JP6825992B2 - Oxygen measurement method in the reactor containment vessel - Google Patents

Oxygen measurement method in the reactor containment vessel Download PDF

Info

Publication number
JP6825992B2
JP6825992B2 JP2017108661A JP2017108661A JP6825992B2 JP 6825992 B2 JP6825992 B2 JP 6825992B2 JP 2017108661 A JP2017108661 A JP 2017108661A JP 2017108661 A JP2017108661 A JP 2017108661A JP 6825992 B2 JP6825992 B2 JP 6825992B2
Authority
JP
Japan
Prior art keywords
oxygen
containment vessel
partial pressure
measuring
oxygen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017108661A
Other languages
Japanese (ja)
Other versions
JP2018205040A (en
Inventor
基茂 柳生
基茂 柳生
大仁 羽生
大仁 羽生
愛実 高橋
愛実 高橋
幸基 岡崎
幸基 岡崎
元気 田中
元気 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017108661A priority Critical patent/JP6825992B2/en
Publication of JP2018205040A publication Critical patent/JP2018205040A/en
Application granted granted Critical
Publication of JP6825992B2 publication Critical patent/JP6825992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明の実施形態は、原子炉格納容器内酸素測定方法に関する。 Embodiments of the present invention relates to a nuclear reactor containment vessel oximetry method.

発電用原子炉施設には、過酷事故発生時に原子炉および関連施設の安全性を確保するための機器があり、事故の状況把握および収束に向けた対応が採れるような機構を有している。 The power reactor facility has equipment to ensure the safety of the reactor and related facilities in the event of a severe accident, and has a mechanism to grasp the situation of the accident and take measures to resolve it.

特に、原子炉格納容器内の気相状態は通常運転時の異常感知および過酷事故時の状況把握のために重要な情報であり、常時監視が求められている。 In particular, the gas phase state in the reactor containment vessel is important information for detecting abnormalities during normal operation and grasping the situation at the time of a severe accident, and constant monitoring is required.

従来の原子炉施設において、格納容器雰囲気モニタにより気相中の水素および酸素濃度などを測定している。当該機器は原子炉格納容器外部に設置されており、原子炉格納容器内部の気相をブロワにより当該機器まで移送し、冷却器などを用いて湿度、温度、圧力などを調整し測定を実施している。 In a conventional reactor facility, hydrogen and oxygen concentrations in the gas phase are measured by a containment vessel atmosphere monitor. The equipment is installed outside the containment vessel, and the gas phase inside the containment vessel is transferred to the equipment by a blower, and the humidity, temperature, pressure, etc. are adjusted and measured using a cooler or the like. ing.

特開2016−532079号公報Japanese Unexamined Patent Publication No. 2016-532079 特開2015−125138号公報JP-A-2015-125138 特開昭60−042690号公報Japanese Unexamined Patent Publication No. 60-042690

しかしながら、東日本大震災に伴う福島第一原子力発電所の過酷事故が発生したように既設施設のみでは過酷事故に対応するための十分な対応が採れないことが明らかになっている。従来の原子炉施設において、過酷事故発生時に交流電源を失った場合は、格納容器雰囲気モニタを動作させることができず、現状では常時監視を達成できていない。特に、福島第一原子力発電所での過酷事故では水素と酸素の反応による水素爆発により原子炉施設を損なう事象が発生しており、水素爆発防止のための気相濃度監視が重要である。 However, as the severe accident at the Fukushima Daiichi Nuclear Power Station caused by the Great East Japan Earthquake occurred, it has become clear that the existing facilities alone cannot take sufficient measures to deal with the severe accident. In a conventional nuclear reactor facility, if the AC power supply is lost in the event of a severe accident, the containment vessel atmosphere monitor cannot be operated, and continuous monitoring cannot be achieved at present. In particular, in the severe accident at the Fukushima Daiichi Nuclear Power Station, a hydrogen explosion caused by the reaction of hydrogen and oxygen has caused an event that damages the reactor facilities, and it is important to monitor the gas phase concentration to prevent the hydrogen explosion.

そこで、交流電源を必要とする気体の移送や除湿、冷却、降圧などの調整等を行わず、過酷事故時の気相組成を測定するシステムが求められている。 Therefore, there is a demand for a system for measuring the gas phase composition at the time of a severe accident without performing adjustments such as transfer of gas requiring an AC power source, dehumidification, cooling, and step-down.

特に酸素は水素と共存することで燃焼、爆発を引き起こすため、その濃度測定はアクシデントマネジメント上、重要な位置づけとなっている。 In particular, oxygen coexists with hydrogen to cause combustion and explosion, so its concentration measurement is an important position in accident management.

このような状況に対応するための先行技術として、水素と酸素の燃焼反応より酸素濃度を測定する方法が提案されている。そのような技術を用いた場合は、水素共存下の酸素濃度測定が可能となるものの、水素が共存していない環境では測定することができなかった。 As a prior art for dealing with such a situation, a method of measuring the oxygen concentration from the combustion reaction of hydrogen and oxygen has been proposed. When such a technique was used, it was possible to measure the oxygen concentration in the presence of hydrogen, but it was not possible to measure it in an environment where hydrogen did not coexist.

また、酸素センサは定期的に校正をすることが望ましいが、複雑形状である原子炉格納容器内に設置した場合、酸素センサに校正気体供給用の配管を引き回すことは設置スペースの観点から困難である。 In addition, it is desirable to calibrate the oxygen sensor regularly, but when it is installed in the reactor containment vessel, which has a complicated shape, it is difficult to route the piping for supplying the calibration gas to the oxygen sensor from the viewpoint of installation space. is there.

本発明の実施形態が解決しようとする課題は、交流電源喪失時において原子炉格納容器内の酸素濃度または酸素分圧を測定可能とすることである。 An object to be solved by the embodiment of the present invention is to make it possible to measure the oxygen concentration or the oxygen partial pressure in the reactor containment vessel when the AC power source is lost.

本発明一つの態様によれば、原子炉格納容器内酸素測定方法は、原子炉格納容器のサンプル気体取り出し部に接続された送気配管を通じて、ブロワを用いて、前記原子炉格納容器内のサンプル気体を取り出して、前記原子炉格納容器の外に配置された格納容器外酸素測定器を通過させ、前記格納容器外酸素測定器を通過した後の前記サンプル気体を前記原子炉格納容器のサンプル気体返送部を通じて前記原子炉格納容器内に戻す、サンプル気体循環ステップと、前記格納容器外酸素測定器により、前記送気配管を通じて取り出されたサンプル気体の酸素分圧を測定するサンプル気体酸素分圧測定ステップと、前記原子炉格納容器内に配置された格納容器内酸素測定器により前記原子炉格納容器内の酸素分圧を測定する格納容器内酸素分圧測定ステップと、前記サンプル気体酸素分圧測定ステップから得られた前記サンプル気体の酸素分圧に基づいて、前記格納容器内酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧を修正する修正ステップと、を有することを特徴とする。 According to one aspect of the present invention, the method for measuring oxygen in the containment vessel is to use a blower through an air supply pipe connected to a sample gas take-out portion of the containment vessel to use a blower in the containment vessel. The sample gas is taken out, passed through an oxygen measuring device outside the containment vessel arranged outside the containment vessel, and the sample gas after passing through the oxygen measuring device outside the containment vessel is used as a sample of the reactor containment vessel. Sample gas oxygen partial pressure for measuring the oxygen partial pressure of the sample gas taken out through the air supply pipe by the sample gas circulation step of returning to the inside of the reactor containment vessel through the gas return unit and the oxygen measuring device outside the containment vessel. A measurement step, an oxygen partial pressure measurement step in the containment vessel for measuring the oxygen partial pressure in the reactor containment vessel by an oxygen measuring device in the containment vessel arranged in the reactor containment vessel, and a sample gas oxygen partial pressure. Having a modification step of modifying the oxygen partial pressure in the reactor containment vessel obtained from the containment vessel oxygen partial pressure measurement step based on the oxygen partial pressure of the sample gas obtained from the measurement step. It is characterized by.

本発明の他の一つの態様によれば、原子炉格納容器内酸素測定方法は、原子炉格納容器内に可搬型酸素測定器を搬入する測定器搬入ステップと、前記可搬型酸素測定器により前記原子炉格納容器内の酸素分圧を測定する可搬型酸素分圧測定ステップと、前記原子炉格納容器内に固定された格納容器内酸素測定装置の出力に基づいて、前記原子炉格納容器内の酸素分圧を測定する固定型酸素分圧測定ステップと、前記可搬型酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧に基づいて、前記固定型酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧を修正する修正ステップと、を有することを特徴とする。 According to another aspect of the present invention, the method for measuring oxygen in the containment vessel is described by the step of carrying the portable oxygen measuring device into the containment vessel and the step of carrying in the portable oxygen measuring device. Based on the portable oxygen partial pressure measurement step for measuring the oxygen partial pressure in the containment vessel and the output of the oxygen measurement device in the containment vessel fixed in the reactor containment vessel, the inside of the reactor containment vessel. From the fixed oxygen partial pressure measurement step based on the fixed oxygen partial pressure measurement step for measuring the oxygen partial pressure and the oxygen partial pressure in the reactor containment vessel obtained from the portable oxygen partial pressure measurement step. It is characterized by having a modification step for modifying the oxygen partial pressure in the obtained containment vessel.

本発明の実施形態によれば、既設の原子炉施設に大幅な改造工事をしなくても、交流電源喪失時において原子炉格納容器内の酸素濃度または酸素分圧を測定できる。 According to the embodiment of the present invention, the oxygen concentration or oxygen partial pressure in the reactor containment vessel can be measured at the time of loss of AC power supply without major remodeling work on the existing reactor facility.

本発明に係る原子炉施設の一実施形態を示す模式的な立断面図である。It is a schematic vertical sectional view which shows one Embodiment of the nuclear reactor facility which concerns on this invention. 本発明に係る原子炉施設の一実施形態で利用可能な限界電流式酸素センサの特性の一例を示すグラフであって、酸素分圧と出力電圧の関係を示すグラフである。It is a graph which shows an example of the characteristic of the critical current type oxygen sensor which can be used in one Embodiment of the nuclear reactor facility which concerns on this invention, and is the graph which shows the relationship between oxygen partial pressure and output voltage. 本発明に係る原子炉格納容器内酸素測定方法の第1の実施形態の手順を示すフロー図である。It is a flow chart which shows the procedure of 1st Embodiment of the oxygen measurement method in a reactor containment vessel which concerns on this invention. 本発明に係る原子炉格納容器内酸素測定方法の第2の実施形態の手順を示すフロー図である。It is a flow chart which shows the procedure of the 2nd Embodiment of the oxygen measurement method in a reactor containment vessel which concerns on this invention.

以下、実施の形態について、図面を参照して説明する。ここで、同一または類似の部分には共通の符号を付して、重複説明は省略する。 Hereinafter, embodiments will be described with reference to the drawings. Here, the same or similar parts are designated by a common reference numeral, and duplicate description will be omitted.

[第1の実施形態]
図1は、本発明に係る原子炉施設の一実施形態を示す模式的な立断面図である。ここでは、原子炉施設の一例として沸騰水型原子力発電所を示している。原子炉建屋11の内部に原子炉格納容器12が収められており、原子炉格納容器12内に核燃料を収めた原子炉圧力容器13が設置されている。原子炉格納容器12はドライウェル21とウェットウェル22に分かれていて、原子炉圧力容器13はドライウェル21内に配置されている。
[First Embodiment]
FIG. 1 is a schematic vertical sectional view showing an embodiment of a nuclear reactor facility according to the present invention. Here, a boiling water reactor is shown as an example of a nuclear reactor facility. The reactor containment vessel 12 is housed inside the reactor building 11, and the reactor pressure vessel 13 containing nuclear fuel is installed in the reactor containment vessel 12. The reactor containment vessel 12 is divided into a dry well 21 and a wet well 22, and the reactor pressure vessel 13 is arranged in the dry well 21.

ドライウェル21およびウェットウェル22の雰囲気組成等を常時分析監視するために、原子炉格納容器12の外部に格納容器雰囲気モニタ14が設置されている。ドライウェル21から格納容器雰囲気モニタ14に気相部の気体を送るためのドライウェル気相送気配管(送気配管)41が接続され、ウェットウェル22から格納容器雰囲気モニタ14に気相部の気体を送るためのウェットウェル気相送気配管(送気配管)42が接続されている。また、格納容器雰囲気モニタ14で計測を行った気体をドライウェル21に戻すための返送配管43が接続されている。 A containment vessel atmosphere monitor 14 is installed outside the reactor containment vessel 12 in order to constantly analyze and monitor the atmosphere composition of the dry well 21 and the wet well 22. A dry well gas phase air supply pipe (air supply pipe) 41 for sending gas in the gas phase portion from the dry well 21 to the storage container atmosphere monitor 14 is connected, and the wet well 22 connects the vapor phase portion to the storage container atmosphere monitor 14. A wet well gas phase air supply pipe (air supply pipe) 42 for sending gas is connected. Further, a return pipe 43 for returning the gas measured by the containment vessel atmosphere monitor 14 to the dry well 21 is connected.

格納容器雰囲気モニタ14は、ブロワ31と、冷却器(熱交換器)32と、酸素濃度検出器(格納容器外酸素測定器)33とを備えている。ドライウェル気相送気配管41およびウェットウェル気相送気配管42から送られた気体は、ブロワ31によって昇圧されて、冷却器32で冷却された後に酸素濃度検出器33に送られる。酸素濃度検出器33から排出された気体は、返送配管43を通してドライウェル21(原子炉格納容器12)に戻される。 The containment vessel atmosphere monitor 14 includes a blower 31, a cooler (heat exchanger) 32, and an oxygen concentration detector (oxygen measuring device outside the containment vessel) 33. The gas sent from the dry well gas phase air supply pipe 41 and the wet well gas phase air supply pipe 42 is boosted by the blower 31, cooled by the cooler 32, and then sent to the oxygen concentration detector 33. The gas discharged from the oxygen concentration detector 33 is returned to the dry well 21 (reactor containment vessel 12) through the return pipe 43.

格納容器雰囲気モニタ14に含まれる酸素濃度検出器33は、原子炉格納容器12の外に設置されるものであるから、原子炉の定期検査時または通常運転時に適宜校正を行うことができる。 Since the oxygen concentration detector 33 included in the containment vessel atmosphere monitor 14 is installed outside the reactor containment vessel 12, calibration can be appropriately performed during periodic inspections or normal operation of the reactor.

原子炉格納容器12には圧力計35が設置されている。なお、図1では圧力計35をドライウェル21に設置した例を示しているが、圧力計をドライウェル21とウェットウェル22の両方に設置してもよい。さらに、格納容器雰囲気モニタ14にも圧力計を設置してもよい。 A pressure gauge 35 is installed in the reactor containment vessel 12. Although FIG. 1 shows an example in which the pressure gauge 35 is installed in the dry well 21, the pressure gauge may be installed in both the dry well 21 and the wet well 22. Further, a pressure gauge may be installed in the containment vessel atmosphere monitor 14.

ドライウェル気相送気配管41、ウェットウェル気相送気配管42それぞれが原子炉格納容器12に接続されている箇所、すなわち、サンプル気体取り出し部36、37の近傍の原子炉格納容器12内に、格納容器内酸素センサ(格納容器内酸素測定器)15a、15bが配置されている。さらに、返送配管43が原子炉格納容器12に接続されている箇所、すなわち、サンプル気体返送部38の近傍の原子炉格納容器12内に、格納容器内酸素センサ15c(格納容器内酸素測定器)が配置されている。 The dry well gas phase air supply pipe 41 and the wet well gas phase air supply pipe 42 are connected to the reactor containment vessel 12, that is, in the reactor containment vessel 12 in the vicinity of the sample gas extraction units 36 and 37. , The containment vessel oxygen sensors (containment vessel oxygen measuring instruments) 15a and 15b are arranged. Further, the oxygen sensor 15c in the containment vessel (oxygen measuring device in the containment vessel) is located in the reactor containment vessel 12 where the return pipe 43 is connected to the reactor containment vessel 12, that is, in the vicinity of the sample gas return unit 38. Is placed.

また、配管類や圧力計などの計器およびそれらの信号を取り出す電線(図示なし)や過酷事故発生時に対応するための機器(図示なし)が配置されている。 In addition, instruments such as pipes and pressure gauges, electric wires for extracting their signals (not shown), and equipment for responding to a severe accident (not shown) are arranged.

格納容器内酸素センサ15a、15b、15cは、たとえば、固体酸化物形イオン伝導体を用いた限界電流式である。 The oxygen sensors 15a, 15b, and 15c in the containment vessel are, for example, a limit current type using a solid oxide fuel cell.

過酷事故時の原子炉格納容器12内の雰囲気は原子炉圧力容器13の破損等に伴い300℃程度の温度、1MPa以下の圧力、高線量雰囲気、飽和蒸気圧相当の水蒸気雰囲気となり得る。また、過酷事故の程度や進展状況によっては交流電源喪失により付帯設備が機能しなくなる可能性がある。 The atmosphere inside the reactor containment vessel 12 at the time of a severe accident can be a temperature of about 300 ° C., a pressure of 1 MPa or less, a high dose atmosphere, and a steam atmosphere equivalent to saturated vapor pressure due to damage to the reactor pressure vessel 13. In addition, depending on the degree of severe accident and the progress, there is a possibility that incidental equipment will not function due to the loss of AC power.

ところで、限界電流式酸素センサは、たとえば、イットリア安定化ジルコニアなどの固体酸化物形酸素イオン伝導体に金属もしくは金属酸化物からなる電極を用いて電圧を印加することで酸素イオンを選択的に透過させ、イオン透過に伴う電流値を測定することで酸素分圧を測定する。固体酸化物形酸素イオン伝導体を機能させるために固体酸化物形酸素イオン伝導体部分は300〜800℃程度に加熱して使用する。そのため、過酷事故時に想定される温度の気相が限界電流式酸素センサ内に流入した際もその機能を維持することが可能である。 By the way, the limit current type oxygen sensor selectively transmits oxygen ions by applying a voltage to a solid oxide type oxygen ion conductor such as Itria stabilized zirconia using an electrode made of a metal or a metal oxide. The oxygen partial pressure is measured by measuring the current value associated with the ion permeation. In order to make the solid oxide oxygen ion conductor function, the solid oxide oxygen ion conductor portion is used by heating it to about 300 to 800 ° C. Therefore, it is possible to maintain the function even when the gas phase at the temperature assumed at the time of a severe accident flows into the critical current type oxygen sensor.

また、限界電流式酸素センサの構成は、外部圧力と圧力差を生じるような密閉部分がない構造となっており、原子炉格納容器12内の圧力が上昇した場合においてもその構造が破壊されることはない。 Further, the configuration of the critical current type oxygen sensor has a structure in which there is no closed portion that causes a pressure difference from the external pressure, and the structure is destroyed even when the pressure in the reactor containment vessel 12 rises. There is no such thing.

加えて、限界電流式酸素センサは無機物構成が可能であり、過酷事故時の高線量雰囲気でもその機能を維持することが可能である。 In addition, the faradaic current oxygen sensor can be composed of an inorganic substance, and its function can be maintained even in a high-dose atmosphere at the time of a severe accident.

限界電流式酸素センサは、印加する電圧によっては水の電気分解が発生するため、原子炉格納容器12内で使用する場合は水の電気分解が発生する電位以下で使用することが望ましい。水の電気分解温度は固体酸化物形酸素イオン伝導体および電極温度に依存するため、推奨される運転電位を一概に規定することはできないが、標準水素電極の電位に対して2.0V以下の電位で運転することが望ましい。限界電流式酸素センサは、その原理上直流電源のみで稼働し、原子炉格納容器内部に直接設置し、冷却や除湿などの交流電源を必要とする気相の前処理等を行わないため、交流電源が失われた環境においても稼働することが可能である。 Since the limit current type oxygen sensor causes electrolysis of water depending on the applied voltage, it is desirable to use the sensor at a potential below the potential at which water electrolysis occurs when it is used in the reactor containment vessel 12. Since the electrolysis temperature of water depends on the solid oxide oxygen ion conductor and the electrode temperature, the recommended operating potential cannot be unconditionally defined, but it is 2.0 V or less with respect to the potential of the standard hydrogen electrode. It is desirable to operate at potential. In principle, the faradaic current oxygen sensor operates only with a DC power supply, is installed directly inside the reactor containment vessel, and does not perform pretreatment of the gas phase that requires an AC power supply such as cooling and dehumidification. It can operate even in an environment where power is lost.

上記説明の通り、限界電流式酸素センサは、所定の運転条件内で動作させることで過酷事故時の原子炉格納容器12内雰囲気に対応することが可能であり、格納容器内酸素センサ15a、15b、15cとして使用することが可能である。 As described above, the critical current type oxygen sensor can respond to the atmosphere inside the reactor containment vessel 12 at the time of a severe accident by operating within the predetermined operating conditions, and the oxygen sensors 15a and 15b in the containment vessel can be used. , 15c can be used.

固体酸化物形酸素イオン伝導体を用いた限界電流式酸素センサの特性について、図2を用いて説明する。図2は、本発明に係る原子炉施設の一実施形態で利用可能な限界電流式酸素センサの特性の一例を示すグラフであって、酸素分圧と出力電圧の関係を示すグラフである。図2に示すように、限界電流式の酸素センサは、酸素分圧に応じて応答電流が直線的に増える挙動を示す。予め酸素分圧に応じた応答直線を取得しておくことで、酸素濃度既知の雰囲気による1点校正もしくは2点校正が可能である。 The characteristics of the faradaic current oxygen sensor using the solid oxide oxygen ion conductor will be described with reference to FIG. FIG. 2 is a graph showing an example of the characteristics of the critical current type oxygen sensor that can be used in one embodiment of the nuclear reactor facility according to the present invention, and is a graph showing the relationship between the oxygen partial pressure and the output voltage. As shown in FIG. 2, the critical current type oxygen sensor exhibits a behavior in which the response current linearly increases according to the oxygen partial pressure. By acquiring the response straight line according to the oxygen partial pressure in advance, one-point calibration or two-point calibration in an atmosphere with a known oxygen concentration is possible.

格納容器内酸素センサ15a、15b、15cは、放射線照射や時間経過によって特性が変化することが考えられるので、設置後に適宜、校正を行う必要がある。しかし、これらのセンサは原子炉格納容器12内に設置されるため、センサを原子炉格納容器12の外に取り出して校正作業を行うことは困難である。そのため、この実施形態では、格納容器内酸素センサ15a、15b、15cの計測対象とほぼ同等の気体を計測対象として格納容器雰囲気モニタ14を用いた計測を行い、格納容器内酸素センサ15a、15b、15cの校正を行う。格納容器雰囲気モニタ14は原子炉格納容器12の外に配置されているので、詳細説明は省略するが、適宜校正を行うことができる。 Since the characteristics of the oxygen sensors 15a, 15b, and 15c in the containment vessel may change due to irradiation and the passage of time, it is necessary to appropriately calibrate after installation. However, since these sensors are installed inside the reactor containment vessel 12, it is difficult to take the sensors out of the reactor containment vessel 12 and perform calibration work. Therefore, in this embodiment, measurement is performed using the containment vessel atmosphere monitor 14 with a gas substantially equivalent to the measurement target of the containment vessel oxygen sensors 15a, 15b, 15c as the measurement target, and the containment vessel oxygen sensors 15a, 15b, Calibrate 15c. Since the containment vessel atmosphere monitor 14 is arranged outside the reactor containment vessel 12, detailed description thereof will be omitted, but calibration can be performed as appropriate.

本実施形態によれば、原子炉の通常運転時および定期点検時に、格納容器雰囲気モニタ14および格納容器内酸素センサ15a、15b、15cにより、原子炉格納容器12内の気体の酸素濃度または酸素分圧を測定することができる。また、格納容器雰囲気モニタ14および格納容器内酸素センサ15a、15b、15cで互いに対応する位置の原子炉格納容器12内の気体を測定対象とすることから、格納容器内酸素センサ15a、15b、15cの出力を格納容器雰囲気モニタ14の出力によって校正することができる。さらに、電源喪失事故時に、格納容器雰囲気モニタ14による原子炉格納容器12内の気体の測定ができなくなった場合でも、格納容器内酸素センサ15a、15b、15cよる原子炉格納容器12内の気体の酸素分圧の測定を行うことができる。 According to the present embodiment, during normal operation and periodic inspection of the reactor, the oxygen concentration or oxygen content of the gas in the containment vessel 12 is determined by the containment vessel atmosphere monitor 14 and the oxygen sensors 15a, 15b, 15c in the containment vessel. The pressure can be measured. Further, since the gas in the reactor containment vessel 12 at the positions corresponding to each other is measured by the containment vessel atmosphere monitor 14 and the containment vessel oxygen sensors 15a, 15b, 15c, the containment vessel oxygen sensors 15a, 15b, 15c Can be calibrated by the output of the containment atmosphere monitor 14. Further, even if the gas in the reactor containment vessel 12 cannot be measured by the containment vessel atmosphere monitor 14 in the event of a power loss accident, the gas in the reactor containment vessel 12 by the oxygen sensors 15a, 15b, 15c in the containment vessel The oxygen partial pressure can be measured.

しかも、既設の格納容器雰囲気モニタ14や、ドライウェル気相送気配管41、ウェットウェル気相送気配管42および返送配管43を利用することにより、新たに格納容器内酸素センサ15a、15b、15cを追設するだけで実現できる。 Moreover, by using the existing containment vessel atmosphere monitor 14, dry well gas phase air supply pipe 41, wet well gas phase air supply pipe 42, and return pipe 43, oxygen sensors 15a, 15b, 15c in the containment vessel are newly used. It can be realized just by adding.

図3は、本発明に係る原子炉格納容器内酸素測定方法の第1の実施形態の手順を示すフロー図である。 FIG. 3 is a flow chart showing the procedure of the first embodiment of the oxygen measurement method in the reactor containment vessel according to the present invention.

図1に示す構成で、まず、ブロワ31を駆動することにより、原子炉格納容器12内の気体(サンプル気体)を循環させる(ステップS11)。すなわち、原子炉格納容器12内の気体は、ドライウェル気相送気配管41およびウェットウェル気相送気配管42を通じて、格納容器雰囲気モニタ14に送り込まれる。格納容器雰囲気モニタ14内でブロワ31を出たサンプル気体は、冷却器32で冷却された後に酸素濃度検出器33へ送られる。酸素濃度検出器33を通過したサンプル気体は返送配管43を通じて原子炉格納容器12内に戻される。 With the configuration shown in FIG. 1, first, the blower 31 is driven to circulate the gas (sample gas) in the reactor containment vessel 12 (step S11). That is, the gas in the reactor containment vessel 12 is sent to the containment vessel atmosphere monitor 14 through the drywell gas phase air supply pipe 41 and the wetwell gas phase air supply pipe 42. The sample gas exiting the blower 31 in the containment vessel atmosphere monitor 14 is cooled by the cooler 32 and then sent to the oxygen concentration detector 33. The sample gas that has passed through the oxygen concentration detector 33 is returned to the reactor containment vessel 12 through the return pipe 43.

つぎに、格納容器雰囲気モニタ14内の酸素濃度検出器33により、サンプル気体の酸素濃度を検出する(ステップS12)。これとともに、原子炉格納容器12内の圧力を圧力計35によって測定する(ステップS13)。この圧力は、格納容器雰囲気モニタ14内の圧力計(図示せず)によって測定してもよい。 Next, the oxygen concentration of the sample gas is detected by the oxygen concentration detector 33 in the containment vessel atmosphere monitor 14 (step S12). At the same time, the pressure in the reactor containment vessel 12 is measured by the pressure gauge 35 (step S13). This pressure may be measured by a pressure gauge (not shown) in the containment atmosphere monitor 14.

つぎに、格納容器雰囲気モニタ14より得られた酸素濃度指示値と原子炉格納容器12内の圧力計より得られた圧力の測定結果に基づいて、原子炉格納容器12内の酸素分圧を演算する(第1の酸素分圧演算ステップS14)。 Next, the oxygen partial pressure in the reactor containment vessel 12 is calculated based on the oxygen concentration indicated value obtained from the containment vessel atmosphere monitor 14 and the pressure measurement result obtained from the pressure gauge in the reactor containment vessel 12. (1st oxygen partial pressure calculation step S14).

一方、格納容器内酸素センサ15a、15b、15cによる出力電流を検出する(ステップS15)。つぎに、格納容器内酸素センサ15a、15b、15cの出力電流に基づいて、原子炉格納容器12内の酸素分圧を演算する(第2の酸素分圧演算ステップS16)。 On the other hand, the output currents of the oxygen sensors 15a, 15b, and 15c in the containment vessel are detected (step S15). Next, the oxygen partial pressure in the reactor containment vessel 12 is calculated based on the output currents of the oxygen sensors 15a, 15b, and 15c in the containment vessel (second oxygen partial pressure calculation step S16).

つぎに、第1の酸素分圧演算ステップS14の結果と第2の酸素分圧演算ステップS16の結果とを比較し(ステップS17)、これらの結果が所定の範囲で一致しない場合(ステップS17でNoの場合)は、格納容器内酸素センサ15a、15b、15cの電流値を校正する(ステップS18)。すなわち、格納容器内酸素センサ15a、15b、15cの出力電流から酸素分圧を演算する際の変換式を調整する。 Next, the result of the first oxygen partial pressure calculation step S14 is compared with the result of the second oxygen partial pressure calculation step S16 (step S17), and when these results do not match within a predetermined range (in step S17). In the case of No), the current values of the oxygen sensors 15a, 15b, and 15c in the containment vessel are calibrated (step S18). That is, the conversion formula for calculating the oxygen partial pressure from the output currents of the oxygen sensors 15a, 15b, and 15c in the containment vessel is adjusted.

ステップS17で、第1の酸素分圧演算ステップS14の結果と第2の酸素分圧演算ステップS16の結果が所定の範囲で一致した場合(ステップS17でYesの場合)は、校正完了とする。 In step S17, if the result of the first oxygen partial pressure calculation step S14 and the result of the second oxygen partial pressure calculation step S16 match within a predetermined range (yes in step S17), the calibration is completed.

本実施形態を採ることにより、原子炉格納容器12内部に格納容器内酸素センサ15a、15b、15cを校正するための配管や機器を新たに設置することなく、原子炉通常運転時も格納容器内酸素センサの健全性確認および校正が可能となる。 By adopting this embodiment, the inside of the containment vessel 12 is not newly installed with piping or equipment for calibrating the oxygen sensors 15a, 15b, 15c in the containment vessel, and even during the normal operation of the reactor. The health of the oxygen sensor can be confirmed and calibrated.

[第2の実施形態]
図4は、本発明に係る原子炉格納容器内酸素測定方法の第2の実施形態の手順を示すフロー図である。
[Second Embodiment]
FIG. 4 is a flow chart showing the procedure of the second embodiment of the oxygen measurement method in the reactor containment vessel according to the present invention.

この第2の実施形態では、上述の第1の実施形態と同様に格納容器内酸素センサ15a、15b、15cを原子炉格納容器12内に設置する。格納容器内酸素センサ15a、15b、15cは、たとえば、固体酸化物形イオン伝導体を用いた限界電流式である。これにより、電源喪失事故時でも、原子炉格納容器12内の酸素濃度を測定することができる。 In this second embodiment, the oxygen sensors 15a, 15b, and 15c in the containment vessel are installed in the reactor containment vessel 12 as in the first embodiment described above. The oxygen sensors 15a, 15b, and 15c in the containment vessel are, for example, a limit current type using a solid oxide fuel cell. As a result, the oxygen concentration in the reactor containment vessel 12 can be measured even in the event of a power loss accident.

第1の実施形態では、格納容器内酸素センサ15a、15b、15cの校正のために格納容器雰囲気モニタ14のデータを用いるが、第2の実施形態では、格納容器内酸素センサ15の校正のために可搬酸素センサ(図示せず)のデータを用いる点が相違する。 In the first embodiment, the data of the containment vessel atmosphere monitor 14 is used for calibrating the containment oxygen sensors 15a, 15b, 15c, but in the second embodiment, for the calibration of the containment oxygen sensor 15. The difference is that the data from the portable oxygen sensor (not shown) is used.

原子炉格納容器12内に格納容器内酸素センサ15a、15b、15cがあらかじめ固定設置されているものとする。この格納容器内酸素センサ15a、15b、15cの校正は、たとえば原子炉が停止している定期検査時等に行う。図4に示すように、定期検査時に可搬酸素センサを原子炉格納容器12内の格納容器内酸素センサ15a、15b、15cの近傍に搬入して仮設する(ステップS21)。このとき、可搬酸素センサとともに可搬酸素センサの近傍に可搬圧力計(図示せず)を搬入して仮設してもよい。 It is assumed that the oxygen sensors 15a, 15b, and 15c in the containment vessel are fixedly installed in the reactor containment vessel 12 in advance. The oxygen sensors 15a, 15b, and 15c in the containment vessel are calibrated, for example, at the time of periodic inspection when the reactor is stopped. As shown in FIG. 4, during the periodic inspection, the portable oxygen sensor is carried into the vicinity of the oxygen sensors 15a, 15b, and 15c in the containment vessel 12 in the reactor containment vessel 12 and temporarily installed (step S21). At this time, a portable pressure gauge (not shown) may be carried in the vicinity of the portable oxygen sensor together with the portable oxygen sensor and temporarily installed.

つぎに、原子炉格納容器12内に搬入された可搬酸素センサによりその位置での酸素濃度を検出する(ステップS22)。このとき、原子炉格納容器12内の圧力を、既設の圧力計またはこのとき搬入された可搬圧力計によって測定する(ステップS23)。 Next, the oxygen concentration at that position is detected by the portable oxygen sensor carried into the reactor containment vessel 12 (step S22). At this time, the pressure in the reactor containment vessel 12 is measured by an existing pressure gauge or a portable pressure gauge carried in at this time (step S23).

つぎに、ステップS22で得られた酸素濃度と、ステップS23で得られた圧力とに基づいて、その位置の酸素分圧を演算する(第1の酸素分圧演算ステップS24)。 Next, the oxygen partial pressure at that position is calculated based on the oxygen concentration obtained in step S22 and the pressure obtained in step S23 (first oxygen partial pressure calculation step S24).

一方、第1の実施形態のステップS15と同様に、格納容器内酸素センサ15a、15b、15cによる出力電流を検出する(ステップS25)。つぎに、第1の実施形態のステップS16と同様に、格納容器内酸素センサ15a、15b、15cの出力電流に基づいて、原子炉格納容器12内の酸素分圧を演算する(第2の酸素分圧演算ステップS26)。 On the other hand, similarly to step S15 of the first embodiment, the output currents of the oxygen sensors 15a, 15b, and 15c in the containment vessel are detected (step S25). Next, as in step S16 of the first embodiment, the oxygen partial pressure in the reactor containment vessel 12 is calculated based on the output currents of the oxygen sensors 15a, 15b, and 15c in the containment vessel (second oxygen). Pressure division calculation step S26).

つぎに、第1の酸素分圧演算ステップS24の結果と第2の酸素分圧演算ステップS26の結果とを比較し(ステップS27)、これらの結果が所定の範囲で一致しない場合(ステップS27でNoの場合)は、格納容器内酸素センサ15a、15b、15cの電流値を校正する(ステップS28)。すなわち、格納容器内酸素センサ15a、15b、15cの出力電流から酸素分圧を演算する際の変換式を調整する。 Next, the result of the first oxygen partial pressure calculation step S24 is compared with the result of the second oxygen partial pressure calculation step S26 (step S27), and when these results do not match within a predetermined range (in step S27). In the case of No), the current values of the oxygen sensors 15a, 15b, and 15c in the containment vessel are calibrated (step S28). That is, the conversion formula for calculating the oxygen partial pressure from the output currents of the oxygen sensors 15a, 15b, and 15c in the containment vessel is adjusted.

ステップS27で、第1の酸素分圧演算ステップS24の結果と第2の酸素分圧演算ステップS26の結果が所定の範囲で一致した場合(ステップS27でYesの場合)は、校正完了とする。 In step S27, if the result of the first oxygen partial pressure calculation step S24 and the result of the second oxygen partial pressure calculation step S26 match within a predetermined range (if Yes in step S27), the calibration is completed.

この第2の実施形態を採ることで原子炉格納容器12内部に格納容器内酸素センサ15a、15b、15c校正用の配管敷設や機器を新たに設置することなく、格納容器内酸素センサ15の健全性確認および校正が可能となる。 By adopting this second embodiment, the oxygen sensor 15 in the containment vessel 12 is sound without laying piping for calibration or newly installing equipment for calibrating the oxygen sensors 15a, 15b, 15c in the containment vessel 12. It is possible to confirm the sex and calibrate.

[他の実施形態]
上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[Other Embodiments]
The above embodiments are presented as examples and are not intended to limit the scope of the invention. This novel embodiment can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

11…原子炉建屋、 12…原子炉格納容器、 13…原子炉圧力容器、 14…格納容器雰囲気モニタ、 15a,15b,15c…格納容器内酸素センサ(格納容器内酸素測定器)、 21…ドライウェル、 22…ウェットウェル、 31…ブロワ、 32…冷却器(熱交換器)、 33…酸素濃度検出器(格納容器外酸素測定器)、 35…圧力計、 36、37…サンプル気体取り出し部、 38…サンプル気体返送部、 41…ドライウェル気相送気配管(送気配管)、 42…ウェットウェル気相送気配管(送気配管)、 43…返送配管 11 ... Reactor building, 12 ... Reactor containment vessel, 13 ... Reactor pressure vessel, 14 ... Containment vessel atmosphere monitor, 15a, 15b, 15c ... Containment vessel oxygen sensor (containment vessel oxygen measuring instrument), 21 ... Dry Well, 22 ... Wet well, 31 ... Blower, 32 ... Cooler (heat exchanger), 33 ... Oxygen concentration detector (Oxygen measuring device outside containment vessel), 35 ... Pressure gauge, 36, 37 ... Sample gas extraction unit, 38 ... Sample gas return section, 41 ... Drywell gas phase air supply pipe (air supply pipe), 42 ... Wetwell gas phase air supply pipe (air supply pipe), 43 ... Return pipe

Claims (5)

原子炉格納容器のサンプル気体取り出し部に接続された送気配管を通じて、ブロワを用いて、前記原子炉格納容器内のサンプル気体を取り出して、前記原子炉格納容器の外に配置された格納容器外酸素測定器を通過させ、前記格納容器外酸素測定器を通過した後の前記サンプル気体を前記原子炉格納容器のサンプル気体返送部を通じて前記原子炉格納容器内に戻す、サンプル気体循環ステップと、 Using a blower, the sample gas in the containment vessel is taken out through the air supply pipe connected to the sample gas take-out portion of the containment vessel, and the outside of the containment vessel arranged outside the containment vessel is taken out. A sample gas circulation step of passing the sample gas through the oxygen measuring device and returning the sample gas after passing through the oxygen measuring device outside the containment vessel to the inside of the reactor containment vessel through the sample gas return unit of the reactor containment vessel.
前記格納容器外酸素測定器により、前記送気配管を通じて取り出されたサンプル気体の酸素分圧を測定するサンプル気体酸素分圧測定ステップと、 A sample gas oxygen partial pressure measurement step for measuring the oxygen partial pressure of the sample gas taken out through the air supply pipe by the oxygen measuring device outside the storage container, and
前記原子炉格納容器内に配置された格納容器内酸素測定器により前記原子炉格納容器内の酸素分圧を測定する格納容器内酸素分圧測定ステップと、 An oxygen partial pressure measurement step in the containment vessel for measuring the oxygen partial pressure in the reactor containment vessel by an oxygen measuring device in the containment vessel arranged in the containment vessel.
前記サンプル気体酸素分圧測定ステップから得られた前記サンプル気体の酸素分圧に基づいて、前記格納容器内酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧を修正する修正ステップと、 Modification to modify the oxygen partial pressure in the reactor containment vessel obtained from the containment oxygen partial pressure measurement step based on the oxygen partial pressure of the sample gas obtained from the sample gas oxygen partial pressure measurement step. Steps and
を有することを特徴とする原子炉格納容器内酸素測定方法。 A method for measuring oxygen in a reactor containment vessel, which comprises.
前記格納容器外酸素測定器は酸素濃度測定器を含み、 The containment vessel oxygen measuring device includes an oxygen concentration measuring device.
前記サンプル気体酸素分圧測定ステップは、 The sample gas oxygen partial pressure measurement step
前記格納容器外酸素測定器により前記サンプル気体の酸素濃度を測定する酸素濃度測定ステップと、 An oxygen concentration measuring step of measuring the oxygen concentration of the sample gas by the oxygen measuring device outside the containment vessel,
前記原子炉格納容器内の圧力を測定する圧力測定ステップと、 A pressure measurement step for measuring the pressure inside the reactor containment vessel, and
前記酸素濃度測定ステップから得られた酸素濃度と、前記圧力測定ステップから得られた前記原子炉格納容器内の圧力とに基づいて酸素分圧を演算する第1の酸素分圧演算ステップと、 A first oxygen partial pressure calculation step for calculating the oxygen partial pressure based on the oxygen concentration obtained from the oxygen concentration measurement step and the pressure in the reactor containment vessel obtained from the pressure measurement step.
を含み、Including
前記格納容器内酸素測定器は前記原子炉格納容器内の酸素分圧に対応する出力電流を出力する酸素センサを含み、 The containment oxygen measuring instrument includes an oxygen sensor that outputs an output current corresponding to the oxygen partial pressure in the reactor containment vessel.
前記格納容器内酸素分圧測定ステップは、 The step of measuring the partial pressure of oxygen in the containment vessel is
前記酸素センサの出力電流に基づいて前記原子炉格納容器内の酸素分圧を演算する第2の酸素分圧演算ステップを含むこと、 Including a second oxygen partial pressure calculation step of calculating the oxygen partial pressure in the reactor containment vessel based on the output current of the oxygen sensor.
を特徴とする請求項1に記載の原子炉格納容器内酸素測定方法。 The method for measuring oxygen in a reactor containment vessel according to claim 1.
原子炉格納容器内に可搬型酸素測定器を搬入する測定器搬入ステップと、 A measuring instrument loading step for loading a portable oxygen measuring instrument into the reactor containment vessel,
前記可搬型酸素測定器により前記原子炉格納容器内の酸素分圧を測定する可搬型酸素分圧測定ステップと、 A portable oxygen partial pressure measuring step for measuring the oxygen partial pressure in the reactor containment vessel by the portable oxygen measuring device, and a portable oxygen partial pressure measuring step.
前記原子炉格納容器内に固定された格納容器内酸素測定装置の出力に基づいて、前記原子炉格納容器内の酸素分圧を測定する固定型酸素分圧測定ステップと、 A fixed oxygen partial pressure measuring step for measuring the oxygen partial pressure in the reactor containment vessel based on the output of the oxygen measuring device in the containment vessel fixed in the reactor containment vessel.
前記可搬型酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧に基づいて、前記固定型酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧を修正する修正ステップと、 Based on the oxygen partial pressure in the reactor containment vessel obtained from the portable oxygen partial pressure measurement step, the oxygen partial pressure in the reactor containment vessel obtained from the fixed oxygen partial pressure measurement step is modified. Correction steps to be done and
を有することを特徴とする原子炉格納容器内酸素測定方法。 A method for measuring oxygen in a reactor containment vessel, which comprises.
前記可搬型酸素測定器は酸素濃度測定器を含み、 The portable oxygen measuring device includes an oxygen concentration measuring device.
前記可搬型酸素分圧測定ステップは、 The portable oxygen partial pressure measurement step
前記可搬型酸素測定器により前記原子炉格納容器内の酸素濃度を測定する酸素濃度測定ステップと、 An oxygen concentration measuring step of measuring the oxygen concentration in the reactor containment vessel by the portable oxygen measuring device, and
前記原子炉格納容器内の圧力を測定する圧力測定ステップと、 A pressure measurement step for measuring the pressure inside the reactor containment vessel, and
前記酸素濃度測定ステップから得られた酸素濃度と、前記圧力測定ステップから得られた前記原子炉格納容器内の圧力とに基づいて酸素分圧を演算する第1の酸素分圧演算ステップと、 A first oxygen partial pressure calculation step for calculating the oxygen partial pressure based on the oxygen concentration obtained from the oxygen concentration measurement step and the pressure in the reactor containment vessel obtained from the pressure measurement step.
を含み、Including
前記格納容器内酸素測定器は前記原子炉格納容器内の酸素分圧に対応する出力電流を出力する酸素センサを含み、 The containment oxygen measuring instrument includes an oxygen sensor that outputs an output current corresponding to the oxygen partial pressure in the reactor containment vessel.
前記固定型酸素分圧測定ステップは、 The fixed oxygen partial pressure measurement step
前記酸素センサの出力電流に基づいて前記原子炉格納容器内の酸素分圧を演算する第2の酸素分圧演算ステップを含むこと、 Including a second oxygen partial pressure calculation step of calculating the oxygen partial pressure in the reactor containment vessel based on the output current of the oxygen sensor.
を特徴とする請求項3に記載の原子炉格納容器内酸素測定方法。 The method for measuring oxygen in a reactor containment vessel according to claim 3.
前記格納容器内酸素測定器は、固体酸化物形酸素イオン伝導体を用いた限界電流式の酸素センサを含むことを特徴とする請求項1ないし請求項4のいずれか一項に記載の原子炉格納容器内酸素測定方法。 The reactor according to any one of claims 1 to 4, wherein the containment oxygen measuring instrument includes a critical current type oxygen sensor using a solid oxide type oxygen ion conductor. Oxygen measurement method in the containment vessel.
JP2017108661A 2017-05-31 2017-05-31 Oxygen measurement method in the reactor containment vessel Active JP6825992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017108661A JP6825992B2 (en) 2017-05-31 2017-05-31 Oxygen measurement method in the reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017108661A JP6825992B2 (en) 2017-05-31 2017-05-31 Oxygen measurement method in the reactor containment vessel

Publications (2)

Publication Number Publication Date
JP2018205040A JP2018205040A (en) 2018-12-27
JP6825992B2 true JP6825992B2 (en) 2021-02-03

Family

ID=64955638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017108661A Active JP6825992B2 (en) 2017-05-31 2017-05-31 Oxygen measurement method in the reactor containment vessel

Country Status (1)

Country Link
JP (1) JP6825992B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234040B2 (en) * 2019-05-30 2023-03-07 株式会社東芝 Oxygen concentration measurement system and oxygen concentration measurement method
JP7532312B2 (en) 2021-05-27 2024-08-13 株式会社東芝 Oxygen treatment device and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574534A (en) * 1980-06-10 1982-01-11 Toshiba Corp Measuring apparatus for concentration of hydrogen and oxygen
JPS6042690A (en) * 1983-08-18 1985-03-06 株式会社東芝 Gas analyzer in container for nuclear reactor
JPS60187893A (en) * 1984-03-08 1985-09-25 東京電力株式会社 Measuring device for concentration of gas
JPH06242066A (en) * 1993-02-16 1994-09-02 Harman Co Ltd Method and equipment for detecting deterioration of oxygen sensor
JP3596843B2 (en) * 1997-04-21 2004-12-02 株式会社東芝 Combustible gas concentration control device
JP2000098075A (en) * 1998-07-23 2000-04-07 Toshiba Corp Device for removing combustible gas
EP1350090A4 (en) * 2000-12-07 2006-06-07 Aep Emtech Llc COMBINED OXYGEN AND NOx SENSOR
JP2007163208A (en) * 2005-12-12 2007-06-28 Chugoku Electric Power Co Inc:The Nuclear reactor output measuring system
JP2012083226A (en) * 2010-10-12 2012-04-26 Toshiba Corp Hydrogen removal device and method
JP2013104745A (en) * 2011-11-11 2013-05-30 Toshiba Corp Moisture concentration measuring apparatus, measuring method thereof, hydrogen gas concentration measuring system, and measuring method thereof
JP6071870B2 (en) * 2013-12-27 2017-02-01 株式会社東芝 Hydrogen oxygen concentration measuring device, hydrogen oxygen concentration measuring system, and hydrogen oxygen concentration measuring method
JP2015125129A (en) * 2013-12-27 2015-07-06 日立Geニュークリア・エナジー株式会社 Spent fuel pool water level monitoring system

Also Published As

Publication number Publication date
JP2018205040A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
RU2654380C2 (en) Method for quantitative analysis of composition of gas mixture and associated measuring device
EP1085534A2 (en) Intelligent analysis system and method for fluid-filled electrical equipment
US8129873B2 (en) Stator coil coolant flow reduction monitoring
JP6825992B2 (en) Oxygen measurement method in the reactor containment vessel
US10145754B2 (en) Method and apparatus for detecting gas leakage from radioactive material sealed container
JP2007263584A (en) Gas leakage detector and gas leakage detection method
JP4628857B2 (en) Slow leak detector
CN107430161A (en) A kind of method and its system for being used to monitor bushing shell for transformer
US10101313B2 (en) Method and apparatus for continuous monitoring of quality and moisture parameters of liquids
US10067105B2 (en) Method for operating a measuring site
JP4876011B2 (en) Plant operation method
JP4782734B2 (en) Plant measuring instrument calibration support apparatus and plant measuring instrument calibration support method
JP7234040B2 (en) Oxygen concentration measurement system and oxygen concentration measurement method
US11326974B2 (en) Gas leakage detection method and gas leakage detection apparatus in horizontally-installed canister
WO2013146536A1 (en) Hydrogen concentration measuring instrument, and control system
JP6906454B2 (en) Oxygen measuring device for containment vessel and its oxygen sensor
JP2021124365A (en) Oxygen sensor for nuclear reactor facility and oxygen concentration measuring method
CN117460939A (en) Method and apparatus for gas leak detection
WO2023218792A1 (en) Degreasing apparatus
JP5750061B2 (en) Device for measuring hydrogen concentration in sampling gas
RU2380809C1 (en) Method for protection of circuits in water-cooled generators
CN117451605A (en) Test apparatus, prediction method, apparatus, and storage medium for long-life
JP2004184390A (en) Apparatus and method for detecting state of radioactive substance vessel
Orlenkov et al. Primary-to-secondary leak monitoring using information obtained from measurement of reference radionuclides in NPP water
JPH08105812A (en) Gas leak detector for gas-insulated electric equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171101

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210114

R150 Certificate of patent or registration of utility model

Ref document number: 6825992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150