sample inlet valve 3 and the low-concentration measurement container inlet valve 6 and is measured by the radiation detector 7. When the radioactivity concentration of the radioactive gas increases and the measured value is determined by the signal processing unit 10 and approaches the upper limit of the measurement, the valve switching signal generating unit 14 outputs an open signal of the purge air inlet valve 4 and further the sample inlet valve 3.
And a non-radioactive gas is introduced into the low-concentration measurement container 7. After the gas replacement of the measurement container is completed, the high-concentration measurement container inlet / outlet valve 12 is opened, the low-concentration measurement container inlet valve 6 is closed, and the sampling flow path is switched.
And the purge air inlet valve 4 is closed to stop purging. The highly radioactive gas in the process pipe is introduced into the high-concentration measurement container 13 and the measurement can be continued by the radiation detector 7.
Thus, it can be expected that the residual radioactive gas in the low-concentration measurement container 7 is replaced with the non-radioactive gas, and the background radiation due to the residual radioactivity is eliminated. Further, when the gas returns to the low radioactivity level, when the radioactivity of the radioactive gas decreases and the measured value is determined by the signal processing unit 10 and approaches the measurement lower limit, the valve switching signal generation unit 14 outputs the above-described valve. Is issued to bring the state shown in FIG. As a result, the measurement range can be expanded and the measurement accuracy can be improved.

【0014】また、本例では、測定部を容器としたが、
より簡単な配管としても可能である。
In this embodiment, the measuring unit is a container.
Simpler piping is also possible.

【0015】また、本例では、パージ用のフィルタによ
り清浄空気を測定容器内に導いているが、ガスボンベ等
の非放射性の気体を用いる構成も有効である。
In this embodiment, the clean air is introduced into the measuring container by the purge filter. However, a configuration using a nonradiative gas such as a gas cylinder is also effective.

【0016】また、本例では、2個の測定容器と1個の
検出器を示したが、複数個の測定容器と複数個の検出器
を設置することや、測定容器の中に配管又は容器を入れ
た構造とすることも可能である。
In this embodiment, two measuring vessels and one detector are shown. However, a plurality of measuring vessels and a plurality of detectors may be installed, and a pipe or vessel may be provided in the measuring vessel. It is also possible to adopt a structure in which is inserted.

【0017】[0017]

【発明の効果】上記のように構成された気体放射能濃度
測定装置においては、高/低濃度測定容器内の残留放射
性気体を非放射性気体に置換し、残留放射能によるバッ
クグラウンド放射線を除却することができる。さらに、
それぞれ検出感度の異なる測定容器を備えることにより
気体放射能濃度測定装置の濃度測定範囲を拡大すること
ができる。
In the gas radioactivity concentration measuring device constructed as described above, the residual radioactive gas in the high / low concentration measurement container is replaced with a non-radioactive gas and background radiation due to the residual radioactivity is eliminated. be able to. further,
By providing measurement containers having different detection sensitivities, the concentration measurement range of the gas radioactivity concentration measurement device can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】気体放射能濃度測定装置の系統構成の実施例を
示す図。
FIG. 1 is a diagram showing an embodiment of a system configuration of a gas radioactivity concentration measuring device.

【符号の説明】[Explanation of symbols]

1…プロセス配管、2…サンプリング配管、3…サンプ
ル入口弁、4…パージ空気入口弁、5…パージフィル
タ、6…低濃度測定容器出入口弁、7…低濃度測定容
器、8…遮へい材、9…放射線検出器、10…信号処理
部、11…サンプルポンプ、12…高濃度測定容器出入
口弁、13…高濃度測定容器、14…弁切替信号発生
部。
DESCRIPTION OF SYMBOLS 1 ... Process piping, 2 ... Sampling piping, 3 ... Sample inlet valve, 4 ... Purge air inlet valve, 5 ... Purge filter, 6 ... Low concentration measurement container inlet / outlet valve, 7 ... Low concentration measurement container, 8 ... Shielding material, 9 ... Radiation detector, 10 ... Signal processing unit, 11 ... Sample pump, 12 ... High-concentration measurement container inlet / outlet valve, 13 ... High-concentration measurement container, 14 ... Valve switching signal generation unit.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G088 EE12 EE21 FF04 HH09 JJ01 JJ09 JJ12 JJ29 KK18 LL02 LL15 MM09 5C086 AA38 AA45 BA20 CA30 CB40 DA07 DA19 GA02  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 2G088 EE12 EE21 FF04 HH09 JJ01 JJ09 JJ12 JJ29 KK18 LL02 LL15 MM09 5C086 AA38 AA45 BA20 CA30 CB40 DA07 DA19 GA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 プロセス配管と、このプロセス配管に接
続されたサンプリング配管と、前記サンプリング配管の
途中に接続された気体放射能濃度測定容器と、この気体
放射能濃度測定容器の放射線を監視する放射線検出器と
指示警報表示する信号処理部を備えたものにおいて、前
記測定容器の下端に高濃度測定用の測定容器を備え、信
号処理部に接続した弁切替信号発生部と測定容器を非放
射性気体に置換する配管と弁切替信号で作動するパージ
弁および測定容器出入り口弁を設けたことを特徴とする
気体放射能濃度測定装置。
1. A process pipe, a sampling pipe connected to the process pipe, a gas radioactivity concentration measurement vessel connected in the middle of the sampling pipe, and radiation for monitoring radiation of the gas radioactivity measurement vessel. A detector provided with a signal processing unit for displaying an instruction and an alarm, wherein a measurement container for high concentration measurement is provided at a lower end of the measurement container, and a valve switching signal generation unit connected to the signal processing unit and the measurement container are connected to a non-radioactive gas. 1. A gas radioactivity concentration measuring device, comprising: a replacement pipe, a purge valve operated by a valve switching signal, and a measurement container inlet / outlet valve.
JP33385499A 1999-11-25 1999-11-25 Apparatus for measuring radioactivity concentration of gas Pending JP2001153956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33385499A JP2001153956A (en) 1999-11-25 1999-11-25 Apparatus for measuring radioactivity concentration of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33385499A JP2001153956A (en) 1999-11-25 1999-11-25 Apparatus for measuring radioactivity concentration of gas

Publications (1)

Publication Number Publication Date
JP2001153956A true JP2001153956A (en) 2001-06-08

Family

ID=18270694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33385499A Pending JP2001153956A (en) 1999-11-25 1999-11-25 Apparatus for measuring radioactivity concentration of gas

Country Status (1)

Country Link
JP (1) JP2001153956A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145644A (en) * 2013-01-29 2014-08-14 Toshiba Corp Dust radiation monitoring apparatus and dust radiation monitoring method
US8901500B2 (en) 2013-04-02 2014-12-02 Mitsubishi Electric Corporation Radiation measurement system
JP2015227815A (en) * 2014-05-30 2015-12-17 株式会社東芝 Gaseous activity concentration measuring apparatus, gaseous activity concentration measuring system and gaseous activity concentration measuring method
US9476864B2 (en) 2014-03-28 2016-10-25 Mitsubishi Electric Corporation Radioactive gas monitor
CN106597516A (en) * 2017-01-04 2017-04-26 中国原子能科学研究院 Design method of non-destructive measurement system for radioactive material with wide dynamic range
US9651681B2 (en) 2015-04-03 2017-05-16 Mitsubishi Electric Corporation Radiation monitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145644A (en) * 2013-01-29 2014-08-14 Toshiba Corp Dust radiation monitoring apparatus and dust radiation monitoring method
US8901500B2 (en) 2013-04-02 2014-12-02 Mitsubishi Electric Corporation Radiation measurement system
US9476864B2 (en) 2014-03-28 2016-10-25 Mitsubishi Electric Corporation Radioactive gas monitor
JP2015227815A (en) * 2014-05-30 2015-12-17 株式会社東芝 Gaseous activity concentration measuring apparatus, gaseous activity concentration measuring system and gaseous activity concentration measuring method
US9651681B2 (en) 2015-04-03 2017-05-16 Mitsubishi Electric Corporation Radiation monitor
CN106597516A (en) * 2017-01-04 2017-04-26 中国原子能科学研究院 Design method of non-destructive measurement system for radioactive material with wide dynamic range

Similar Documents

Publication Publication Date Title
US5627328A (en) Gas sampling system and method
JP2006242964A (en) Method for analyzing fluorescent x-ray based solution
US5369674A (en) Plant diagnosis apparatus and method
JPS62204141A (en) Measuring device for gas dissolved into water
JPS63175740A (en) Detector for gaseous component of air
KR940022591A (en) Airborne radiation tracking device for detecting reactor coolant leak with improved sensitivity
US5563929A (en) On-line monitor for particulate analyte in a moving liquid
JP2001153956A (en) Apparatus for measuring radioactivity concentration of gas
JP6592939B2 (en) Radioactivity measuring device
US3830095A (en) Gas void detector for liquid metal
JP2005091334A (en) Tritium measuring device
WO1993017333A2 (en) Carbon analyser
JP3999166B2 (en) Gas radioactivity concentration measuring device
US5377532A (en) Method and system for in-line detection of moisture in uranium-containing powders
JP2013079909A (en) Atmosphere monitor in reactor containment vessel and monitoring method thereof
US4551298A (en) Radiation monitoring apparatus
JP3289010B2 (en) Shipping equipment
JPH04184288A (en) Sampler for monitoring radioactive rays
JPH0414318B2 (en)
JPH1183767A (en) Density measurement device for specified element in fluid
JP2019132747A (en) Hydrogen gas analysis kit and hydrogen gas analysis method
JP3140015B1 (en) Shipping equipment
JPH0222588A (en) Radioactive material sampling device
JP3957333B2 (en) Special material gas component concentration measuring device for semiconductors
JPS6132349Y2 (en)