JP2018205040A - Nuclear reactor facility and method of measuring oxygen in nuclear reactor containment vessel - Google Patents

Nuclear reactor facility and method of measuring oxygen in nuclear reactor containment vessel Download PDF

Info

Publication number
JP2018205040A
JP2018205040A JP2017108661A JP2017108661A JP2018205040A JP 2018205040 A JP2018205040 A JP 2018205040A JP 2017108661 A JP2017108661 A JP 2017108661A JP 2017108661 A JP2017108661 A JP 2017108661A JP 2018205040 A JP2018205040 A JP 2018205040A
Authority
JP
Japan
Prior art keywords
containment vessel
oxygen
partial pressure
measuring
reactor containment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017108661A
Other languages
Japanese (ja)
Other versions
JP6825992B2 (en
Inventor
基茂 柳生
Motoshige Yagyu
基茂 柳生
大仁 羽生
Hirohito Hanyu
大仁 羽生
愛実 高橋
Manami Takahashi
愛実 高橋
幸基 岡崎
Yukimoto Okazaki
幸基 岡崎
元気 田中
Genki Tanaka
元気 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017108661A priority Critical patent/JP6825992B2/en
Publication of JP2018205040A publication Critical patent/JP2018205040A/en
Application granted granted Critical
Publication of JP6825992B2 publication Critical patent/JP6825992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

To measure an oxygen concentration or an oxygen partial pressure inside a nuclear reactor containment vessel even when a loss of the AC power supply occurs.SOLUTION: According to one embodiment, a nuclear reactor facility includes: an air feed pipe 41 for taking out a sample gas inside a nuclear reactor containment vessel 12; an instrument 33 for measuring oxygen outside the containment vessel arranged outside the nuclear reactor containment vessel 12 and measuring an oxygen partial pressure of the sample gas fed out by the air feed pipe 41; a recycling pipe 43 for returning the sample gas discharged from the instrument 33 to the inside of the nuclear reactor containment vessel 12; a blower 31 for driving the sample gas inside the air feed pipe 41 and the recycling pipe 43; and an instrument 15a for measuring oxygen inside the containment vessel arranged inside the nuclear reactor containment vessel 12 for measuring the oxygen partial pressure of the gas inside the nuclear reactor containment vessel 12.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、原子炉施設および原子炉格納容器内酸素測定方法に関する。   Embodiments described herein relate generally to a nuclear reactor facility and a method for measuring oxygen in a containment vessel.

発電用原子炉施設には、過酷事故発生時に原子炉および関連施設の安全性を確保するための機器があり、事故の状況把握および収束に向けた対応が採れるような機構を有している。   The nuclear power generation facility has equipment for ensuring the safety of the nuclear reactor and related facilities in the event of a severe accident, and has a mechanism that can grasp the situation of the accident and take measures for convergence.

特に、原子炉格納容器内の気相状態は通常運転時の異常感知および過酷事故時の状況把握のために重要な情報であり、常時監視が求められている。   In particular, the gas phase state in the reactor containment vessel is important information for sensing abnormalities during normal operation and grasping the situation during severe accidents, and is constantly required to be monitored.

従来の原子炉施設において、格納容器雰囲気モニタにより気相中の水素および酸素濃度などを測定している。当該機器は原子炉格納容器外部に設置されており、原子炉格納容器内部の気相をブロワにより当該機器まで移送し、冷却器などを用いて湿度、温度、圧力などを調整し測定を実施している。   In a conventional nuclear reactor facility, hydrogen and oxygen concentrations in the gas phase are measured by a containment vessel atmosphere monitor. The equipment is installed outside the containment vessel, the gas phase inside the containment vessel is transferred to the equipment by a blower, and humidity, temperature, pressure, etc. are adjusted and measured using a cooler. ing.

特開2016−532079号公報Japanese Patent Laying-Open No. 2006-532079 特開2015−125138号公報JP2015-125138A 特開昭60−042690号公報Japanese Patent Application Laid-Open No. 60-042690

しかしながら、東日本大震災に伴う福島第一原子力発電所の過酷事故が発生したように既設施設のみでは過酷事故に対応するための十分な対応が採れないことが明らかになっている。従来の原子炉施設において、過酷事故発生時に交流電源を失った場合は、格納容器雰囲気モニタを動作させることができず、現状では常時監視を達成できていない。特に、福島第一原子力発電所での過酷事故では水素と酸素の反応による水素爆発により原子炉施設を損なう事象が発生しており、水素爆発防止のための気相濃度監視が重要である。   However, it has been clarified that the existing facilities alone cannot take sufficient measures to deal with severe accidents, as severe accidents at the Fukushima Daiichi Nuclear Power Station associated with the Great East Japan Earthquake occurred. In a conventional nuclear reactor facility, when AC power is lost when a severe accident occurs, the containment vessel atmosphere monitor cannot be operated, and at present, constant monitoring cannot be achieved. In particular, in severe accidents at the Fukushima Daiichi Nuclear Power Station, an event that damages the reactor facility due to a hydrogen explosion caused by the reaction of hydrogen and oxygen has occurred, and it is important to monitor the gas phase concentration to prevent hydrogen explosions.

そこで、交流電源を必要とする気体の移送や除湿、冷却、降圧などの調整等を行わず、過酷事故時の気相組成を測定するシステムが求められている。   Therefore, there is a need for a system that measures the gas phase composition at the time of a severe accident without adjusting gas transfer, dehumidification, cooling, pressure reduction, etc. that require an AC power supply.

特に酸素は水素と共存することで燃焼、爆発を引き起こすため、その濃度測定はアクシデントマネジメント上、重要な位置づけとなっている。   In particular, oxygen coexists with hydrogen, causing combustion and explosion, and its concentration measurement is important for accident management.

このような状況に対応するための先行技術として、水素と酸素の燃焼反応より酸素濃度を測定する方法が提案されている。そのような技術を用いた場合は、水素共存下の酸素濃度測定が可能となるものの、水素が共存していない環境では測定することができなかった。   As a prior art for dealing with such a situation, a method for measuring an oxygen concentration by a combustion reaction of hydrogen and oxygen has been proposed. When such a technique is used, the oxygen concentration can be measured in the presence of hydrogen, but cannot be measured in an environment where hydrogen does not coexist.

また、酸素センサは定期的に校正をすることが望ましいが、複雑形状である原子炉格納容器内に設置した場合、酸素センサに校正気体供給用の配管を引き回すことは設置スペースの観点から困難である。   In addition, it is desirable to calibrate the oxygen sensor periodically. However, when installed in a reactor containment vessel with a complicated shape, it is difficult from the viewpoint of installation space to route the piping for supplying calibration gas to the oxygen sensor. is there.

本発明の実施形態が解決しようとする課題は、交流電源喪失時において原子炉格納容器内の酸素濃度または酸素分圧を測定可能とすることである。   The problem to be solved by the embodiment of the present invention is to make it possible to measure the oxygen concentration or oxygen partial pressure in the reactor containment vessel when the AC power supply is lost.

本発明の一つの態様によれば、原子炉施設は、原子炉格納容器と、前記原子炉格納容器のサンプル気体取り出し部に接続されて前記原子炉格納容器内のサンプル気体を取り出す送気配管と、前記原子炉格納容器の外に配置されて、前記送気配管によって送出された前記サンプル気体の酸素分圧を測定する格納容器外酸素測定器と、前記原子炉格納容器のサンプル気体返送部および前記格納容器外酸素測定器に接続されて、前記格納容器外酸素測定器から排出された前記サンプル気体を前記原子炉格納容器内に戻す返送配管と、前記送気配管または前記返送配管に配置されて前記送気配管および前記返送配管の内部の前記サンプル気体を駆動するブロワと、前記原子炉格納容器内に配置されて前記原子炉格納容器内の気体の酸素分圧を測定する格納容器内酸素測定器と、を有することを特徴とする。   According to one aspect of the present invention, a nuclear reactor facility includes a nuclear reactor containment vessel, and an air supply pipe that is connected to a sample gas extraction unit of the nuclear reactor containment vessel and extracts a sample gas in the nuclear reactor containment vessel; An oxygen measuring device outside the containment vessel that is arranged outside the reactor containment vessel and measures an oxygen partial pressure of the sample gas delivered by the air supply pipe, a sample gas return unit of the reactor containment vessel, and Connected to the oxygen measuring device outside the containment vessel and arranged in a return pipe for returning the sample gas discharged from the oxygen measuring device outside the containment vessel into the reactor containment vessel, and the air supply pipe or the return pipe. A blower for driving the sample gas inside the air supply pipe and the return pipe, and an oxygen partial pressure of the gas in the nuclear reactor containment vessel arranged in the nuclear reactor containment vessel And having a paid container oximeter, a.

本発明の他の一つの態様によれば、原子炉格納容器内酸素測定方法は、原子炉格納容器のサンプル気体取り出し部に接続された送気配管を通じて、ブロワを用いて、前記原子炉格納容器内のサンプル気体を取り出して、前記原子炉格納容器の外に配置された格納容器外酸素測定器を通過させ、前記格納容器外酸素測定器を通過した後の前記サンプル気体を前記原子炉格納容器のサンプル気体返送部を通じて前記原子炉格納容器内に戻す、サンプル気体循環ステップと、前記格納容器外酸素測定器により、前記送気配管を通じて取り出されたサンプル気体の酸素分圧を測定するサンプル気体酸素分圧測定ステップと、前記原子炉格納容器内に配置された格納容器内酸素測定器により前記原子炉格納容器内の酸素分圧を測定する格納容器内酸素分圧測定ステップと、前記サンプル気体酸素分圧測定ステップから得られた前記サンプル気体の酸素分圧に基づいて、前記格納容器内酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧を修正する修正ステップと、を有することを特徴とする。   According to another aspect of the present invention, there is provided a method for measuring oxygen in a reactor containment vessel by using a blower through an air supply pipe connected to a sample gas extraction portion of the reactor containment vessel. The sample gas is taken out, passed through an oxygen storage device outside the containment vessel arranged outside the reactor containment vessel, and the sample gas after passing through the oxygen storage device outside the containment vessel is passed through the reactor containment vessel A sample gas circulation step for returning the sample gas to the reactor containment vessel through the sample gas return unit, and a sample gas oxygen for measuring an oxygen partial pressure of the sample gas taken out through the gas supply pipe by the oxygen measuring device outside the containment vessel A partial pressure measurement step, and an oxygen content in the containment vessel for measuring an oxygen partial pressure in the containment vessel by an oxygen measuring device in the containment vessel disposed in the containment vessel. Based on the oxygen partial pressure of the sample gas obtained from the measurement step and the sample gas oxygen partial pressure measurement step, the oxygen partial pressure in the reactor containment vessel obtained from the oxygen partial pressure measurement step in the containment vessel And a correction step for correcting.

本発明の他の一つの態様によれば、原子炉格納容器内酸素測定方法は、原子炉格納容器内に可搬型酸素測定器を搬入する測定器搬入ステップと、前記可搬型酸素測定器により前記原子炉格納容器内の酸素分圧を測定する可搬型酸素分圧測定ステップと、前記原子炉格納容器内に固定された格納容器内酸素測定装置の出力に基づいて、前記原子炉格納容器内の酸素分圧を測定する固定型酸素分圧測定ステップと、前記可搬型酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧に基づいて、前記固定型酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧を修正する修正ステップと、を有することを特徴とする。   According to another aspect of the present invention, a method for measuring oxygen in a reactor containment vessel includes a measuring device carrying-in step of carrying a portable oxygen measuring device into the reactor containment vessel, and the portable oxygen measuring device. Based on the portable oxygen partial pressure measurement step for measuring the oxygen partial pressure in the reactor containment vessel and the output of the oxygen measuring device in the containment vessel fixed in the reactor containment vessel, From the fixed oxygen partial pressure measurement step based on the oxygen partial pressure in the reactor containment vessel obtained from the fixed oxygen partial pressure measurement step for measuring the oxygen partial pressure and the portable oxygen partial pressure measurement step, A correction step of correcting the partial pressure of oxygen in the obtained reactor containment vessel.

本発明の実施形態によれば、既設の原子炉施設に大幅な改造工事をしなくても、交流電源喪失時において原子炉格納容器内の酸素濃度または酸素分圧を測定できる。   According to the embodiment of the present invention, the oxygen concentration or oxygen partial pressure in the reactor containment vessel can be measured at the time of loss of the AC power supply without significant modification to the existing nuclear reactor facility.

本発明に係る原子炉施設の一実施形態を示す模式的な立断面図である。1 is a schematic sectional elevation view showing an embodiment of a nuclear reactor facility according to the present invention. 本発明に係る原子炉施設の一実施形態で利用可能な限界電流式酸素センサの特性の一例を示すグラフであって、酸素分圧と出力電圧の関係を示すグラフである。It is a graph which shows an example of the characteristic of the limiting current type oxygen sensor which can be utilized by one Embodiment of the nuclear reactor facility which concerns on this invention, Comprising: It is a graph which shows the relationship between oxygen partial pressure and an output voltage. 本発明に係る原子炉格納容器内酸素測定方法の第1の実施形態の手順を示すフロー図である。It is a flowchart which shows the procedure of 1st Embodiment of the oxygen measuring method in a reactor containment vessel which concerns on this invention. 本発明に係る原子炉格納容器内酸素測定方法の第2の実施形態の手順を示すフロー図である。It is a flowchart which shows the procedure of 2nd Embodiment of the oxygen measuring method in a reactor containment vessel which concerns on this invention.

以下、実施の形態について、図面を参照して説明する。ここで、同一または類似の部分には共通の符号を付して、重複説明は省略する。   Hereinafter, embodiments will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は、本発明に係る原子炉施設の一実施形態を示す模式的な立断面図である。ここでは、原子炉施設の一例として沸騰水型原子力発電所を示している。原子炉建屋11の内部に原子炉格納容器12が収められており、原子炉格納容器12内に核燃料を収めた原子炉圧力容器13が設置されている。原子炉格納容器12はドライウェル21とウェットウェル22に分かれていて、原子炉圧力容器13はドライウェル21内に配置されている。
[First Embodiment]
FIG. 1 is a schematic sectional elevation view showing an embodiment of a nuclear reactor facility according to the present invention. Here, a boiling water nuclear power plant is shown as an example of a nuclear reactor facility. A reactor containment vessel 12 is housed inside the reactor building 11, and a reactor pressure vessel 13 containing nuclear fuel is installed in the reactor containment vessel 12. The reactor containment vessel 12 is divided into a dry well 21 and a wet well 22, and the reactor pressure vessel 13 is disposed in the dry well 21.

ドライウェル21およびウェットウェル22の雰囲気組成等を常時分析監視するために、原子炉格納容器12の外部に格納容器雰囲気モニタ14が設置されている。ドライウェル21から格納容器雰囲気モニタ14に気相部の気体を送るためのドライウェル気相送気配管(送気配管)41が接続され、ウェットウェル22から格納容器雰囲気モニタ14に気相部の気体を送るためのウェットウェル気相送気配管(送気配管)42が接続されている。また、格納容器雰囲気モニタ14で計測を行った気体をドライウェル21に戻すための返送配管43が接続されている。   In order to constantly analyze and monitor the atmospheric composition of the dry well 21 and the wet well 22, a containment vessel atmosphere monitor 14 is installed outside the reactor containment vessel 12. A dry well gas phase gas supply pipe (air supply pipe) 41 for sending gas in the gas phase portion from the dry well 21 to the containment vessel atmosphere monitor 14 is connected, and the gas phase portion of the gas phase portion is connected from the wet well 22 to the containment vessel atmosphere monitor 14. A wet well gas phase gas supply pipe (air supply pipe) 42 for sending gas is connected. A return pipe 43 for returning the gas measured by the containment atmosphere monitor 14 to the dry well 21 is connected.

格納容器雰囲気モニタ14は、ブロワ31と、冷却器(熱交換器)32と、酸素濃度検出器(格納容器外酸素測定器)33とを備えている。ドライウェル気相送気配管41およびウェットウェル気相送気配管42から送られた気体は、ブロワ31によって昇圧されて、冷却器32で冷却された後に酸素濃度検出器33に送られる。酸素濃度検出器33から排出された気体は、返送配管43を通してドライウェル21(原子炉格納容器12)に戻される。   The containment vessel atmosphere monitor 14 includes a blower 31, a cooler (heat exchanger) 32, and an oxygen concentration detector (outside containment oxygen measuring device) 33. The gas sent from the dry well gas phase gas supply pipe 41 and the wet well gas phase gas supply pipe 42 is pressurized by the blower 31, cooled by the cooler 32, and then sent to the oxygen concentration detector 33. The gas discharged from the oxygen concentration detector 33 is returned to the dry well 21 (reactor containment vessel 12) through the return pipe 43.

格納容器雰囲気モニタ14に含まれる酸素濃度検出器33は、原子炉格納容器12の外に設置されるものであるから、原子炉の定期検査時または通常運転時に適宜校正を行うことができる。   Since the oxygen concentration detector 33 included in the containment vessel atmosphere monitor 14 is installed outside the reactor containment vessel 12, it can be appropriately calibrated during periodic inspection of the reactor or during normal operation.

原子炉格納容器12には圧力計35が設置されている。なお、図1では圧力計35をドライウェル21に設置した例を示しているが、圧力計をドライウェル21とウェットウェル22の両方に設置してもよい。さらに、格納容器雰囲気モニタ14にも圧力計を設置してもよい。   A pressure gauge 35 is installed in the reactor containment vessel 12. Although FIG. 1 shows an example in which the pressure gauge 35 is installed in the dry well 21, the pressure gauge may be installed in both the dry well 21 and the wet well 22. Further, a pressure gauge may be installed in the containment vessel atmosphere monitor 14.

ドライウェル気相送気配管41、ウェットウェル気相送気配管42それぞれが原子炉格納容器12に接続されている箇所、すなわち、サンプル気体取り出し部36、37の近傍の原子炉格納容器12内に、格納容器内酸素センサ(格納容器内酸素測定器)15a、15bが配置されている。さらに、返送配管43が原子炉格納容器12に接続されている箇所、すなわち、サンプル気体返送部38の近傍の原子炉格納容器12内に、格納容器内酸素センサ15c(格納容器内酸素測定器)が配置されている。   The dry well gas phase gas supply pipe 41 and the wet well gas phase gas supply pipe 42 are respectively connected to the reactor containment vessel 12, that is, in the reactor containment vessel 12 in the vicinity of the sample gas extraction portions 36 and 37. In-container oxygen sensors (in-container oxygen measuring devices) 15a and 15b are arranged. Further, in the location where the return pipe 43 is connected to the reactor containment vessel 12, that is, in the reactor containment vessel 12 in the vicinity of the sample gas return section 38, the in-container oxygen sensor 15c (oxygen measuring device in the containment vessel). Is arranged.

また、配管類や圧力計などの計器およびそれらの信号を取り出す電線(図示なし)や過酷事故発生時に対応するための機器(図示なし)が配置されている。   In addition, instruments such as pipes and pressure gauges, electric wires (not shown) for extracting their signals, and equipment (not shown) for responding to severe accidents are arranged.

格納容器内酸素センサ15a、15b、15cは、たとえば、固体酸化物形イオン伝導体を用いた限界電流式である。   The in-container oxygen sensors 15a, 15b, and 15c are, for example, a limiting current type using a solid oxide ion conductor.

過酷事故時の原子炉格納容器12内の雰囲気は原子炉圧力容器13の破損等に伴い300℃程度の温度、1MPa以下の圧力、高線量雰囲気、飽和蒸気圧相当の水蒸気雰囲気となり得る。また、過酷事故の程度や進展状況によっては交流電源喪失により付帯設備が機能しなくなる可能性がある。   The atmosphere in the reactor containment vessel 12 at the time of a severe accident can be a temperature of about 300 ° C., a pressure of 1 MPa or less, a high-dose atmosphere, and a steam atmosphere equivalent to a saturated vapor pressure due to the damage of the reactor pressure vessel 13 or the like. Also, depending on the severity and progress of severe accidents, incidental facilities may not function due to loss of AC power.

ところで、限界電流式酸素センサは、たとえば、イットリア安定化ジルコニアなどの固体酸化物形酸素イオン伝導体に金属もしくは金属酸化物からなる電極を用いて電圧を印加することで酸素イオンを選択的に透過させ、イオン透過に伴う電流値を測定することで酸素分圧を測定する。固体酸化物形酸素イオン伝導体を機能させるために固体酸化物形酸素イオン伝導体部分は300〜800℃程度に加熱して使用する。そのため、過酷事故時に想定される温度の気相が限界電流式酸素センサ内に流入した際もその機能を維持することが可能である。   By the way, the limiting current type oxygen sensor selectively transmits oxygen ions by applying a voltage to a solid oxide oxygen ion conductor such as yttria stabilized zirconia using an electrode made of metal or metal oxide. The oxygen partial pressure is measured by measuring the current value accompanying ion permeation. In order to make the solid oxide oxygen ion conductor function, the solid oxide oxygen ion conductor portion is heated to about 300 to 800 ° C. for use. Therefore, the function can be maintained even when a gas phase having a temperature assumed in a severe accident flows into the limiting current type oxygen sensor.

また、限界電流式酸素センサの構成は、外部圧力と圧力差を生じるような密閉部分がない構造となっており、原子炉格納容器12内の圧力が上昇した場合においてもその構造が破壊されることはない。   Further, the structure of the limiting current type oxygen sensor has a structure without a sealed portion that causes a pressure difference with the external pressure, and the structure is destroyed even when the pressure in the reactor containment vessel 12 rises. There is nothing.

加えて、限界電流式酸素センサは無機物構成が可能であり、過酷事故時の高線量雰囲気でもその機能を維持することが可能である。   In addition, the limiting current type oxygen sensor can be composed of an inorganic substance, and can maintain its function even in a high-dose atmosphere at the time of a severe accident.

限界電流式酸素センサは、印加する電圧によっては水の電気分解が発生するため、原子炉格納容器12内で使用する場合は水の電気分解が発生する電位以下で使用することが望ましい。水の電気分解温度は固体酸化物形酸素イオン伝導体および電極温度に依存するため、推奨される運転電位を一概に規定することはできないが、標準水素電極の電位に対して2.0V以下の電位で運転することが望ましい。限界電流式酸素センサは、その原理上直流電源のみで稼働し、原子炉格納容器内部に直接設置し、冷却や除湿などの交流電源を必要とする気相の前処理等を行わないため、交流電源が失われた環境においても稼働することが可能である。   Since the limit current type oxygen sensor generates water electrolysis depending on the applied voltage, it is desirable to use the oxygen sensor below the potential at which water electrolysis occurs when used in the reactor containment vessel 12. Since the electrolysis temperature of water depends on the solid oxide oxygen ion conductor and the electrode temperature, the recommended operating potential cannot be defined in general, but it is 2.0 V or less with respect to the standard hydrogen electrode potential. It is desirable to operate at a potential. The limiting current type oxygen sensor is operated only with a DC power supply in principle, and is installed directly inside the reactor containment vessel, and does not perform pretreatment of the gas phase that requires AC power supply such as cooling and dehumidification. It is possible to operate even in an environment where power is lost.

上記説明の通り、限界電流式酸素センサは、所定の運転条件内で動作させることで過酷事故時の原子炉格納容器12内雰囲気に対応することが可能であり、格納容器内酸素センサ15a、15b、15cとして使用することが可能である。   As described above, the limiting current type oxygen sensor can cope with the atmosphere in the containment vessel 12 at the time of a severe accident by operating within predetermined operating conditions, and the in-container oxygen sensors 15a and 15b. , 15c.

固体酸化物形酸素イオン伝導体を用いた限界電流式酸素センサの特性について、図2を用いて説明する。図2は、本発明に係る原子炉施設の一実施形態で利用可能な限界電流式酸素センサの特性の一例を示すグラフであって、酸素分圧と出力電圧の関係を示すグラフである。図2に示すように、限界電流式の酸素センサは、酸素分圧に応じて応答電流が直線的に増える挙動を示す。予め酸素分圧に応じた応答直線を取得しておくことで、酸素濃度既知の雰囲気による1点校正もしくは2点校正が可能である。   The characteristics of the limiting current type oxygen sensor using the solid oxide oxygen ion conductor will be described with reference to FIG. FIG. 2 is a graph showing an example of the characteristics of a limiting current oxygen sensor that can be used in an embodiment of a nuclear reactor facility according to the present invention, and is a graph showing the relationship between oxygen partial pressure and output voltage. As shown in FIG. 2, the limiting current type oxygen sensor shows a behavior in which the response current increases linearly according to the partial pressure of oxygen. By acquiring a response straight line corresponding to the oxygen partial pressure in advance, one-point calibration or two-point calibration in an atmosphere with a known oxygen concentration is possible.

格納容器内酸素センサ15a、15b、15cは、放射線照射や時間経過によって特性が変化することが考えられるので、設置後に適宜、校正を行う必要がある。しかし、これらのセンサは原子炉格納容器12内に設置されるため、センサを原子炉格納容器12の外に取り出して校正作業を行うことは困難である。そのため、この実施形態では、格納容器内酸素センサ15a、15b、15cの計測対象とほぼ同等の気体を計測対象として格納容器雰囲気モニタ14を用いた計測を行い、格納容器内酸素センサ15a、15b、15cの校正を行う。格納容器雰囲気モニタ14は原子炉格納容器12の外に配置されているので、詳細説明は省略するが、適宜校正を行うことができる。   Since the characteristics of the oxygen sensors 15a, 15b, and 15c in the storage container may change due to radiation irradiation or the passage of time, it is necessary to calibrate appropriately after installation. However, since these sensors are installed in the reactor containment vessel 12, it is difficult to perform calibration work by taking the sensors out of the reactor containment vessel 12. Therefore, in this embodiment, measurement is performed using the containment vessel atmosphere monitor 14 with a gas that is substantially the same as the measurement target of the in-container oxygen sensors 15a, 15b, and 15c, and the in-container oxygen sensors 15a, 15b, Calibrate 15c. Since the containment vessel atmosphere monitor 14 is disposed outside the reactor containment vessel 12, detailed description is omitted, but calibration can be performed as appropriate.

本実施形態によれば、原子炉の通常運転時および定期点検時に、格納容器雰囲気モニタ14および格納容器内酸素センサ15a、15b、15cにより、原子炉格納容器12内の気体の酸素濃度または酸素分圧を測定することができる。また、格納容器雰囲気モニタ14および格納容器内酸素センサ15a、15b、15cで互いに対応する位置の原子炉格納容器12内の気体を測定対象とすることから、格納容器内酸素センサ15a、15b、15cの出力を格納容器雰囲気モニタ14の出力によって校正することができる。さらに、電源喪失事故時に、格納容器雰囲気モニタ14による原子炉格納容器12内の気体の測定ができなくなった場合でも、格納容器内酸素センサ15a、15b、15cよる原子炉格納容器12内の気体の酸素分圧の測定を行うことができる。   According to this embodiment, the oxygen concentration or oxygen content of the gas in the reactor containment vessel 12 is measured by the containment vessel atmosphere monitor 14 and the containment vessel oxygen sensors 15a, 15b, and 15c during the normal operation and periodic inspection of the reactor. The pressure can be measured. Further, since the containment vessel atmosphere monitor 14 and the oxygen sensors 15a, 15b, and 15c in the containment vessel are intended to measure gases in the reactor containment vessel 12 at positions corresponding to each other, the oxygen sensors 15a, 15b, and 15c in the containment vessel are measured. Can be calibrated by the output of the containment vessel atmosphere monitor 14. Furthermore, even when the gas in the reactor containment vessel 12 cannot be measured by the containment vessel atmosphere monitor 14 at the time of the power loss accident, the gas in the reactor containment vessel 12 by the containment vessel oxygen sensors 15a, 15b, 15c Measurement of oxygen partial pressure can be performed.

しかも、既設の格納容器雰囲気モニタ14や、ドライウェル気相送気配管41、ウェットウェル気相送気配管42および返送配管43を利用することにより、新たに格納容器内酸素センサ15a、15b、15cを追設するだけで実現できる。   In addition, by using the existing containment vessel atmosphere monitor 14, the dry well gas phase gas supply pipe 41, the wet well gas phase gas supply pipe 42 and the return pipe 43, oxygen sensors 15a, 15b and 15c in the containment vessel are newly provided. This can be achieved simply by installing a new one.

図3は、本発明に係る原子炉格納容器内酸素測定方法の第1の実施形態の手順を示すフロー図である。   FIG. 3 is a flowchart showing the procedure of the first embodiment of the method for measuring oxygen in a reactor containment according to the present invention.

図1に示す構成で、まず、ブロワ31を駆動することにより、原子炉格納容器12内の気体(サンプル気体)を循環させる(ステップS11)。すなわち、原子炉格納容器12内の気体は、ドライウェル気相送気配管41およびウェットウェル気相送気配管42を通じて、格納容器雰囲気モニタ14に送り込まれる。格納容器雰囲気モニタ14内でブロワ31を出たサンプル気体は、冷却器32で冷却された後に酸素濃度検出器33へ送られる。酸素濃度検出器33を通過したサンプル気体は返送配管43を通じて原子炉格納容器12内に戻される。   In the configuration shown in FIG. 1, first, the blower 31 is driven to circulate the gas (sample gas) in the reactor containment vessel 12 (step S11). That is, the gas in the reactor containment vessel 12 is sent to the containment vessel atmosphere monitor 14 through the dry well gas phase gas supply pipe 41 and the wet well gas phase gas supply pipe 42. The sample gas exiting the blower 31 in the containment vessel atmosphere monitor 14 is cooled by the cooler 32 and then sent to the oxygen concentration detector 33. The sample gas that has passed through the oxygen concentration detector 33 is returned into the reactor containment vessel 12 through the return pipe 43.

つぎに、格納容器雰囲気モニタ14内の酸素濃度検出器33により、サンプル気体の酸素濃度を検出する(ステップS12)。これとともに、原子炉格納容器12内の圧力を圧力計35によって測定する(ステップS13)。この圧力は、格納容器雰囲気モニタ14内の圧力計(図示せず)によって測定してもよい。   Next, the oxygen concentration detector 33 in the containment vessel atmosphere monitor 14 detects the oxygen concentration of the sample gas (step S12). At the same time, the pressure in the reactor containment vessel 12 is measured by the pressure gauge 35 (step S13). This pressure may be measured by a pressure gauge (not shown) in the containment vessel atmosphere monitor 14.

つぎに、格納容器雰囲気モニタ14より得られた酸素濃度指示値と原子炉格納容器12内の圧力計より得られた圧力の測定結果に基づいて、原子炉格納容器12内の酸素分圧を演算する(第1の酸素分圧演算ステップS14)。   Next, the oxygen partial pressure in the reactor containment vessel 12 is calculated based on the oxygen concentration instruction value obtained from the containment vessel atmosphere monitor 14 and the pressure measurement result obtained from the pressure gauge in the reactor containment vessel 12. (First oxygen partial pressure calculation step S14).

一方、格納容器内酸素センサ15a、15b、15cによる出力電流を検出する(ステップS15)。つぎに、格納容器内酸素センサ15a、15b、15cの出力電流に基づいて、原子炉格納容器12内の酸素分圧を演算する(第2の酸素分圧演算ステップS16)。   On the other hand, output currents from the in-container oxygen sensors 15a, 15b, and 15c are detected (step S15). Next, the oxygen partial pressure in the nuclear reactor containment vessel 12 is calculated based on the output currents of the containment vessel oxygen sensors 15a, 15b, and 15c (second oxygen partial pressure calculation step S16).

つぎに、第1の酸素分圧演算ステップS14の結果と第2の酸素分圧演算ステップS16の結果とを比較し(ステップS17)、これらの結果が所定の範囲で一致しない場合(ステップS17でNoの場合)は、格納容器内酸素センサ15a、15b、15cの電流値を校正する(ステップS18)。すなわち、格納容器内酸素センサ15a、15b、15cの出力電流から酸素分圧を演算する際の変換式を調整する。   Next, the result of the first oxygen partial pressure calculation step S14 and the result of the second oxygen partial pressure calculation step S16 are compared (step S17). If these results do not match within a predetermined range (in step S17). In the case of No), the current values of the in-container oxygen sensors 15a, 15b, and 15c are calibrated (step S18). That is, the conversion equation for calculating the oxygen partial pressure from the output currents of the in-container oxygen sensors 15a, 15b, and 15c is adjusted.

ステップS17で、第1の酸素分圧演算ステップS14の結果と第2の酸素分圧演算ステップS16の結果が所定の範囲で一致した場合(ステップS17でYesの場合)は、校正完了とする。   In step S17, when the result of the first oxygen partial pressure calculation step S14 and the result of the second oxygen partial pressure calculation step S16 match within a predetermined range (Yes in step S17), the calibration is completed.

本実施形態を採ることにより、原子炉格納容器12内部に格納容器内酸素センサ15a、15b、15cを校正するための配管や機器を新たに設置することなく、原子炉通常運転時も格納容器内酸素センサの健全性確認および校正が可能となる。   By adopting this embodiment, the inside of the containment vessel 12 can be kept in the containment vessel even during normal operation of the reactor without newly installing piping and equipment for calibrating the in-container oxygen sensors 15a, 15b, 15c inside the containment vessel 12. It is possible to check and calibrate the health of the oxygen sensor.

[第2の実施形態]
図4は、本発明に係る原子炉格納容器内酸素測定方法の第2の実施形態の手順を示すフロー図である。
[Second Embodiment]
FIG. 4 is a flowchart showing the procedure of the second embodiment of the method for measuring oxygen in a reactor containment vessel according to the present invention.

この第2の実施形態では、上述の第1の実施形態と同様に格納容器内酸素センサ15a、15b、15cを原子炉格納容器12内に設置する。格納容器内酸素センサ15a、15b、15cは、たとえば、固体酸化物形イオン伝導体を用いた限界電流式である。これにより、電源喪失事故時でも、原子炉格納容器12内の酸素濃度を測定することができる。   In the second embodiment, the in-container oxygen sensors 15a, 15b, and 15c are installed in the reactor containment vessel 12 as in the first embodiment described above. The in-container oxygen sensors 15a, 15b, and 15c are, for example, a limiting current type using a solid oxide ion conductor. Thereby, the oxygen concentration in the reactor containment vessel 12 can be measured even at the time of a power loss accident.

第1の実施形態では、格納容器内酸素センサ15a、15b、15cの校正のために格納容器雰囲気モニタ14のデータを用いるが、第2の実施形態では、格納容器内酸素センサ15の校正のために可搬酸素センサ(図示せず)のデータを用いる点が相違する。   In the first embodiment, data of the containment vessel atmosphere monitor 14 is used for calibration of the oxygen sensors 15a, 15b, 15c in the containment vessel. In the second embodiment, for calibration of the oxygen sensor 15 in the containment vessel. The difference is that data of a portable oxygen sensor (not shown) is used.

原子炉格納容器12内に格納容器内酸素センサ15a、15b、15cがあらかじめ固定設置されているものとする。この格納容器内酸素センサ15a、15b、15cの校正は、たとえば原子炉が停止している定期検査時等に行う。図4に示すように、定期検査時に可搬酸素センサを原子炉格納容器12内の格納容器内酸素センサ15a、15b、15cの近傍に搬入して仮設する(ステップS21)。このとき、可搬酸素センサとともに可搬酸素センサの近傍に可搬圧力計(図示せず)を搬入して仮設してもよい。   Assume that in-container oxygen sensors 15a, 15b, and 15c are fixedly installed in the reactor containment vessel 12 in advance. The calibration of the in-container oxygen sensors 15a, 15b, and 15c is performed, for example, at a periodic inspection when the nuclear reactor is stopped. As shown in FIG. 4, the portable oxygen sensor is carried in the vicinity of the in-container oxygen sensors 15a, 15b, 15c in the reactor containment vessel 12 during the periodic inspection and temporarily installed (step S21). At this time, a portable pressure gauge (not shown) may be carried and temporarily installed in the vicinity of the portable oxygen sensor together with the portable oxygen sensor.

つぎに、原子炉格納容器12内に搬入された可搬酸素センサによりその位置での酸素濃度を検出する(ステップS22)。このとき、原子炉格納容器12内の圧力を、既設の圧力計またはこのとき搬入された可搬圧力計によって測定する(ステップS23)。   Next, the oxygen concentration at that position is detected by the portable oxygen sensor carried into the reactor containment vessel 12 (step S22). At this time, the pressure in the reactor containment vessel 12 is measured by an existing pressure gauge or a portable pressure gauge carried in at this time (step S23).

つぎに、ステップS22で得られた酸素濃度と、ステップS23で得られた圧力とに基づいて、その位置の酸素分圧を演算する(第1の酸素分圧演算ステップS24)。   Next, based on the oxygen concentration obtained in step S22 and the pressure obtained in step S23, the oxygen partial pressure at that position is calculated (first oxygen partial pressure calculating step S24).

一方、第1の実施形態のステップS15と同様に、格納容器内酸素センサ15a、15b、15cによる出力電流を検出する(ステップS25)。つぎに、第1の実施形態のステップS16と同様に、格納容器内酸素センサ15a、15b、15cの出力電流に基づいて、原子炉格納容器12内の酸素分圧を演算する(第2の酸素分圧演算ステップS26)。   On the other hand, as in step S15 of the first embodiment, output currents from the in-container oxygen sensors 15a, 15b, and 15c are detected (step S25). Next, as in step S16 of the first embodiment, the oxygen partial pressure in the reactor containment vessel 12 is calculated based on the output currents of the containment vessel oxygen sensors 15a, 15b, 15c (second oxygen Partial pressure calculation step S26).

つぎに、第1の酸素分圧演算ステップS24の結果と第2の酸素分圧演算ステップS26の結果とを比較し(ステップS27)、これらの結果が所定の範囲で一致しない場合(ステップS27でNoの場合)は、格納容器内酸素センサ15a、15b、15cの電流値を校正する(ステップS28)。すなわち、格納容器内酸素センサ15a、15b、15cの出力電流から酸素分圧を演算する際の変換式を調整する。   Next, the result of the first oxygen partial pressure calculation step S24 and the result of the second oxygen partial pressure calculation step S26 are compared (step S27). If these results do not match within a predetermined range (in step S27). In the case of No), the current values of the in-container oxygen sensors 15a, 15b, and 15c are calibrated (step S28). That is, the conversion equation for calculating the oxygen partial pressure from the output currents of the in-container oxygen sensors 15a, 15b, and 15c is adjusted.

ステップS27で、第1の酸素分圧演算ステップS24の結果と第2の酸素分圧演算ステップS26の結果が所定の範囲で一致した場合(ステップS27でYesの場合)は、校正完了とする。   In step S27, if the result of the first oxygen partial pressure calculation step S24 and the result of the second oxygen partial pressure calculation step S26 match within a predetermined range (Yes in step S27), the calibration is completed.

この第2の実施形態を採ることで原子炉格納容器12内部に格納容器内酸素センサ15a、15b、15c校正用の配管敷設や機器を新たに設置することなく、格納容器内酸素センサ15の健全性確認および校正が可能となる。   By adopting this second embodiment, the containment oxygen sensor 15 can be soundly operated without newly installing piping or equipment for calibrating the in-container oxygen sensors 15a, 15b, 15c inside the reactor containment vessel 12. Confirmation and calibration are possible.

[他の実施形態]
上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[Other Embodiments]
The above embodiments are presented as examples, and are not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…原子炉建屋、 12…原子炉格納容器、 13…原子炉圧力容器、 14…格納容器雰囲気モニタ、 15a,15b,15c…格納容器内酸素センサ(格納容器内酸素測定器)、 21…ドライウェル、 22…ウェットウェル、 31…ブロワ、 32…冷却器(熱交換器)、 33…酸素濃度検出器(格納容器外酸素測定器)、 35…圧力計、 36、37…サンプル気体取り出し部、 38…サンプル気体返送部、 41…ドライウェル気相送気配管(送気配管)、 42…ウェットウェル気相送気配管(送気配管)、 43…返送配管 DESCRIPTION OF SYMBOLS 11 ... Reactor building, 12 ... Reactor containment vessel, 13 ... Reactor pressure vessel, 14 ... Containment vessel atmosphere monitor, 15a, 15b, 15c ... Containment vessel oxygen sensor (oxygen measuring device in containment vessel), 21 ... Dry Well, 22 ... Wet well, 31 ... Blower, 32 ... Cooler (heat exchanger), 33 ... Oxygen concentration detector (oxygen measuring device outside containment vessel), 35 ... Pressure gauge, 36, 37 ... Sample gas extraction part, 38 ... Sample gas return section, 41 ... Dry well gas phase air supply pipe (air supply pipe), 42 ... Wet well gas phase air supply pipe (air supply pipe), 43 ... Return pipe

Claims (8)

原子炉格納容器と、
前記原子炉格納容器のサンプル気体取り出し部に接続されて前記原子炉格納容器内のサンプル気体を取り出す送気配管と、
前記原子炉格納容器の外に配置されて、前記送気配管によって送出された前記サンプル気体の酸素分圧を測定する格納容器外酸素測定器と、
前記原子炉格納容器のサンプル気体返送部および前記格納容器外酸素測定器に接続されて、前記格納容器外酸素測定器から排出された前記サンプル気体を前記原子炉格納容器内に戻す返送配管と、
前記送気配管または前記返送配管に配置されて前記送気配管および前記返送配管の内部の前記サンプル気体を駆動するブロワと、
前記原子炉格納容器内に配置されて前記原子炉格納容器内の気体の酸素分圧を測定する格納容器内酸素測定器と、
を有することを特徴とする原子炉施設。
A containment vessel,
An air supply pipe connected to the sample gas extraction portion of the reactor containment vessel to take out the sample gas in the reactor containment vessel; and
An oxygen measuring device outside the containment vessel that is arranged outside the reactor containment vessel and measures an oxygen partial pressure of the sample gas delivered by the air feeding pipe;
A return pipe connected to the sample gas return section of the nuclear reactor containment vessel and the oxygen measuring device outside the containment vessel and returning the sample gas discharged from the oxygen measuring device outside the containment vessel into the reactor containment vessel;
A blower that is arranged in the air supply pipe or the return pipe and drives the sample gas inside the air supply pipe and the return pipe;
An oxygen measuring instrument in the containment vessel that is arranged in the reactor containment vessel and measures the oxygen partial pressure of the gas in the reactor containment vessel;
A nuclear reactor facility characterized by comprising:
前記格納容器内酸素測定器は、前記サンプル気体取り出し部または前記サンプル気体返送部に配置されていることを特徴とする請求項1に記載の原子炉施設。   2. The nuclear reactor facility according to claim 1, wherein the in-container oxygen measuring device is disposed in the sample gas extraction unit or the sample gas return unit. 前記原子炉格納容器内酸素測定器は、固体酸化物形酸素イオン伝導体を用いた限界電流式の酸素センサを含むことを特徴とする請求項1または請求項2に記載の原子炉施設。   The nuclear reactor facility according to claim 1 or 2, wherein the oxygen measuring device in the reactor containment vessel includes a limiting current type oxygen sensor using a solid oxide oxygen ion conductor. 原子炉格納容器のサンプル気体取り出し部に接続された送気配管を通じて、ブロワを用いて、前記原子炉格納容器内のサンプル気体を取り出して、前記原子炉格納容器の外に配置された格納容器外酸素測定器を通過させ、前記格納容器外酸素測定器を通過した後の前記サンプル気体を前記原子炉格納容器のサンプル気体返送部を通じて前記原子炉格納容器内に戻す、サンプル気体循環ステップと、
前記格納容器外酸素測定器により、前記送気配管を通じて取り出されたサンプル気体の酸素分圧を測定するサンプル気体酸素分圧測定ステップと、
前記原子炉格納容器内に配置された格納容器内酸素測定器により前記原子炉格納容器内の酸素分圧を測定する格納容器内酸素分圧測定ステップと、
前記サンプル気体酸素分圧測定ステップから得られた前記サンプル気体の酸素分圧に基づいて、前記格納容器内酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧を修正する修正ステップと、
を有することを特徴とする原子炉格納容器内酸素測定方法。
A sample gas in the reactor containment vessel is taken out using a blower through an air supply pipe connected to a sample gas take-out portion of the reactor containment vessel, and the outside of the containment vessel arranged outside the reactor containment vessel A sample gas circulation step for passing the oxygen measuring device and returning the sample gas after passing through the oxygen measuring device outside the containment vessel into the reactor containment vessel through a sample gas return part of the reactor containment vessel;
A sample gas oxygen partial pressure measuring step for measuring an oxygen partial pressure of the sample gas taken out through the air supply pipe by the oxygen measuring device outside the containment vessel;
A step of measuring oxygen partial pressure in the containment vessel, wherein the oxygen partial pressure in the reactor containment vessel is measured by an oxygen measuring device in the containment vessel disposed in the reactor containment vessel;
Correction for correcting the oxygen partial pressure in the reactor containment obtained from the containment oxygen partial pressure measurement step based on the oxygen partial pressure of the sample gas obtained from the sample gas oxygen partial pressure measurement step Steps,
A method for measuring oxygen in a containment vessel, comprising:
前記格納容器外酸素測定器は酸素濃度測定器を含み、
前記サンプル気体酸素分圧測定ステップは、
前記格納容器外酸素測定器により前記サンプル気体の酸素濃度を測定する酸素濃度測定ステップと、
前記原子炉格納容器内の圧力を測定する圧力測定ステップと、
前記酸素濃度測定ステップから得られた酸素濃度と、前記圧力測定ステップから得られた前記原子炉格納容器内の圧力とに基づいて酸素分圧を演算する第1の酸素分圧演算ステップと、
を含み、
前記格納容器内酸素測定器は前記原子炉格納容器内の酸素分圧に対応する出力電流を出力する酸素センサを含み、
前記格納容器内酸素分圧測定ステップは、
前記酸素センサの出力電流に基づいて前記原子炉格納容器内の酸素分圧を演算する第2の酸素分圧演算ステップを含むこと、
を特徴とする請求項4に記載の原子炉格納容器内酸素測定方法。
The outside-container oxygen measuring device includes an oxygen concentration measuring device
The sample gas oxygen partial pressure measuring step includes:
An oxygen concentration measuring step of measuring the oxygen concentration of the sample gas by the oxygen measuring device outside the containment vessel;
A pressure measuring step for measuring the pressure in the reactor containment vessel;
A first oxygen partial pressure calculating step for calculating an oxygen partial pressure based on the oxygen concentration obtained from the oxygen concentration measuring step and the pressure in the reactor containment vessel obtained from the pressure measuring step;
Including
The containment vessel oxygen measuring device includes an oxygen sensor that outputs an output current corresponding to an oxygen partial pressure in the reactor containment vessel,
The step of measuring oxygen partial pressure in the containment vessel
Including a second oxygen partial pressure calculating step of calculating an oxygen partial pressure in the reactor containment vessel based on an output current of the oxygen sensor;
The method for measuring oxygen in a reactor containment vessel according to claim 4.
原子炉格納容器内に可搬型酸素測定器を搬入する測定器搬入ステップと、
前記可搬型酸素測定器により前記原子炉格納容器内の酸素分圧を測定する可搬型酸素分圧測定ステップと、
前記原子炉格納容器内に固定された格納容器内酸素測定装置の出力に基づいて、前記原子炉格納容器内の酸素分圧を測定する固定型酸素分圧測定ステップと、
前記可搬型酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧に基づいて、前記固定型酸素分圧測定ステップから得られた前記原子炉格納容器内の酸素分圧を修正する修正ステップと、
を有することを特徴とする原子炉格納容器内酸素測定方法。
A measuring instrument loading step for loading a portable oxygen measuring instrument into the reactor containment vessel;
A portable oxygen partial pressure measuring step of measuring an oxygen partial pressure in the reactor containment vessel by the portable oxygen measuring device;
A fixed oxygen partial pressure measuring step for measuring an oxygen partial pressure in the reactor containment vessel based on an output of an oxygen measuring device in the containment vessel fixed in the reactor containment vessel;
Based on the oxygen partial pressure in the reactor containment vessel obtained from the portable oxygen partial pressure measurement step, the oxygen partial pressure in the reactor containment vessel obtained from the fixed oxygen partial pressure measurement step is corrected. Correction steps to
A method for measuring oxygen in a containment vessel, comprising:
前記可搬型酸素測定器は酸素濃度測定器を含み、
前記可搬型酸素分圧測定ステップは、
前記可搬型酸素測定器により前記原子炉格納容器内の酸素濃度を測定する酸素濃度測定ステップと、
前記原子炉格納容器内の圧力を測定する圧力測定ステップと、
前記酸素濃度測定ステップから得られた酸素濃度と、前記圧力測定ステップから得られた前記原子炉格納容器内の圧力とに基づいて酸素分圧を演算する第1の酸素分圧演算ステップと、
を含み、
前記格納容器内酸素測定器は前記原子炉格納容器内の酸素分圧に対応する出力電流を出力する酸素センサを含み、
前記固定型酸素分圧測定ステップは、
前記酸素センサの出力電流に基づいて前記原子炉格納容器内の酸素分圧を演算する第2の酸素分圧演算ステップを含むこと、
を特徴とする請求項6に記載の原子炉格納容器内酸素測定方法。
The portable oxygen measuring device includes an oxygen concentration measuring device,
The portable oxygen partial pressure measurement step includes:
An oxygen concentration measurement step of measuring the oxygen concentration in the reactor containment vessel by the portable oxygen measuring device;
A pressure measuring step for measuring the pressure in the reactor containment vessel;
A first oxygen partial pressure calculating step for calculating an oxygen partial pressure based on the oxygen concentration obtained from the oxygen concentration measuring step and the pressure in the reactor containment vessel obtained from the pressure measuring step;
Including
The containment vessel oxygen measuring device includes an oxygen sensor that outputs an output current corresponding to an oxygen partial pressure in the reactor containment vessel,
The fixed oxygen partial pressure measurement step includes:
Including a second oxygen partial pressure calculating step of calculating an oxygen partial pressure in the reactor containment vessel based on an output current of the oxygen sensor;
The method for measuring oxygen in a reactor containment vessel according to claim 6.
前記原子炉格納容器内酸素測定器は、固体酸化物形酸素イオン伝導体を用いた限界電流式の酸素センサを含むことを特徴とする請求項4ないし請求項7のいずれか一項に記載の原子炉格納容器内酸素測定方法。   8. The reactor containment vessel oxygen measuring device includes a limiting current type oxygen sensor using a solid oxide oxygen ion conductor, according to any one of claims 4 to 7. Method for measuring oxygen in the containment vessel.
JP2017108661A 2017-05-31 2017-05-31 Oxygen measurement method in the reactor containment vessel Active JP6825992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017108661A JP6825992B2 (en) 2017-05-31 2017-05-31 Oxygen measurement method in the reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017108661A JP6825992B2 (en) 2017-05-31 2017-05-31 Oxygen measurement method in the reactor containment vessel

Publications (2)

Publication Number Publication Date
JP2018205040A true JP2018205040A (en) 2018-12-27
JP6825992B2 JP6825992B2 (en) 2021-02-03

Family

ID=64955638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017108661A Active JP6825992B2 (en) 2017-05-31 2017-05-31 Oxygen measurement method in the reactor containment vessel

Country Status (1)

Country Link
JP (1) JP6825992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193941A (en) * 2019-05-30 2020-12-03 株式会社東芝 Oxygen concentration measurement system and oxygen concentration measurement method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574534A (en) * 1980-06-10 1982-01-11 Toshiba Corp Measuring apparatus for concentration of hydrogen and oxygen
JPS6042690A (en) * 1983-08-18 1985-03-06 株式会社東芝 Gas analyzer in container for nuclear reactor
JPS60187893A (en) * 1984-03-08 1985-09-25 東京電力株式会社 Measuring device for concentration of gas
JPH06242066A (en) * 1993-02-16 1994-09-02 Harman Co Ltd Method and equipment for detecting deterioration of oxygen sensor
JPH10293196A (en) * 1997-04-21 1998-11-04 Toshiba Corp Flammable gas concentration controller
JP2000098075A (en) * 1998-07-23 2000-04-07 Toshiba Corp Device for removing combustible gas
JP2007163208A (en) * 2005-12-12 2007-06-28 Chugoku Electric Power Co Inc:The Nuclear reactor output measuring system
JP2008203265A (en) * 2000-12-07 2008-09-04 Aep Investments Inc Combined oxygen and nox sensor
JP2012083226A (en) * 2010-10-12 2012-04-26 Toshiba Corp Hydrogen removal device and method
JP2013104745A (en) * 2011-11-11 2013-05-30 Toshiba Corp Moisture concentration measuring apparatus, measuring method thereof, hydrogen gas concentration measuring system, and measuring method thereof
JP2015125129A (en) * 2013-12-27 2015-07-06 日立Geニュークリア・エナジー株式会社 Spent fuel pool water level monitoring system
JP2015125138A (en) * 2013-12-27 2015-07-06 株式会社東芝 Hydrogen-oxygen concentration measuring device, hydrogen-oxygen concentration measuring system, and hydrogen-oxygen concentration measuring method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574534A (en) * 1980-06-10 1982-01-11 Toshiba Corp Measuring apparatus for concentration of hydrogen and oxygen
JPS6042690A (en) * 1983-08-18 1985-03-06 株式会社東芝 Gas analyzer in container for nuclear reactor
JPS60187893A (en) * 1984-03-08 1985-09-25 東京電力株式会社 Measuring device for concentration of gas
JPH06242066A (en) * 1993-02-16 1994-09-02 Harman Co Ltd Method and equipment for detecting deterioration of oxygen sensor
JPH10293196A (en) * 1997-04-21 1998-11-04 Toshiba Corp Flammable gas concentration controller
US6524534B1 (en) * 1998-07-23 2003-02-25 Kabushiki Kaisha Toshiba Apparatus for removing flammable gas
JP2000098075A (en) * 1998-07-23 2000-04-07 Toshiba Corp Device for removing combustible gas
JP2008203265A (en) * 2000-12-07 2008-09-04 Aep Investments Inc Combined oxygen and nox sensor
JP2007163208A (en) * 2005-12-12 2007-06-28 Chugoku Electric Power Co Inc:The Nuclear reactor output measuring system
JP2012083226A (en) * 2010-10-12 2012-04-26 Toshiba Corp Hydrogen removal device and method
JP2013104745A (en) * 2011-11-11 2013-05-30 Toshiba Corp Moisture concentration measuring apparatus, measuring method thereof, hydrogen gas concentration measuring system, and measuring method thereof
JP2015125129A (en) * 2013-12-27 2015-07-06 日立Geニュークリア・エナジー株式会社 Spent fuel pool water level monitoring system
JP2015125138A (en) * 2013-12-27 2015-07-06 株式会社東芝 Hydrogen-oxygen concentration measuring device, hydrogen-oxygen concentration measuring system, and hydrogen-oxygen concentration measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山添 昇 ほか: "化学センサ材料としての固体電解質", 電気化学および工業物理化学, vol. 第55巻第3号, JPN6020037520, 1987, JP, pages 200 - 204, ISSN: 0004358999 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193941A (en) * 2019-05-30 2020-12-03 株式会社東芝 Oxygen concentration measurement system and oxygen concentration measurement method
JP7234040B2 (en) 2019-05-30 2023-03-07 株式会社東芝 Oxygen concentration measurement system and oxygen concentration measurement method

Also Published As

Publication number Publication date
JP6825992B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
US6446027B1 (en) Intelligent analysis system and method for fluid-filled electrical equipment
EP2372882B1 (en) Stator coil coolant flow reduction monitoring
JP4495103B2 (en) Gas leak detection device and gas leak detection method
RU2654380C2 (en) Method for quantitative analysis of composition of gas mixture and associated measuring device
US10563922B2 (en) Method and device for detecting a leakage in the area of at least one cooling device of a furnace and a furnace
EP1085635A2 (en) Fluid-filled electrical equipment intelligent analysis system and method
US20220113271A1 (en) Gas concentration detection method, gas concentration detection device, and gas generation system
JP2018205040A (en) Nuclear reactor facility and method of measuring oxygen in nuclear reactor containment vessel
KR101459576B1 (en) Measurement method of hydrogen concentration by using two different sensors
US9618489B2 (en) Generator condition monitoring device and method using gaseous decomposition products sensor
JP2007285990A (en) Nuclear reactor output monitoring device and monitoring method thereof
JP2006078190A (en) Device and method for monitoring vacuum lowering of vacuum insulation structure
US11053120B2 (en) Reactor for oxidation of ammonia in the production of nitric acid
WO2013146536A1 (en) Hydrogen concentration measuring instrument, and control system
JP2008516192A (en) Electrochemical corrosion potential apparatus and method
Bae Study on Early Leak Detection of PCS Coolant Using Integrated System by means of Multi-Sensors Technique
JP2021124365A (en) Oxygen sensor for nuclear reactor facility and oxygen concentration measuring method
JP6433764B2 (en) Radiation measurement apparatus and radiation measurement method
JP5750061B2 (en) Device for measuring hydrogen concentration in sampling gas
JP6649295B2 (en) Equipment atmosphere monitoring device, equipment atmosphere monitoring method, and component set of equipment atmosphere monitoring device
WO2014189409A1 (en) Method for isolating environmentally sensitive scale components from adverse environmental and technological factors (variants)
JP3843650B2 (en) Reactor power measuring device
CN117451605A (en) Test apparatus, prediction method, apparatus, and storage medium for long-life
Grover The next generation nuclear plant graphite creep experiment irradiation in the advanced test reactor
Eickelbeck Advanced generator purging technologies for cleaner and safer energy production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171101

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210114

R150 Certificate of patent or registration of utility model

Ref document number: 6825992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150