JPH02306141A - Automatic measuring apparatus of hydrogen and oxygen concentration - Google Patents
Automatic measuring apparatus of hydrogen and oxygen concentrationInfo
- Publication number
- JPH02306141A JPH02306141A JP1126080A JP12608089A JPH02306141A JP H02306141 A JPH02306141 A JP H02306141A JP 1126080 A JP1126080 A JP 1126080A JP 12608089 A JP12608089 A JP 12608089A JP H02306141 A JPH02306141 A JP H02306141A
- Authority
- JP
- Japan
- Prior art keywords
- meter
- hydrogen
- calibration
- moisture
- solenoid valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001301 oxygen Substances 0.000 title claims abstract description 42
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 42
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 239000001257 hydrogen Substances 0.000 title claims abstract description 41
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 41
- 239000007789 gas Substances 0.000 claims abstract description 60
- 238000005259 measurement Methods 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は原子炉格納容器内の雰囲気中に含まれる水素及
び酸素の濃度を測定する装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an apparatus for measuring the concentration of hydrogen and oxygen contained in the atmosphere within a nuclear reactor containment vessel.
(従来の技術)
一般に原子力発電プラントにおいては、仮想事故を想定
して例え事故が発生した場合でも設備全体の安全性を確
保するように考慮している。このような仮想事故の一種
に冷却材喪失事故(以下LOCAと呼ぶ。)時における
可燃性ガスの発生がある。この可燃性ガスはLOCA時
に高温となった燃料被覆管のジルコニウム合金と炉水と
が反応して発生する水素と酸素で、これ等水素と酸素の
原子炉格納容器内雰囲気中の濃度がおる限度以上になる
と前記雰囲気が燃焼するおそれが生ずる。(Prior Art) In general, in nuclear power plants, consideration is given to hypothetical accidents to ensure the safety of the entire facility even if an accident occurs. One type of such a hypothetical accident is the generation of flammable gas during a loss of coolant accident (hereinafter referred to as LOCA). This combustible gas is hydrogen and oxygen generated by the reaction between the reactor water and the zirconium alloy in the fuel cladding tube, which became hot during LOCA, and the concentration of these hydrogen and oxygen in the atmosphere inside the reactor containment vessel is within the limit. If the temperature exceeds that level, there is a risk that the atmosphere will burn.
従って前記雰囲気中の水素・酸素濃度の測定と監視を行
う必要がおる。Therefore, it is necessary to measure and monitor the hydrogen and oxygen concentrations in the atmosphere.
上記の水素・酸素濃度の測定装置としては、従来特開昭
5940248 [水素・酸素濃度測定装置」が提案さ
れている。第3図はその全体構成図で、原子炉格納容器
1の内部と連通ずる循環配管2,2は、原子炉格納容器
1内の雰囲気を外部へ引出し、再び引込んで還流させる
だめのもので、この循環配管2,2の途中には開閉弁3
,3、試料用電磁弁4と水分測定部でおる非分散型赤外
線ガス分析計5及び除湿器6、ポンプ7.7、圧力調整
弁8゜8、さらに水素計10と酸素計11及び補正器1
2からなる測定部9、及び流量計13が介挿されて構成
されている。なお前記非分散型赤外線ガス分析計5につ
いては測定部9におけるガス濃度測定を行う前に雰囲気
中の水分量を測定し、この信号を測定部9内の補正器1
2に送って水素・酸素の測定値を補正するためのもので
ある。第4図は水分検出部の構成図で、非分散型赤外線
ガス分析計5は干渉フィルタ15を備えた試料セル14
と、上部に赤外線光源16及び凹面鏡1γ、下部に熱雷
対18と凹面鏡17で構成されていて、試料セル14は
第4図のv−v線に沿った試料セルの拡大平面図の第5
図で示すように円板状で中央部上下に雰囲気ガスの流路
と直角に水分吸収帯以外の波長の光を遮断する干渉フィ
ルタ15が取付けられていて、赤外線光源16よりの平
行光線を干渉フィルタ15を介して雰囲気ガス中を透過
させ、これを熱電対18にて受けて受光赤外
線の強さと変化に従った起電力により、雰囲気ガス中の
水分を測定する。水分測定部を通過した雰囲気ガスは除
湿器6にて水分を除去した後、測定部9の水素計10と
酸素計11において夫々水素と酸素の濃度を測定し、前
記非分散型赤外線ガス分析計5からの水分信号により補
正器12で、除湿器6による除湿前の雰囲気における水
素と酸素の濃度を精度良く検出する。なお前記試料用電
磁弁4と非分散型赤外線ガス分析計5の間には校正カス
供給のための零ガス用電磁弁19が接続しである。As the above-mentioned hydrogen/oxygen concentration measuring device, JP-A-5940248 [Hydrogen/oxygen concentration measuring device” has been proposed. FIG. 3 is a diagram showing its overall configuration. The circulation pipes 2, 2 that communicate with the inside of the reactor containment vessel 1 are for drawing out the atmosphere inside the reactor containment vessel 1 to the outside and drawing it back in for reflux. An on-off valve 3 is located in the middle of the circulation pipes 2, 2.
, 3, a sample electromagnetic valve 4, a non-dispersive infrared gas analyzer 5 in the moisture measuring section, a dehumidifier 6, a pump 7.7, a pressure regulating valve 8°8, and a hydrogen meter 10, an oxygen meter 11, and a corrector. 1
A measuring section 9 consisting of 2 and a flow meter 13 are inserted. Regarding the non-dispersive infrared gas analyzer 5, before measuring the gas concentration in the measuring section 9, the amount of moisture in the atmosphere is measured, and this signal is sent to the corrector 1 in the measuring section 9.
2 to correct the measured values of hydrogen and oxygen. FIG. 4 is a block diagram of the moisture detection section, in which the non-dispersive infrared gas analyzer 5 has a sample cell 14 equipped with an interference filter 15.
The sample cell 14 is composed of an infrared light source 16 and a concave mirror 1γ in the upper part, and a thermal lightning pair 18 and a concave mirror 17 in the lower part.
As shown in the figure, interference filters 15 are installed at right angles to the flow path of the atmospheric gas above and below the center of the disc-shaped part to block light of wavelengths other than the water absorption band, and interfere with parallel light from an infrared light source 16. The atmospheric gas is transmitted through the filter 15, received by the thermocouple 18, and the moisture in the atmospheric gas is measured based on the electromotive force according to the intensity and change of the received infrared rays. After moisture is removed from the atmospheric gas that has passed through the moisture measuring section in a dehumidifier 6, the hydrogen and oxygen concentrations are measured in a hydrogen meter 10 and an oxygen meter 11 in the measuring section 9, respectively, and then the non-dispersive infrared gas analyzer Based on the moisture signal from the dehumidifier 5, the corrector 12 accurately detects the concentration of hydrogen and oxygen in the atmosphere before dehumidification by the dehumidifier 6. Note that a zero gas solenoid valve 19 for supplying calibration waste is connected between the sample solenoid valve 4 and the non-dispersive infrared gas analyzer 5.
(発明が解決しようとする課題)
しかしながら、上記校正・測定操作は夫々の機器に対し
て運転員が遠隔手動操作により実施するため、事故時に
おいては運転員が他の計器や監視盤の監視作業に追われ
て、手順通りに操作を実しているが、その校正は通常1
00%の水蒸気及びN2ガスで実施する。しかるに10
0%水蒸気及びN2ガスによる校正作業は水蒸気の凝縮
確認等、簡略には行なえず、校正期間が長引くと前記赤
外線カス分析計5は、その特性がドリフトする性質があ
るため水分補正の精度が低下するという問題がめった。(Problem to be solved by the invention) However, since the above-mentioned calibration and measurement operations are performed by operators using remote manual operations for each device, in the event of an accident, the operators are responsible for monitoring other instruments and monitoring panels. I am busy with the process and carry out the operations according to the procedure, but the calibration usually takes 1
00% water vapor and N2 gas. But 10
Calibration work using 0% water vapor and N2 gas cannot be easily performed due to the need to check for water vapor condensation, and if the calibration period is prolonged, the characteristics of the infrared scum analyzer 5 tend to drift, resulting in a decrease in the accuracy of moisture correction. I rarely had the problem of doing so.
また従来から水素・酸素濃度の測定装置は校正を頻繁に
実施する必要があり、その操作が繁雑である欠点があっ
た。Furthermore, conventional hydrogen/oxygen concentration measurement devices have had the disadvantage of requiring frequent calibration, which is complicated to operate.
本発明は上記に鑑みてなされたもので、その目的とする
ところは、水分測定部に水分の校正板を配設すると共に
、操作についてはシーケンサを設置して、校正・測定作
業の自動システム化により運転員の繁雑な作業をなくし
、測定精度の高い水素・酸素濃度自動測定装置を提供す
ることにある。The present invention has been made in view of the above, and its purpose is to provide an automatic system for calibration and measurement work by providing a moisture calibration plate in the moisture measurement section and installing a sequencer for operation. The purpose of this invention is to provide an automatic hydrogen/oxygen concentration measuring device that eliminates the complicated work of operators and has high measurement accuracy.
[発明の構成]
(課題を解決するための手段)
試料ガスである雰囲気の循環配管に連結して、水分用電
磁弁を介した水蒸気発生器と、水素計及び酸素計の零点
調整用の零ガス用電磁弁とスパン点校正用のスパンガス
用電磁弁及び試料用電磁弁と、100%水蒸気の赤外線
吸収と等価の校正板を設けた水分測定部と、水素計及び
酸素計と水分補正器からなる測定部の水分補正器の補正
用演算器と水素計及び酸素計夫々の零点・スパン点調整
用演算器と、上記各種電磁弁及び各種演算器等を自動制
御するシーケンサを具備する。[Structure of the Invention] (Means for Solving the Problems) A water vapor generator connected to a circulation pipe for an atmosphere serving as a sample gas via a moisture solenoid valve, and a zero for adjusting the zero point of a hydrogen meter and an oxygen meter. A solenoid valve for gas, a solenoid valve for span gas for span point calibration, a solenoid valve for sample, a moisture measuring section equipped with a calibration plate equivalent to the infrared absorption of 100% water vapor, a hydrogen meter, an oxygen meter, and a moisture compensator. It is equipped with a computing unit for correcting the moisture corrector of the measuring section, a computing unit for adjusting the zero point and span point of each of the hydrogen meter and oxygen meter, and a sequencer that automatically controls the various electromagnetic valves and various computing units.
(作 用)
シーケンサからの制御システム信号により、水分測定部
に対して水蒸気発生器による校正と100%水蒸気の赤
外線吸収に相当の校正板を挿抜して行う随時校正作業、
この結果前記水分測定部からの水分信号による測定部の
水素計、酸素計の水分補正、及び零ガス用電磁弁とスパ
ンガス用電磁弁の操作により水素計、酸素計の零点・ス
パン点調整、さらに試料用電磁弁を開いて雰囲気中の水
素・酸素の濃度測定を順次自動的に実施する。(Function) Based on the control system signal from the sequencer, the moisture measuring section is calibrated using a steam generator, and a calibration plate corresponding to 100% infrared absorption of water vapor is inserted and removed as required.
As a result, the moisture content of the hydrogen meter and oxygen meter in the measuring section is corrected based on the moisture signal from the moisture measuring section, and the zero point and span point of the hydrogen meter and oxygen meter are adjusted by operating the zero gas solenoid valve and the span gas solenoid valve. Open the sample solenoid valve and automatically measure the concentration of hydrogen and oxygen in the atmosphere one after another.
(実施例) 本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.
なお上記した従来技術と同じ構成部分には同一符号を付
して詳細な説明は省略する。Note that the same components as those in the prior art described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
第1図は全体構成図で、原子炉格納容器1と連通する循
環配管2,2の途中には開閉弁3,3、試料用電磁弁4
と水分測定部でおる非分散型赤外線カス分析計20と除
湿器6、ポンプ7.7、圧力調整弁8,8さらに水素計
31と酸素計32及び水分補正器33からなる測定部3
0と流量計13が介挿されている。また非分散型赤外線
ガス分析計20の上流には、電磁弁41を介して100
%水蒸気による校正用の水蒸気発生器42と校正ガス供
給用の零ガス用電磁弁19及びスパンガス用電磁弁40
が設置されている。なお前記非分散型赤外線ガス分析計
20は第2図の構成図に示すように、熱電対18の前面
で試料セル14との間の赤外線の通路に水蒸気100%
程度の赤外線吸収を呈す校正板21を挿恢自在に配設し
て構成されている。この校正板21は水蒸気100%程
度の赤外線吸収と等両特性の材料により設ける。従来そ
の都度、水蒸気により行う非分散型赤外線ガス分析計5
の校正は時間がかかるのと、その作業か繁雑なことから
、定期的には前記水蒸気発生器42からの水蒸気による
校正を行い、常時は校正板21による校正を実施する。Figure 1 is an overall configuration diagram, in which on-off valves 3, 3 and sample solenoid valves 4 are located in the middle of the circulation piping 2, 2 communicating with the reactor containment vessel 1.
A measuring section 3 consists of a non-dispersive infrared scum analyzer 20, a dehumidifier 6, a pump 7.7, pressure regulating valves 8, 8, a hydrogen meter 31, an oxygen meter 32, and a moisture corrector 33.
0 and a flow meter 13 are inserted. Further, upstream of the non-dispersive infrared gas analyzer 20, 100
% water vapor for calibration, a zero gas solenoid valve 19 for calibration gas supply, and a span gas solenoid valve 40
is installed. As shown in the configuration diagram of FIG. 2, the non-dispersive infrared gas analyzer 20 has 100% water vapor in the infrared path between the thermocouple 18 and the sample cell 14.
A calibration plate 21 exhibiting a certain degree of infrared absorption is arranged in a freely insertable manner. The calibration plate 21 is made of a material having characteristics such as absorption of infrared rays of about 100% of water vapor. Conventional non-dispersive infrared gas analyzer that uses water vapor each time 5
Since the calibration takes time and the work is complicated, calibration is performed periodically using water vapor from the steam generator 42, and calibration using the calibration plate 21 is normally performed.
なお前記非分散型赤外線ガス分析計20と測定部30の
水分補正器33の間と、この水分補正器33と水素計3
1及び酸素計32の夫々の間には校正用演算器43、零
点・スパン点校正演算器44.45が電気的に接続され
ていて、この校正用演算器43、零点・スパン点校正演
算器44、45と前記水分用電磁弁41、零ガス用電磁
弁19とスパンガス用電磁弁40及び試料用電磁弁4は
シーケンサ46と電気的に接続されて構成している。Note that between the non-dispersive infrared gas analyzer 20 and the moisture corrector 33 of the measuring section 30, and between the moisture corrector 33 and the hydrogen meter 3,
1 and the oxygen meter 32, a calibration computing unit 43 and a zero point/span point calibration computing unit 44, 45 are electrically connected. 44, 45, the moisture solenoid valve 41, the zero gas solenoid valve 19, the span gas solenoid valve 40, and the sample solenoid valve 4 are electrically connected to a sequencer 46.
次に上記構成による作用について説明する。予めシーケ
ンサ46には自動校正、測定作業のシステムを構築して
おく。定期点検時等には水分用電磁弁41と水蒸気発生
器42からの100%水蒸気により非分散型赤外線ガス
分析計20の校正を行う。通常の測定作業は先ずシーケ
ンサ46からのスタート信号により零ガス用電磁弁19
を開き、スパンガス用電磁弁40及び試料用電磁弁4を
閉じて、零ガスを前記非分散型赤外線ガス分析計20と
測定部30に導入し、水素計31と酸素計32の測定指
示が安定する程度の時間零ガスを流し続ける。なお例え
ば零ガスとしてはN2ガスを使用している。次にシーケ
ンサ46は測定部30の補正器33、水素計31及び酸
素計32の零点・スパン点校正演算器43.44.45
に信号を発し、前記補正器33、水素計31及び酸素計
32の指示が零になるように、各零点・スパン点校正演
算器43.44..115により自動調整する。なおこ
の際、第2図に示す非分散型赤外線ガス分析計20の校
正板21は試料セル14と熱電対18との間には介在さ
せない。次いで前記校正板21を試料セル14と熱電対
18との間に挿入した後、零ガス用電磁弁19を閉じ、
スパンガス用電磁弁40を開いて、水素計31と酸素計
32にスパンガスを流し、水素計31と酸素計32夫々
の指示が安定する程度の時間流し続ける。Next, the effect of the above configuration will be explained. An automatic calibration and measurement work system is built in the sequencer 46 in advance. During regular inspections, the non-dispersive infrared gas analyzer 20 is calibrated using 100% water vapor from the moisture electromagnetic valve 41 and the water vapor generator 42. Normal measurement work begins with a start signal from the sequencer 46, which activates the zero gas solenoid valve 19.
is opened, the span gas solenoid valve 40 and the sample solenoid valve 4 are closed, zero gas is introduced into the non-dispersive infrared gas analyzer 20 and the measuring section 30, and the measurement instructions of the hydrogen meter 31 and oxygen meter 32 are stabilized. Continue to flow zero gas for a period of time. Note that, for example, N2 gas is used as the zero gas. Next, the sequencer 46 includes the corrector 33 of the measurement unit 30, the zero point/span point calibration calculators 43, 44, 45 of the hydrogen meter 31 and the oxygen meter 32.
, and the respective zero point/span point calibration calculators 43, 44 . .. 115 for automatic adjustment. At this time, the calibration plate 21 of the non-dispersive infrared gas analyzer 20 shown in FIG. 2 is not interposed between the sample cell 14 and the thermocouple 18. Next, after inserting the calibration plate 21 between the sample cell 14 and the thermocouple 18, the zero gas solenoid valve 19 is closed.
The span gas solenoid valve 40 is opened, and the span gas is allowed to flow through the hydrogen meter 31 and oxygen meter 32, and continues to flow for a period of time until the indications on the hydrogen meter 31 and oxygen meter 32 are stabilized.
このスパンガスは例えばN2 :8%、02;8%残部
N2を使用する。さらにシーケンサ46は前記測定部3
0の水分補正器33、水素計31及び酸素計32の校正
演算器43、零点・スパン点校正演算器44゜45に信
号を送り、水分補正器33の指示を校正板の値に、水素
計31及び酸素計32の指示はスパンガスの各表示値に
合致させて校正を行う。As the span gas, for example, N2:8%, 02:8% balance N2 is used. Furthermore, the sequencer 46 includes the measuring section 3
0 moisture corrector 33, the calibration calculator 43 of the hydrogen meter 31 and oxygen meter 32, and the zero point/span point calibration calculator 44 and 45. 31 and the oxygen meter 32 are calibrated to match each display value of the span gas.
この後はスパンガス用電磁弁40を閉じ、試料用電磁弁
4を開いて原子炉格納容器1内の雰囲気を本測定装置に
導入して測定を開始する。この測定作業についても前記
シーケンサ46により上記校正作業に引続き、その都度
自動的に頻繁に実施されるので常に精度を高く維持でき
ると共に、運転員による直接操作が不要となる。After this, the span gas solenoid valve 40 is closed, the sample solenoid valve 4 is opened, the atmosphere inside the reactor containment vessel 1 is introduced into the measuring device, and measurement is started. This measurement work is also carried out automatically and frequently by the sequencer 46 following the above-mentioned calibration work, so that high accuracy can always be maintained and direct operation by an operator is not required.
なお上記一実施例は水分測定部に、非分散型赤外線ガス
分析計を用いた場合について説明したが、他の形式の水
分測定器でも良く、また零ガス及びスパンガスの種類や
供給方法を変えたり、水分補正のための水分供給手段を
水蒸気発生器以外の手段としても上記一実施例と同様の
効果が得られることは勿論である。Although the above embodiment describes a case where a non-dispersive infrared gas analyzer is used in the moisture measuring section, other types of moisture measuring instruments may also be used, and the type and supply method of the zero gas and span gas may be changed. It goes without saying that the same effect as in the above embodiment can be obtained even if the moisture supply means for moisture correction is a means other than the steam generator.
[発明の効果]
以上本発明によれば雰囲気中の水素・酸素濃度の測定が
、雰囲気中の水分や水素計及び酸素計の校正を含めて自
動的に行われ、特に頻繁に校正を行うことで測定精度が
極めて向上すると共に、運転員の負担も軽減できる効果
がある。[Effects of the Invention] As described above, according to the present invention, the measurement of the hydrogen and oxygen concentrations in the atmosphere is automatically performed including the calibration of the moisture in the atmosphere, the hydrogen meter, and the oxygen meter, and in particular, the calibration can be performed frequently. This has the effect of significantly improving measurement accuracy and reducing the burden on the operator.
第1図は本発明の全体構成図、第2図は本発明の非分散
型赤外線ガス分析計の構成図、第3図は従来の水素・酸
素濃度測定装置の全体構成図、第4図は従来の非分散型
赤外線ガス分析計の構成図、第5図は第4図のv−v線
に沿った試料セルの拡大平面図である。
2・・・循環配管、 4・・・試料用電磁弁、14
・・・試料セル、 15・・・干渉フィルタ、16
・・・赤外線光源、 18・・・熱電対、19・・・
零ガス用電磁弁、
20・・・非分散型赤外線ガス分析計、21・・・校正
板、 30・・・測定部、31・・・水素計、
32・・−酸素計、33・・・水分補正器、
40・・・スパンガス用電磁弁、
41・・・水分用電磁弁、 42・・・水蒸気発生器、
43・・・校正演算器、
44、45・・・零点・スパン点校正演算器、46・・
・シーケンサ。
代理人 弁理士 大 胡 曲 夫
第 3 図
旦
第4図Figure 1 is an overall configuration diagram of the present invention, Figure 2 is a configuration diagram of a non-dispersive infrared gas analyzer of the invention, Figure 3 is an overall configuration diagram of a conventional hydrogen/oxygen concentration measuring device, and Figure 4 is FIG. 5 is a block diagram of a conventional non-dispersive infrared gas analyzer, and FIG. 5 is an enlarged plan view of a sample cell taken along the v-v line in FIG. 4. 2... Circulation piping, 4... Solenoid valve for sample, 14
...Sample cell, 15...Interference filter, 16
...Infrared light source, 18...Thermocouple, 19...
Zero gas solenoid valve, 20... Non-dispersive infrared gas analyzer, 21... Calibration plate, 30... Measuring section, 31... Hydrogen meter,
32...-Oxygen meter, 33... Moisture compensator, 40... Solenoid valve for span gas, 41... Solenoid valve for moisture, 42... Steam generator,
43... Calibration calculator, 44, 45... Zero point/span point calibration calculator, 46...
・Sequencer. Agent Patent Attorney Ogo Qu Fu No. 3 Fig. 4
Claims (1)
素濃度測定装置において、循環配管で水分検出器の上流
に水分用電磁弁を介した水蒸気発生器と零ガス用電磁弁
及びスパンガス用電磁弁を連結し、水分検出器内に校正
板を挿抜自在に装着すると共に、前記水分検出器からの
信号により水素計及び酸素計の補正をする水分補正器と
水素計及び酸素計の零点・スパン点用演算器と、前記水
分検出器と水素計及び酸素計等の校正及び測定操作を設
定順序に従いシーケンス制御するシーケンサを設けたこ
とを特徴とする水素・酸素濃度自動測定装置。In a hydrogen/oxygen concentration measurement device that performs moisture correction for hydrogen and oxygen gases containing moisture, a water vapor generator, a solenoid valve for zero gas, and a solenoid valve for span gas are installed upstream of the moisture detector in the circulation piping via a solenoid valve for moisture. A calibration plate is inserted into and removed from the moisture detector, and a moisture compensator that corrects the hydrogen meter and oxygen meter based on the signal from the moisture detector, and the zero point and span point of the hydrogen meter and oxygen meter. 1. An automatic hydrogen/oxygen concentration measuring device, characterized in that it is provided with a sequencer that sequentially controls calibration and measurement operations of the moisture detector, hydrogen meter, oxygen meter, etc. according to a set order.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1126080A JPH02306141A (en) | 1989-05-19 | 1989-05-19 | Automatic measuring apparatus of hydrogen and oxygen concentration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1126080A JPH02306141A (en) | 1989-05-19 | 1989-05-19 | Automatic measuring apparatus of hydrogen and oxygen concentration |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02306141A true JPH02306141A (en) | 1990-12-19 |
Family
ID=14926115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1126080A Pending JPH02306141A (en) | 1989-05-19 | 1989-05-19 | Automatic measuring apparatus of hydrogen and oxygen concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02306141A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000002784A (en) * | 1998-04-16 | 2000-01-07 | Toshiba Corp | Monitor for atmosphere inside container |
JP2005241495A (en) * | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | Instrument and method for measuring mill-inert oxygen concentration |
JP2010096561A (en) * | 2008-10-15 | 2010-04-30 | Fuji Electric Systems Co Ltd | Calibration device for laser type gas analyzer |
CN102937589A (en) * | 2012-11-08 | 2013-02-20 | 四川大学 | Measuring device and measuring method of oxygen solubility under high-pressure conditions |
-
1989
- 1989-05-19 JP JP1126080A patent/JPH02306141A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000002784A (en) * | 1998-04-16 | 2000-01-07 | Toshiba Corp | Monitor for atmosphere inside container |
JP2005241495A (en) * | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | Instrument and method for measuring mill-inert oxygen concentration |
JP4551101B2 (en) * | 2004-02-27 | 2010-09-22 | 三菱重工業株式会社 | MILUINATO OXYGEN CONCENTRATION MEASURING DEVICE, MILLINATE OXYGEN SUPPLY DEVICE, AND MILLINATE OXYGEN CONCENTRATION METHOD |
JP2010096561A (en) * | 2008-10-15 | 2010-04-30 | Fuji Electric Systems Co Ltd | Calibration device for laser type gas analyzer |
CN102937589A (en) * | 2012-11-08 | 2013-02-20 | 四川大学 | Measuring device and measuring method of oxygen solubility under high-pressure conditions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0163608B1 (en) | Calibration system for ultra high purity gas analysis | |
US5431734A (en) | Aluminum oxide low pressure chemical vapor deposition (LPCVD) system-fourier transform infrared (FTIR) source chemical control | |
US5305630A (en) | Process and apparatus for supplying gas to a very highly sensitive analyzer | |
EP0469437B1 (en) | Method of and apparatus for preparing calibration gas | |
US3247702A (en) | Method of calibrating gas analyzers | |
US5996394A (en) | Gas meter calibration device for hydrogen-oxygen mixtures | |
JPH02306141A (en) | Automatic measuring apparatus of hydrogen and oxygen concentration | |
AU2014241145B2 (en) | In situ probe with improved diagnostics and compensation | |
CN107993731B (en) | System for monitoring combustibility of gas in containment after serious accident of reactor | |
JP2670542B2 (en) | Method and apparatus for measuring lithium concentration in primary cooling circuit of nuclear reactor | |
US3969626A (en) | Method and apparatus for detecting total reduced sulfur | |
US4272249A (en) | Method of monitoring oxygen concentrations in gas streams | |
US4838098A (en) | Contained radiological analytical chemistry module | |
CN114486793A (en) | Transformer fault gas spectrum detection device and method | |
CZ263092A3 (en) | Apparatus for monitoring atmosphere inside a nuclear plant safety tank | |
US20030082417A1 (en) | Calibration process and apparatus for an electrochemical cell system | |
JPH0414318B2 (en) | ||
JPS599549A (en) | Measurement of gas concentration | |
JPS61281966A (en) | Total carbon measuring instrument | |
CN213632873U (en) | Intelligent SO3Standard gas preparation system | |
CN221326411U (en) | Atmospheric oxidizing property measuring device | |
JPS63275995A (en) | Apparatus for measuring concentration of hydrogen in reactor container | |
JP3957333B2 (en) | Special material gas component concentration measuring device for semiconductors | |
CN208607147U (en) | A kind of carbon and sulfur analytical instrument infrared light automatic detection device | |
CN115524415B (en) | High-purity nitrous oxide analysis pipeline system |