WO2023218792A1 - Degreasing apparatus - Google Patents

Degreasing apparatus Download PDF

Info

Publication number
WO2023218792A1
WO2023218792A1 PCT/JP2023/013496 JP2023013496W WO2023218792A1 WO 2023218792 A1 WO2023218792 A1 WO 2023218792A1 JP 2023013496 W JP2023013496 W JP 2023013496W WO 2023218792 A1 WO2023218792 A1 WO 2023218792A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
degreasing
gas
generated
gas generated
Prior art date
Application number
PCT/JP2023/013496
Other languages
French (fr)
Japanese (ja)
Inventor
優 田中
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2023218792A1 publication Critical patent/WO2023218792A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/18Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices

Definitions

  • the present invention relates to a degreasing device that performs degreasing treatment on objects to be treated such as ceramic materials.
  • Patent Document 1 This type of conventional degreasing device as shown in Patent Document 1 requires regular maintenance.
  • a heating furnace that stores and degreases objects to be processed is provided with an opening for taking the objects in and out, and this opening is hermetically sealed with a lid during degreasing; The provided seal member is replaced during regular maintenance.
  • inspections and repairs are also performed when some abnormality occurs in the equipment, such as a malfunction in the processing process, and various parts, including the sealing members mentioned above, are replaced and adjusted at that time. .
  • the present invention has been developed to enable maintenance to be carried out at an appropriate time in this type of heating device for degreasing, thereby preventing abnormalities from occurring in the device and ensuring the maximum operating time of the device. , even if an unexpected abnormality occurs, the purpose is to be able to identify the cause with more precision.
  • the degreasing apparatus includes a heating furnace for storing and degreasing an object to be treated, and an amount of generated gas generated during the degreasing treatment or a value indirectly indicating this (hereinafter referred to as the amount of generated gas). ), and an information processing device that calculates management information, which is information related to management including inspection and maintenance timing, based on the amount of gas generated measured by the measuring device. That is.
  • inspection and maintenance can be performed at appropriate times based on the amount of gas generated, thereby preventing abnormalities in the equipment and ensuring maximum equipment operating time. Even if an unexpected abnormality occurs, the cause can be identified with greater accuracy.
  • 1 is an overall schematic diagram of a degreasing device in one embodiment of the present invention. It is a graph showing the time course of the absorbance spectrum. 2 is a graph showing a change over time in the waveform area of a CH group shown in an absorbance spectrum. It is a graph showing a calibration curve between the amount of generated gas and the integrated value. It is a flowchart which shows the operation of the amount calculation part of generated gas in the same embodiment. It is a flowchart which shows the operation of the management information calculation part in the same embodiment.
  • this degreasing apparatus 100 includes a heating furnace 1 that accommodates a processing target W such as a ceramic molded body and performs a degreasing process, and a heating furnace 1 for degreasing the processing target W in the heating furnace 1. It is equipped with a measuring device 2 that in-line measures the weight of gas generated by decomposition and vaporization of the organic binder contained therein, or a value indirectly indicating this (hereinafter also referred to as the amount of generated gas).
  • the heating furnace 1 includes, for example, a metal furnace body 11 provided with an opening for taking in and taking out the object W to be treated, and a metal door 12 that closes the opening.
  • a metal furnace body 11 provided with an opening for taking in and taking out the object W to be treated
  • a metal door 12 that closes the opening.
  • this heating furnace 1 is connected to a gas inlet pipe 3 for supplying the degreasing gas and a gas exhaust pipe 4 for discharging the generated gas, as well as controlling the inside of the heating furnace 1 using temperature control means such as a thermocouple.
  • a heater 5 for maintaining a predetermined degreasing temperature, a fan 6 for circulating degreasing gas within the heating furnace 1, and the like are provided.
  • a control device (not shown) is further provided for automatically performing a predetermined degreasing sequence by controlling the valve (not shown) provided in the gas introduction pipe 3, etc., the fan 6, the heater 5, etc.
  • the measuring device 2 includes a gas detection device 21 that detects the generated gas, and a gas amount calculation section 22 that calculates the amount of generated gas based on the detection data output from the gas detection device 21. be.
  • the gas detection device 21 detects a predetermined component (for example, a gas having a C--H group) of the generated gas, and here, it is an FTIR (Fourier transform infrared spectrometer), which is one of the absorbance meters. is used.
  • This gas detection device 21 is installed near the exhaust port of the heating furnace 1, but the installation location may be any position where generated gas is detected, such as any location within the heating furnace 1 or a gas exhaust pipe. It doesn't matter if it's within 4.
  • the gas detection device 21 is not limited to FTIR, and includes, for example, an NDIR (non-dispersive infrared absorption method) type gas sensor, GC (gas chromatograph), FID (flame ionization detector), TOC meter (total organic carbon meter). etc. may also be used.
  • NDIR non-dispersive infrared absorption method
  • GC gas chromatograph
  • FID flame ionization detector
  • TOC meter total organic carbon meter
  • This information processing device 7 is a so-called computer equipped with a CPU, a memory, an I/O interface, a communication interface, etc.
  • the information processing device 7 is a computer equipped with a CPU, a memory, an I/O interface, a communication interface, etc. It functions as the gas amount calculation section 22.
  • this information processing device 7 does not need to be physically integrated, and may be composed of a plurality of computers that are communicably connected to each other, and for example, the control device may control all or all of this information processing device 7. It may be configured to take on some functions.
  • the information processing device 7 also functions as a management information calculation unit 71 that calculates management information that is information related to management including inspection and maintenance timing.
  • the gas amount calculation unit 22 acquires the detection data output from the gas detection device 21 at each sampling time (step S12) (step S13), By applying background correction and the like, an absorbance spectrum as shown in FIG. 2 is calculated (step S14).
  • FIG. 2 is an example of the absorbance spectra of the generated gas at the first time, second time, and third time during the degreasing process.
  • the waveform area of the C-H group in this absorbance spectrum has a constant relationship (proportional relationship) with the amount of gas generated at that sampling time, and the value obtained by integrating this waveform area over time over the degreasing treatment period.
  • the integrated value of the waveform area at each sampling time has a certain relationship (proportional relationship) with the amount of gas generated during the degreasing process, and becomes a value that indirectly indicates the amount of gas generated during the degreasing process.
  • the gas amount calculation unit 22 calculates the area of the waveform caused by the CH group (the area of the shaded portion shown in FIG. 2) in the absorbance spectrum at each sampling time (step S15).
  • the gas amount calculation unit 22 calculates an integrated value (hereinafter also referred to as an actual measured integrated value) of the waveform area at each sampling time during the degreasing process (step S17). Note that the waveform area and integrated value calculated in each degreasing process are recorded in a predetermined area of the memory as log data.
  • FIG. 3 is a graph showing an example of a change in the waveform area of a CH group when the horizontal axis represents elapsed time, and represents a change in the amount of gas generated over time. From this graph, it can be seen that after a certain amount of time has passed since the start of the degreasing process, the amount of gas generated begins to gradually increase, passes a peak, and finally reaches 0, indicating the completion of degreasing. The area of the peak waveform in this graph (indicated by diagonal lines) becomes the integrated value.
  • a calibration curve showing the relationship between the integrated value and the amount of gas generated is determined in advance through experiments or the like.
  • calibration curve data indicating this calibration curve is stored in a calibration curve data storage section 72 set in a predetermined area of the memory in the form of a calculation formula, a table, or the like.
  • the amount of gas generated by normal degreasing treatment is determined for each type of object W to be treated, and can be determined from experiments, past degreasing treatment data, etc.
  • the expected amount of generated gas for each type of object W to be processed (hereinafter also referred to as expected amount of generated gas) is stored in advance in the expected amount of generated gas storage section 73 set in a predetermined area of the memory. I have let you.
  • the management information calculation unit 71 recognizes the type of the object W to be degreased based on the operator's input, and refers to the estimated gas amount storage unit 73 to calculate the estimated gas generation of the object W to be degreased.
  • the amount is acquired (step S21).
  • the management information calculation unit 72 refers to the calibration curve data and calculates an estimated integrated value that is an integrated value corresponding to the estimated amount of generated gas (step S22).
  • the management information calculation unit 71 calculates a difference by subtracting the assumed integrated value from the actual measured integrated value (step S23), and when the difference value exceeds a predetermined threshold (step S24), the management information Information indicating that the inspection/maintenance period, which is one of the following, has been reached is output (step S25). This information is output and displayed on the display of the information processing device 7 or a mobile terminal connected to the information processing device 7 by wire or wirelessly.
  • the reason why the measured integrated value exceeds the expected integrated value can be the start of deterioration of door seals, fan shaft seals, etc.
  • the amount of air mixed in from the outside increases, which accelerates the decomposition of the generated gas, even though it does not lead to abnormalities in the degreasing process or equipment failure. This is because the amount) increases.
  • a similar situation may occur depending on the storage condition of the object to be processed.
  • the operator Upon receiving the management information, the operator temporarily stops the operation of the degreasing device 100 and performs inspection and maintenance such as leak testing and seal replacement.
  • seal deterioration etc. can be detected quickly, so inspection and maintenance can be carried out at the exact timing when inspection and maintenance need to be performed. Therefore, while preventing abnormalities from occurring in the degreasing apparatus 100, wasteful inspection and maintenance can be made unnecessary, and the maximum operating time of the apparatus can be ensured.
  • the log data and the difference between the integrated value and the expected integrated value are recorded in memory and can be referenced, so the cause can be identified more accurately.
  • the log data and the difference value can be said to be feedback information for quality control of the processing object W, which is one type of management information.
  • the inspection/maintenance period is defined as the point in time when the difference value obtained by subtracting the estimated integrated value from the actual measured integrated value exceeds a predetermined threshold value. Then, based on the speed at which the amount of change increases, a time in the future when the difference value will exceed a predetermined threshold may be predicted, and the predicted time may be output in advance as the inspection/maintenance time.
  • the necessity of inspection and maintenance was determined by comparing the measured integrated value and the assumed integrated value, but by converting using the calibration curve data, the amount of gas generated and the estimated gas generated It may be determined by comparing with the quantity.
  • the amount of generated gas was measured based on its absorbance spectrum, focusing on the C--H group contained in the generated gas, but other functional groups or components may be used.
  • FTIR is used as the gas detection device, and it is possible to measure and analyze various components of the generated gas, so more information can be obtained and used for inspection and maintenance, quality control, and abnormality identification. It can greatly contribute to such things.
  • a heating furnace that accommodates and degreases the object to be treated, and in-line measurement of the amount of gas generated during the degreasing process or a value that indirectly indicates this (hereinafter referred to as the amount of gas generated).
  • a degreasing device comprising: a degreasing device; and an information processing device that calculates management information that is management information including inspection and maintenance timing based on the amount of gas generated measured by the measuring device.
  • the information processing device calculates the management information based on the difference between the amount of gas generated measured by the measuring device and the amount of gas generated that is assumed to be generated from the object to be treated.
  • the measuring device includes a gas detection device that detects the generated gas, and a gas amount calculation unit that calculates the amount of generated gas based on the detection data of the gas detection device [1], [ 2] or the degreasing device according to [3]. With such a device, the amount of gas generated can be measured in-line in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Provided is a degreasing apparatus 100 with which maintenance can be performed at an appropriate time to ensure the maximal operation time of the apparatus, and even when an unexpected abnormality occurs, the factor of the abnormality can more accurately be identified. For that purpose, the apparatus comprises: a heating furnace 1 for accommodating and degreasing an object W to be treated; a measurement device 2 for measuring the amount of generated gas that has been generated in the degreasing, or a value that indirectly represents same (hereinafter, will be referred to as the generated gas amount); and an information processing device 7 for calculating, on the basis of the generated gas amount that has been measured by the measurement device 2, management information that is information relating to management including an inspection/maintenance time.

Description

脱脂装置Degreasing equipment
 本発明は、セラミック材料等の処理対象物に脱脂処理を施す脱脂装置に関するものである。 The present invention relates to a degreasing device that performs degreasing treatment on objects to be treated such as ceramic materials.
 特許文献1に示すような従来のこの種の脱脂装置は、定期メンテナンスが必要である。例えば、処理対象物を収容して脱脂する加熱炉には、処理対象物を出し入れするための開口が設けられており、この開口は脱脂処理時には蓋体によって気密に封止されるが、そこに設けられたシール部材は、定期メンテナンス時に交換される。 This type of conventional degreasing device as shown in Patent Document 1 requires regular maintenance. For example, a heating furnace that stores and degreases objects to be processed is provided with an opening for taking the objects in and out, and this opening is hermetically sealed with a lid during degreasing; The provided seal member is replaced during regular maintenance.
 また、処理プロセスに不具合が発生するなど、装置になんらかの異常が発生した場合にも点検・修理が行われ、その際に前述したシール部材をはじめとする種々の部品の交換、調整等が行われる。 In addition, inspections and repairs are also performed when some abnormality occurs in the equipment, such as a malfunction in the processing process, and various parts, including the sealing members mentioned above, are replaced and adjusted at that time. .
特開平11-43704号公報Japanese Patent Application Publication No. 11-43704
 しかしながら、異常が発生するまで装置を稼働させると、部品が大きなダメージを被るなどして、復旧までに予想以上の時間と費用がかかる場合がある。かといって、異常発生を未然に防止するため、定期メンテナンスの回数を増やせば、装置稼働時間が低下することは避けられない。 However, if the equipment is operated until an abnormality occurs, the parts may suffer significant damage and it may take more time and money than expected to restore the equipment. However, if the frequency of periodic maintenance is increased in order to prevent abnormalities from occurring, it is inevitable that the operating time of the equipment will be reduced.
 さらに、従来の装置では、例えば処理プロセスに突発的な不具合が発生した場合に、その要因を十分に突き止められない場合もある。 Furthermore, with conventional devices, for example, when a sudden problem occurs in a treatment process, it may not be possible to fully identify the cause.
 そこで本発明は、この種の脱脂用加熱装置において、適切な時期にメンテナンスを実施できるようにして、装置に異常が発生することを未然に防止しつつ、最大限の装置稼働時間を担保するとともに、仮に不測の異常が発生したとしても、その要因をより精度よく特定できるようにすべく図ったものである。 Therefore, the present invention has been developed to enable maintenance to be carried out at an appropriate time in this type of heating device for degreasing, thereby preventing abnormalities from occurring in the device and ensuring the maximum operating time of the device. , even if an unexpected abnormality occurs, the purpose is to be able to identify the cause with more precision.
 すなわち、本発明に係る脱脂装置は、処理対象物を収容して脱脂処理する加熱炉と、脱脂処理において発生した発生ガスの量またはこれを間接的に示す値(以下、これらを発生ガス量という。)を測定する測定装置と、前記測定装置で測定された発生ガス量に基づいて点検・保守時期を含む管理に関する情報である管理情報を算出する情報処理装置と、を備えていることを特徴とするものである。 In other words, the degreasing apparatus according to the present invention includes a heating furnace for storing and degreasing an object to be treated, and an amount of generated gas generated during the degreasing treatment or a value indirectly indicating this (hereinafter referred to as the amount of generated gas). ), and an information processing device that calculates management information, which is information related to management including inspection and maintenance timing, based on the amount of gas generated measured by the measuring device. That is.
 以上の構成によれば、発生ガス量に基づいて適切な時期に点検・保守を実施できるので、装置に異常が発生することを未然に防止しつつ、最大限の装置稼働時間を担保するとともに、仮に不測の異常が発生したとしても、その要因をより精度よく特定できる。 According to the above configuration, inspection and maintenance can be performed at appropriate times based on the amount of gas generated, thereby preventing abnormalities in the equipment and ensuring maximum equipment operating time. Even if an unexpected abnormality occurs, the cause can be identified with greater accuracy.
本発明の一実施形態における脱脂装置の全体模式図である。1 is an overall schematic diagram of a degreasing device in one embodiment of the present invention. 吸光度スペクトルの時間経過を示すグラフである。It is a graph showing the time course of the absorbance spectrum. 吸光度スペクトルに示されるC-H基の波形面積の時間変化を示すグラフである。2 is a graph showing a change over time in the waveform area of a CH group shown in an absorbance spectrum. 発生ガス量と積算値との検量線を示すグラフである。It is a graph showing a calibration curve between the amount of generated gas and the integrated value. 同実施形態における発生ガス量算出部の動作を示すフローチャートである。It is a flowchart which shows the operation of the amount calculation part of generated gas in the same embodiment. 同実施形態における管理情報算出部の動作を示すフローチャートである。It is a flowchart which shows the operation of the management information calculation part in the same embodiment.
 以下、本実施形態に係る脱脂装置を、図面を参照して説明する。 Hereinafter, a degreasing device according to this embodiment will be explained with reference to the drawings.
 この脱脂装置100は、図1に示すように、セラミック成形体などの処理対象物Wを収容して脱脂処理を施す加熱炉1と、この加熱炉1での脱脂処理において、処理対象物Wに含まれる有機バインダーが分解気化して発生した発生ガスの重量またはこれを間接的に示す値(以下、これらを発生ガス量ともいう。)をインライン測定する測定装置2とを備えている。 As shown in FIG. 1, this degreasing apparatus 100 includes a heating furnace 1 that accommodates a processing target W such as a ceramic molded body and performs a degreasing process, and a heating furnace 1 for degreasing the processing target W in the heating furnace 1. It is equipped with a measuring device 2 that in-line measures the weight of gas generated by decomposition and vaporization of the organic binder contained therein, or a value indirectly indicating this (hereinafter also referred to as the amount of generated gas).
 前記加熱炉1は、例えば、処理対象物Wを出し入れするための開口が設けられた金属製の炉本体11と、前記開口を閉じる金属製の扉12とを備えたものであり、脱脂処理時には、この加熱炉1が脱脂処理のための所定温度に維持されることにより、処理対象物Wからの発生ガスが内部に導入された不活性ガスや過熱水蒸気などの脱脂ガスとともに加熱炉1から排出されるように構成されている。 The heating furnace 1 includes, for example, a metal furnace body 11 provided with an opening for taking in and taking out the object W to be treated, and a metal door 12 that closes the opening. By maintaining this heating furnace 1 at a predetermined temperature for degreasing, the gas generated from the object W to be treated is discharged from the heating furnace 1 together with the degreasing gas such as inert gas and superheated steam introduced inside. is configured to be
 そのために、この加熱炉1には、前記脱脂ガスを供給するガス導入管3および前記発生ガスを排出するガス排出管4が接続されているほか、熱電対等の温度制御手段によって加熱炉1内を所定の脱脂温度に維持するヒーター5、この加熱炉1内で脱脂ガスを循環させるファン6等が設けられている。 To this end, this heating furnace 1 is connected to a gas inlet pipe 3 for supplying the degreasing gas and a gas exhaust pipe 4 for discharging the generated gas, as well as controlling the inside of the heating furnace 1 using temperature control means such as a thermocouple. A heater 5 for maintaining a predetermined degreasing temperature, a fan 6 for circulating degreasing gas within the heating furnace 1, and the like are provided.
 また、前記ガス導入管3等に設けられた図示しないバルブ、前記ファン6、前記ヒーター5などを制御して所定の脱脂シーケンスを自動で行うための図示しない制御装置がさらに設けられている。 Further, a control device (not shown) is further provided for automatically performing a predetermined degreasing sequence by controlling the valve (not shown) provided in the gas introduction pipe 3, etc., the fan 6, the heater 5, etc.
 前記測定装置2は、前記発生ガスを検出するガス検出デバイス21と、このガス検出デバイス21から出力される検出データに基づいて前記発生ガス量を算出するガス量算出部22とを備えたものである。 The measuring device 2 includes a gas detection device 21 that detects the generated gas, and a gas amount calculation section 22 that calculates the amount of generated gas based on the detection data output from the gas detection device 21. be.
 前記ガス検出デバイス21は、前記発生ガスのうちの所定成分(例えばC-H基を有するガス)を検出するもので、ここでは吸光度計の1つであるFTIR(フーリエ変換赤外分光度計)が用いられている。このガス検出デバイス21は、加熱炉1の排気口付近に設置されているが、設置箇所は発生ガスが検出される位置であればよく、例えば加熱炉1内のいずれかの箇所やガス排出管4内でもかまわない。また、ガス検出デバイス21はFTIRに限られず、例えば、NDIR(非分散型赤外線吸収法)式ガスセンサー、GC(ガスクロマトグラフ)、FID(水素炎イオン化検出器)、TOC計(全有機炭素計)などを用いてもよい。 The gas detection device 21 detects a predetermined component (for example, a gas having a C--H group) of the generated gas, and here, it is an FTIR (Fourier transform infrared spectrometer), which is one of the absorbance meters. is used. This gas detection device 21 is installed near the exhaust port of the heating furnace 1, but the installation location may be any position where generated gas is detected, such as any location within the heating furnace 1 or a gas exhaust pipe. It doesn't matter if it's within 4. Further, the gas detection device 21 is not limited to FTIR, and includes, for example, an NDIR (non-dispersive infrared absorption method) type gas sensor, GC (gas chromatograph), FID (flame ionization detector), TOC meter (total organic carbon meter). etc. may also be used.
 前記ガス量算出部22は、ここでは情報処理装置7がその機能を担う。この情報処理装置7は、CPU、メモリ、I/Oインタフェース、通信インタフェースなどを備えたいわゆるコンピュータであり、メモリの所定領域に格納されたプログラムに従ってCPUやその周辺機器が協動することにより、前記ガス量算出部22としての機能を発揮する。 Here, the function of the gas amount calculation unit 22 is performed by the information processing device 7. This information processing device 7 is a so-called computer equipped with a CPU, a memory, an I/O interface, a communication interface, etc. The information processing device 7 is a computer equipped with a CPU, a memory, an I/O interface, a communication interface, etc. It functions as the gas amount calculation section 22.
 なお、この情報処理装置7は物理的に一体である必要はなく、互いに通信可能に接続された複数のコンピュータで構成されていてもよいし、例えば前記制御装置がこの情報処理装置7の全部または一部の機能を担うように構成されていてもよい。 Note that this information processing device 7 does not need to be physically integrated, and may be composed of a plurality of computers that are communicably connected to each other, and for example, the control device may control all or all of this information processing device 7. It may be configured to take on some functions.
 また、この情報処理装置7は、前記ガス量算出部22の他、点検保守時期を含む管理に関する情報である管理情報を算出する管理情報算出部71等としての機能も発揮する。 In addition to the gas amount calculation unit 22, the information processing device 7 also functions as a management information calculation unit 71 that calculates management information that is information related to management including inspection and maintenance timing.
 次に、前記ガス量算出部22および管理情報算出部71の詳細な説明を兼ねて、それらの動作を、図5、図6のフローチャートを参照しながら説明する。 Next, in order to provide a detailed explanation of the gas amount calculation unit 22 and the management information calculation unit 71, their operations will be described with reference to the flowcharts of FIGS. 5 and 6.
 脱脂処理が開始される(ステップS11)と、前記ガス量算出部22は、サンプリングタイムごとに(ステップS12)、前記ガス検出デバイス21から出力される検出データを取得し(ステップS13)、これにバックグラウンド補正等を施すなどして、図2に示すような吸光度スペクトルを算出する(ステップS14)。なお、図2は、脱脂処理中における第1時刻、第2時刻、第3時刻での発生ガスのそれぞれの吸光度スペクトルの一例である。 When the degreasing process is started (step S11), the gas amount calculation unit 22 acquires the detection data output from the gas detection device 21 at each sampling time (step S12) (step S13), By applying background correction and the like, an absorbance spectrum as shown in FIG. 2 is calculated (step S14). Note that FIG. 2 is an example of the absorbance spectra of the generated gas at the first time, second time, and third time during the degreasing process.
 ところで、この吸光度スペクトルにおけるC-H基の波形面積が、そのサンプリング時刻での発生ガス量と一定の関係(比例関係)にあること、およびこの波形面積を脱脂処理期間に亘って時間積分した値、すなわち各サンプリングタイムでの波形面積の積算値が、脱脂処理で発生した発生ガス量と一定の関係(比例関係)にあり、脱脂処理期間中の発生ガス量を間接的に示す値となることを本発明者は見出している。 By the way, the waveform area of the C-H group in this absorbance spectrum has a constant relationship (proportional relationship) with the amount of gas generated at that sampling time, and the value obtained by integrating this waveform area over time over the degreasing treatment period. In other words, the integrated value of the waveform area at each sampling time has a certain relationship (proportional relationship) with the amount of gas generated during the degreasing process, and becomes a value that indirectly indicates the amount of gas generated during the degreasing process. The present inventor has discovered that.
 この原理にしたがって、このガス量算出部22は、各サンプリングタイムでの吸光度スペクトルにおいて、C-H基により生じる波形の面積(図2に示す斜線部分の面積)をそれぞれ算出する(ステップS15)。 According to this principle, the gas amount calculation unit 22 calculates the area of the waveform caused by the CH group (the area of the shaded portion shown in FIG. 2) in the absorbance spectrum at each sampling time (step S15).
 そして、ガス量算出部22は、脱脂処理中の各サンプリングタイムでの波形面積の積算値(以下、実測積算値ともいう。)を算出する(ステップS17)。なお、各脱脂処理で算出された前記波形面積および積算値は、ログデータとしてメモリの所定領域に記録される。 Then, the gas amount calculation unit 22 calculates an integrated value (hereinafter also referred to as an actual measured integrated value) of the waveform area at each sampling time during the degreasing process (step S17). Note that the waveform area and integrated value calculated in each degreasing process are recorded in a predetermined area of the memory as log data.
 図3は、横軸を経過時間としたときのC-H基の波形面積の変化の一例を示すグラフであり、発生ガス量の時間変化を表している。このグラフから、脱脂処理が始まってある程度の時間が経つと、発生ガス量が徐々に増え始め、ピークを過ぎて最終的には0となり、脱脂完了となることがわかる。そして、このグラフのピーク波形の面積(斜線に示す)が前記積算値となる。 FIG. 3 is a graph showing an example of a change in the waveform area of a CH group when the horizontal axis represents elapsed time, and represents a change in the amount of gas generated over time. From this graph, it can be seen that after a certain amount of time has passed since the start of the degreasing process, the amount of gas generated begins to gradually increase, passes a peak, and finally reaches 0, indicating the completion of degreasing. The area of the peak waveform in this graph (indicated by diagonal lines) becomes the integrated value.
 なお、前記積算値と発生ガス量(処理対象物Wの重量減少量)との関係を示す検量線は、図4に示すように、予め実験等によって求められている。この実施形態では、この検量線を示す検量線データが、算出式、テーブル等の形式で、メモリの所定領域に設定された検量線データ格納部72に格納してある。 Note that, as shown in FIG. 4, a calibration curve showing the relationship between the integrated value and the amount of gas generated (amount of weight reduction of the object W to be processed) is determined in advance through experiments or the like. In this embodiment, calibration curve data indicating this calibration curve is stored in a calibration curve data storage section 72 set in a predetermined area of the memory in the form of a calculation formula, a table, or the like.
 また、処理対象物Wの種類ごとに、正常な脱脂処理によって発生する発生ガス量は決まっており、実験や過去の脱脂処理データ等から求めることができる。この実施形態では、処理対象物Wの種類ごとに想定される発生ガス量(以下、想定発生ガス量ともいう。)を、メモリの所定領域に設定された想定発生ガス量格納部73に予め記憶させてある。 Furthermore, the amount of gas generated by normal degreasing treatment is determined for each type of object W to be treated, and can be determined from experiments, past degreasing treatment data, etc. In this embodiment, the expected amount of generated gas for each type of object W to be processed (hereinafter also referred to as expected amount of generated gas) is stored in advance in the expected amount of generated gas storage section 73 set in a predetermined area of the memory. I have let you.
 前記管理情報算出部71は、脱脂処理されている処理対象物Wの種類をオペレータの入力などによって認識し、前記想定発生ガス量格納部73を参照して、その処理対象物Wの想定発生ガス量を取得する(ステップS21)。 The management information calculation unit 71 recognizes the type of the object W to be degreased based on the operator's input, and refers to the estimated gas amount storage unit 73 to calculate the estimated gas generation of the object W to be degreased. The amount is acquired (step S21).
 さらに、この管理情報算出部72は、前記検量線データを参照して、想定発生ガス量に対応する積算値である想定積算値を算出する(ステップS22)。 Further, the management information calculation unit 72 refers to the calibration curve data and calculates an estimated integrated value that is an integrated value corresponding to the estimated amount of generated gas (step S22).
 次に、管理情報算出部71は、前記実測積算値から前記想定積算値を引いた差分を算出し(ステップS23)、その差分値が所定の閾値を上回った場合に(ステップS24)、管理情報の1つである点検・保守時期に到達した旨の情報を出力する(ステップS25)。この情報は、情報処理装置7のディスプレイや、情報処理装置7と有線ないし無線で接続された携帯端末等に出力され、表示される。 Next, the management information calculation unit 71 calculates a difference by subtracting the assumed integrated value from the actual measured integrated value (step S23), and when the difference value exceeds a predetermined threshold (step S24), the management information Information indicating that the inspection/maintenance period, which is one of the following, has been reached is output (step S25). This information is output and displayed on the display of the information processing device 7 or a mobile terminal connected to the information processing device 7 by wire or wirelessly.
 実測積算値が想定積算値を超える理由としては、扉のシールやファンの軸シール等の劣化開始を挙げることができる。これらシールが劣化し始めると、脱脂処理の異常や装置故障にまでは至らないまでも、外部からの空気混入量が増加し、それによって発生ガスの分解が促進されて、前記積算値(発生ガス量)が増加するからである。また、その他に、処理対象物の保管状態などによっても同様の状態が生じ得る。 The reason why the measured integrated value exceeds the expected integrated value can be the start of deterioration of door seals, fan shaft seals, etc. When these seals begin to deteriorate, the amount of air mixed in from the outside increases, which accelerates the decomposition of the generated gas, even though it does not lead to abnormalities in the degreasing process or equipment failure. This is because the amount) increases. In addition, a similar situation may occur depending on the storage condition of the object to be processed.
 オペレータは、前記管理情報を受け取ることにより、脱脂装置100の稼働を一時的に停止し、リークテスト、シール交換などの点検・保守を行う。 Upon receiving the management information, the operator temporarily stops the operation of the degreasing device 100 and performs inspection and maintenance such as leak testing and seal replacement.
 以上に述べた構成によれば、シール劣化などをいち早く検知することができるので、点検・保守を行わなければならないジャストタイミングで点検・保守ができる。したがって、脱脂装置100に異常が発生することを未然に防止しながら、無駄な点検・保守を不要にできるので、最大限の装置稼働時間を担保することができる。 According to the configuration described above, seal deterioration etc. can be detected quickly, so inspection and maintenance can be carried out at the exact timing when inspection and maintenance need to be performed. Therefore, while preventing abnormalities from occurring in the degreasing apparatus 100, wasteful inspection and maintenance can be made unnecessary, and the maximum operating time of the apparatus can be ensured.
 さらに、仮に不測の異常が発生したとしても、前記ログデータや積算値と想定積算値との差分値がメモリに記録されており、これらを参照することができるので、その要因をより精度よく特定できる。その点において、前記ログデータや差分値は、管理情報の1つである、処理対象物Wの品質管理へのフィードバック情報ということができる。 Furthermore, even if an unexpected abnormality occurs, the log data and the difference between the integrated value and the expected integrated value are recorded in memory and can be referenced, so the cause can be identified more accurately. can. In this respect, the log data and the difference value can be said to be feedback information for quality control of the processing object W, which is one type of management information.
 なお、本発明は前記実施形態に限られるものではない。 Note that the present invention is not limited to the above embodiments.
 例えば、前記実施形態では、実測積算値から想定積算値を引いた差分値が所定の閾値を上回った時点をもって点検・保守時期としていたが、例えば、脱脂処理ごとの実測積算値の変化量を記録しておき、その変化量の増加スピードに基づいて、将来的に前記差分値が所定の閾値を越える時期を予想し、その予想時期を点検・保守時期として、前もって出力するようにしてもよい。 For example, in the embodiment described above, the inspection/maintenance period is defined as the point in time when the difference value obtained by subtracting the estimated integrated value from the actual measured integrated value exceeds a predetermined threshold value. Then, based on the speed at which the amount of change increases, a time in the future when the difference value will exceed a predetermined threshold may be predicted, and the predicted time may be output in advance as the inspection/maintenance time.
 前記実施形態では、実測積算値と想定積算値とを比較することによって点検・保守の要否を判断していたが、前記検量線データを用いて換算することにより、発生ガス量と想定発生ガス量との比較によって判断してもかまわない。 In the embodiment described above, the necessity of inspection and maintenance was determined by comparing the measured integrated value and the assumed integrated value, but by converting using the calibration curve data, the amount of gas generated and the estimated gas generated It may be determined by comparing with the quantity.
 前記実施形態では、発生ガスに含まれるC-H基に着目して、その吸光度スペクトルに基づいて発生ガス量を測定していたが、他の官能基や成分を用いてもかまわない。この点において、前記実施形態ではガス検出デバイスにFTIRを用いており、発生ガスの種々の成分に着目した測定、分析ができるので、より多くの情報を得られ、点検保守や品質管理、異常特定などに大きく寄与できる。 In the embodiment, the amount of generated gas was measured based on its absorbance spectrum, focusing on the C--H group contained in the generated gas, but other functional groups or components may be used. In this respect, in the above embodiment, FTIR is used as the gas detection device, and it is possible to measure and analyze various components of the generated gas, so more information can be obtained and used for inspection and maintenance, quality control, and abnormality identification. It can greatly contribute to such things.
 その他、本発明は前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の変形が可能である。
 以上に述べた構成の特徴をまとめると以下の通りとなる。
In addition, the present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit thereof.
The features of the configuration described above are summarized as follows.
[1] 処理対象物を収容して脱脂処理する加熱炉と、脱脂処理において発生した発生ガスの量またはこれを間接的に示す値(以下、これらを発生ガス量という。)をインライン測定する測定装置と、前記測定装置で測定された発生ガス量に基づいて点検・保守時期を含む管理に関する情報である管理情報を算出する情報処理装置と、を備えていることを特徴とする脱脂装置。
 このようなものであれば、発生ガス量に基づいて適切な時期に点検・保守を実施できるので、装置に異常が発生することを未然に防止しつつ、最大限の装置稼働時間を担保するとともに、仮に不測の異常が発生したとしても、その要因をより精度よく特定できる。
[1] A heating furnace that accommodates and degreases the object to be treated, and in-line measurement of the amount of gas generated during the degreasing process or a value that indirectly indicates this (hereinafter referred to as the amount of gas generated). A degreasing device comprising: a degreasing device; and an information processing device that calculates management information that is management information including inspection and maintenance timing based on the amount of gas generated measured by the measuring device.
With this kind of equipment, inspection and maintenance can be carried out at appropriate times based on the amount of gas generated, thereby preventing equipment abnormalities and ensuring maximum equipment operating time. , Even if an unexpected abnormality occurs, the cause can be identified with greater accuracy.
[2] 前記情報処理装置は、前記測定装置で測定された発生ガス量と、前記処理対象物から発生すると想定される想定発生ガス量との差に基づいて、前記管理情報を算出する[1]に記載の脱脂装置。
 このようなものであれば、精度の高い管理情報を算出することができる。
[2] The information processing device calculates the management information based on the difference between the amount of gas generated measured by the measuring device and the amount of gas generated that is assumed to be generated from the object to be treated. The degreasing device described in ].
If this is the case, highly accurate management information can be calculated.
[3] 前記管理情報が、処理対象物の品質管理へのフィードバック情報を含むものである[1]または[2]に記載の脱脂装置。
 このようなものであれば、脱脂処理プロトコルや処理対象物の保管などの改善を図ることができる。
[3] The degreasing apparatus according to [1] or [2], wherein the management information includes feedback information for quality control of the object to be processed.
If this is the case, it is possible to improve the degreasing treatment protocol and the storage of objects to be treated.
[4] 前記測定装置は、前記発生ガスを検出するガス検出デバイスと、このガス検出デバイスの検出データに基づいて前記発生ガス量を算出するガス量算出部とを備えている[1]、[2]または[3]に記載の脱脂装置。
 このようなものであれば、発生ガス量をインラインリアルタイムで測定できる。
[4] The measuring device includes a gas detection device that detects the generated gas, and a gas amount calculation unit that calculates the amount of generated gas based on the detection data of the gas detection device [1], [ 2] or the degreasing device according to [3].
With such a device, the amount of gas generated can be measured in-line in real time.
[5] 前記ガス検出デバイスが、FTIRを備えたものである[4]に記載の脱脂装置。
 このようなものであれば、発生ガスの種々の成分に着目した測定ができ、より多くの情報が得られるので、点検保守や品質管理、異常特定などに大きく寄与できる。
[5] The degreasing apparatus according to [4], wherein the gas detection device includes an FTIR.
With such a device, it is possible to perform measurements focusing on various components of the generated gas, and more information can be obtained, which can greatly contribute to inspection and maintenance, quality control, abnormality identification, etc.
 発生ガス量に基づいて適切な時期に点検・保守を実施できるので、装置に異常が発生することを未然に防止しつつ、最大限の装置稼働時間を担保するとともに、仮に不測の異常が発生したとしても、その要因をより精度よく特定できる。 Since inspection and maintenance can be performed at appropriate times based on the amount of gas generated, it is possible to prevent abnormalities from occurring in the equipment, ensure maximum equipment operating time, and prevent unexpected abnormalities from occurring. However, the cause can be identified with greater precision.
100・・・脱脂装置
W・・・処理対象物
1・・・加熱炉
2・・・測定装置
21・・・ガス検出デバイス
22・・・発生ガス量算出部
7・・・情報処理装置
71・・・管理情報算出部

 
100 Degreasing device W Processing object 1 Heating furnace 2 Measuring device 21 Gas detection device 22 Generated gas amount calculation unit 7 Information processing device 71・Management information calculation department

Claims (7)

  1.  処理対象物を収容して脱脂処理する加熱炉と、脱脂処理において発生した発生ガスの量またはこれを間接的に示す値(以下、これらを発生ガス量という。)を測定する測定装置と、前記測定装置で測定された発生ガス量に基づいて点検・保守時期を含む管理に関する情報である管理情報を算出する情報処理装置と、を備えていることを特徴とする脱脂装置。 a heating furnace for accommodating and degreasing an object to be treated; a measuring device for measuring the amount of gas generated during the degreasing treatment or a value indirectly indicating this (hereinafter referred to as the amount of gas generated); A degreasing device comprising: an information processing device that calculates management information that is management information including inspection and maintenance timing based on the amount of gas generated measured by the measuring device.
  2.  前記情報処理装置は、前記測定装置で測定された発生ガス量と、前記処理対象物から発生すると想定される想定発生ガス量との差に基づいて、前記管理情報を算出する請求項1に記載の脱脂装置。 The information processing device calculates the management information based on the difference between the amount of gas generated measured by the measuring device and the amount of gas generated that is assumed to be generated from the object to be processed. Degreasing equipment.
  3.  前記管理情報が、処理対象物の品質管理へのフィードバック情報を含むものである請求項1に記載の脱脂装置。 The degreasing apparatus according to claim 1, wherein the management information includes feedback information for quality control of the object to be processed.
  4.  前記測定装置は、前記発生ガスを検出するガス検出デバイスと、このガス検出デバイスの検出データに基づいて前記発生ガス量を算出するガス量算出部とを備えている請求項1に記載の脱脂装置。 The degreasing apparatus according to claim 1, wherein the measuring device includes a gas detection device that detects the generated gas, and a gas amount calculation unit that calculates the amount of generated gas based on detection data of the gas detection device. .
  5.  前記ガス検出デバイスが、FTIRを備えたものである請求項4に記載の脱脂装置。 The degreasing apparatus according to claim 4, wherein the gas detection device is equipped with an FTIR.
  6.  処理対象物を収容して脱脂処理する加熱炉と、脱脂処理において発生した発生ガスの量またはこれを間接的に示す値(以下、これらを発生ガス量という。)をインライン測定する測定装置と、を備えた脱脂装置に適用されるものであって、
     前記測定装置で測定された発生ガス量に基づいて点検・保守時期を含む管理に関する情報である管理情報を算出する機能を前記脱脂装置に発揮させることを特徴とするプログラム。
    A heating furnace that accommodates and degreases the object to be treated; a measuring device that in-line measures the amount of gas generated during the degreasing process or a value that indirectly indicates this (hereinafter referred to as the amount of gas generated); Applicable to a degreasing device equipped with
    A program that causes the degreasing device to perform a function of calculating management information that is information related to management including inspection and maintenance timing based on the amount of gas generated measured by the measuring device.
  7.  処理対象物を収容して脱脂処理する加熱炉と、脱脂処理において発生した発生ガスの量またはこれを間接的に示す値(以下、これらを発生ガス量という。)をインライン測定する測定装置と、を備えた脱脂装置に適用されるものであって、
     前記測定装置で測定された発生ガス量に基づいて点検・保守時期を含む管理に関する情報である管理情報を算出することを特徴とする方法。

     
    A heating furnace that accommodates and degreases the object to be treated; a measuring device that in-line measures the amount of gas generated during the degreasing process or a value that indirectly indicates this (hereinafter referred to as the amount of gas generated); Applicable to a degreasing device equipped with
    A method characterized in that management information, which is information regarding management including inspection and maintenance timing, is calculated based on the amount of generated gas measured by the measuring device.

PCT/JP2023/013496 2022-05-13 2023-03-31 Degreasing apparatus WO2023218792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-079313 2022-05-13
JP2022079313 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023218792A1 true WO2023218792A1 (en) 2023-11-16

Family

ID=88730106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013496 WO2023218792A1 (en) 2022-05-13 2023-03-31 Degreasing apparatus

Country Status (2)

Country Link
TW (1) TW202344322A (en)
WO (1) WO2023218792A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180038U (en) * 1986-05-06 1987-11-16
JP2004218005A (en) * 2003-01-15 2004-08-05 Osaka Yakin Kogyo Kk System and method for degreasing and sintering of powder molded product
US20200393126A1 (en) * 2019-06-12 2020-12-17 Markforged, Inc. Catalytic thermal debind furnaces with feedback control
JP2021139599A (en) * 2020-03-09 2021-09-16 イビデン株式会社 Continuous firing furnace and continuous firing method
JP2022056011A (en) * 2020-09-29 2022-04-08 株式会社島津製作所 Degreasing furnace and degreasing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180038U (en) * 1986-05-06 1987-11-16
JP2004218005A (en) * 2003-01-15 2004-08-05 Osaka Yakin Kogyo Kk System and method for degreasing and sintering of powder molded product
US20200393126A1 (en) * 2019-06-12 2020-12-17 Markforged, Inc. Catalytic thermal debind furnaces with feedback control
JP2021139599A (en) * 2020-03-09 2021-09-16 イビデン株式会社 Continuous firing furnace and continuous firing method
JP2022056011A (en) * 2020-09-29 2022-04-08 株式会社島津製作所 Degreasing furnace and degreasing method

Also Published As

Publication number Publication date
TW202344322A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
US7818133B2 (en) Leak inspection method and leak inspector
US9964512B2 (en) Exhaust gas analyzing system
JP4630791B2 (en) Flow-type performance inspection method
JP6981817B2 (en) Spectroscopic analyzer and spectroscopic analysis method
US20030010918A1 (en) Method and apparatus for leak detecting, and apparatus for semiconductor manufacture
WO2023218792A1 (en) Degreasing apparatus
EP3469355B1 (en) Analyzing fault gas concentration in liquid
CN110887800B (en) Data calibration method for online water quality monitoring system by using spectroscopy
JP7227959B2 (en) Method for scaling isolated nuclear instrumentation output signals and system using same
KR102281488B1 (en) Fuel heating value correction method using data reconciliation technique in thermal power plant
US7180054B2 (en) Methods and devices for erasing errors and compensating interference signals caused by gammagraphy in radiometric measuring systems
JPH0331746A (en) Method for estimating remaining life of lubricating oil
KR101717943B1 (en) Airtight Test Apparatus for Nuclear Facility
CN111024334B (en) Control device, flow sensitivity correction method, and storage medium
JP6674647B2 (en) Judgment device
US20130282332A1 (en) Method of obtaining linear curve fitting conversion equation for use with non-linear measurement system
Toteva et al. Comparison of the methods for determination of calibration and verification intervals of measuring devices
Claro et al. Locating poor models in MPC applications
EP3640751A1 (en) Apparatus for gas analysis and emission prediction
US10090178B2 (en) Gas temperature measurement method and gas introduction system
CN117272701B (en) Transformer temperature prediction model and method based on meteorological environment data
KR20200073442A (en) Method for Checking Sensor of Gas Detector
JPH06281607A (en) Continuously analyzing device for gas concentration
JPS58124912A (en) Device for diagnosing abnormal state of detector
Röske ISO 6789 under revision-proposals for calibration results of hand torque tools including measurement uncertainty

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803275

Country of ref document: EP

Kind code of ref document: A1