JPS60186454A - Refractory moldings - Google Patents

Refractory moldings

Info

Publication number
JPS60186454A
JPS60186454A JP59039870A JP3987084A JPS60186454A JP S60186454 A JPS60186454 A JP S60186454A JP 59039870 A JP59039870 A JP 59039870A JP 3987084 A JP3987084 A JP 3987084A JP S60186454 A JPS60186454 A JP S60186454A
Authority
JP
Japan
Prior art keywords
refractory
molded product
centrifugal
formwork
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59039870A
Other languages
Japanese (ja)
Inventor
種村 文数
矢島 幸造
水野 好朗
科野 輝蔵
佐々 一一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Concrete Kogyo Kk
MINO YOGYO KK
MINO YOUGIYOU KK
Original Assignee
Dainichi Concrete Kogyo Kk
MINO YOGYO KK
MINO YOUGIYOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Concrete Kogyo Kk, MINO YOGYO KK, MINO YOUGIYOU KK filed Critical Dainichi Concrete Kogyo Kk
Priority to JP59039870A priority Critical patent/JPS60186454A/en
Publication of JPS60186454A publication Critical patent/JPS60186454A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、遠心成形してなる耐火成形物に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractory molded product formed by centrifugal molding.

従来、耐火煉瓦等耐火物の成形は耐火材料を少量の水で
混練し、圧縮成形したものが殆どであり、その形状も直
方体、もしくはその類似形状のものが多かった。又アー
チ塑成いは円筒形等、筒状物の内張りなども、台形の成
形体にて組み付けていた。然し、需要の多様化に伴って
内張りや組み付は工数の少ない特殊異形のものも多くな
り、その性能も高度のものがめられるようになったが、
性能の高度化は材料の精選を主とし、成形については圧
縮力の増大や真空加圧成形が行なわれている程度で、遠
心成形法など他の成形法は検討されていなかった。
Conventionally, most refractories such as firebricks have been molded by kneading a refractory material with a small amount of water and compression molding, and the shape has often been a rectangular parallelepiped or a similar shape. In addition, the lining of cylindrical objects such as arch molding was also assembled using trapezoidal moldings. However, with the diversification of demand, there have been an increase in the number of special shapes that require less man-hours for lining and assembly, and the performance of these products has also become more advanced.
Improvements in performance were mainly achieved through the careful selection of materials, and molding techniques were limited to increasing compression force and vacuum pressure molding, and other molding methods such as centrifugal molding were not considered.

周知のように遠心成形法は、ボール・パイルヒユーム管
等のコンクリート製品に汎用されており、主として円筒
形状のものをセメントの水相による硬化により成形され
ていたが、外観を角形や特殊面取り多角形のもの或いは
表面を凹凸模様とすることは、型枠を工夫することで容
易に遠心成形できるので、色々の形状のコンクリート製
品に応用されるようになった。
As is well known, the centrifugal forming method is widely used for concrete products such as balls and pile humps, and is mainly used to form cylindrical products by hardening with the aqueous phase of cement. By creating a concave-convex pattern on the surface of a concrete product, it can be easily centrifugally formed by devising a formwork, so it has come to be applied to concrete products of various shapes.

本発明は、コンクリート製品における骨材の結合材であ
るポルトランド9セメントの代りに自硬性のある耐火物
の結合材として、アルミナセメント、珪酸アルカリ、リ
ン酸塩等の無機質結合材或いはフェノール樹脂等の有機
質結合材等から各々の用途に応じて選び、粒度調整され
たアルミナ・シリカ・マグネシア・ジルコニア・ジルコ
ン及びクロム等の金属酸化物、又は炭素化合物及び窒素
化合物からなる少なくとも一種以上の耐火材料に加えて
遠心成形したものである。即ち本発明による耐火成形物
は、上記の自硬性のある結合材の効果とともに骨材の粒
度を調整し、水等の溶媒を加えて遠心成形することによ
り、遠心力の大きい粗粒は外周へいき、その間隙な細粒
、微粉が埋め、さらにその微細な間隙を微粉、極微粉が
充填するとともに、空気及び過剰の水並びに過剰の微粉
とが内筒側に集まる。これらの過剰の水並びに過剰の微
粉等を遠心成形中に排出すれば、自硬性のある結合材の
強度が低くてもその形状を保持し、脱型・養生・乾燥及
び焼成等の工程や工程間の運搬による型網れや変形を生
じない強度を保有することを見出したのである。従って
遠心成形により製造された成形体を、焼成等の熱処理に
より最終的な強度を発現させる場合には、結合材自体の
強度はそれ程必要としない。然し乍ら、アルミナセメン
トを結合材とした場合は、水相反応による硬化であるの
で水和物が分解しない養生や乾燥段階はともかく、アル
ミナセメントの結晶水が分解する温度域では、脱水後の
気孔率が大幅に上昇するために緻密な組織は得られない
。そこでより緻密なものとするため、極微粉として耐火
粘土・仮焼アルミナ・酸化クロム・シリカフラワー等の
1ミクロン以下の粒度を主体としたものを使用し分散材
(解膠剤)及び凝集剤(凝膠剤)を添加したものを結合
材として使用することを考案した。これは、分散剤の作
用により、微粉、特に極微粉が分散し、遠心成形により
、微粉、極微粉のなす微細間隙を充填した上で凝集剤の
作用により、緻密な状態のまま硬化するものであり、こ
の成形体は水和物がほとんど生成しないので、処理温度
の違いによる気孔率の変化はアルミナセメント等の、水
和物が生成する成形体に比較して非常にすくな(、全温
度域を通じて最も緻密な成形体の一つであると言える。
The present invention proposes an inorganic binder such as alumina cement, alkali silicate, phosphate, or phenol resin as a binder for self-hardening refractories in place of Portland 9 cement, which is a binder for aggregate in concrete products. At least one type of refractory material made of metal oxides such as alumina, silica, magnesia, zirconia, zircon, and chromium, or carbon compounds and nitrogen compounds, selected from organic binders etc. according to each application and whose particle size is adjusted. In addition, it is centrifugally molded. That is, the refractory molded product according to the present invention has the effect of the above-mentioned self-hardening binder, adjusts the particle size of the aggregate, adds a solvent such as water, and performs centrifugal molding, so that coarse particles with large centrifugal force are moved to the outer periphery. Then, the fine particles and fine powder fill the gaps, and the fine particles and ultrafine powder fill the fine gaps, and air, excess water, and excess fine powder gather on the inner cylinder side. If these excess water and excess fine powder are discharged during centrifugal molding, even if the strength of the self-hardening binder is low, it will maintain its shape and will be able to maintain its shape during processes such as demolding, curing, drying, and firing. They discovered that the material has a strength that prevents it from becoming bent or deformed during transportation. Therefore, when a molded body manufactured by centrifugal molding is subjected to heat treatment such as firing to develop its final strength, the strength of the binder itself is not required so much. However, when alumina cement is used as a binder, hardening occurs through an aqueous phase reaction, so regardless of the curing and drying stages in which hydrates do not decompose, the porosity after dehydration decreases in the temperature range where the crystallization water of alumina cement decomposes. As a result, a dense tissue cannot be obtained. Therefore, in order to make it more dense, we use ultrafine powder with a particle size of 1 micron or less such as fireclay, calcined alumina, chromium oxide, silica flour, etc., and use a dispersing agent (peptizer) and a flocculant ( We devised the use of a material containing a coagulant (coagulant) as a binding material. In this process, fine powder, especially ultrafine powder, is dispersed by the action of a dispersant, and after filling the minute gaps formed by the fine powder and ultrafine powder by centrifugal molding, it is cured in a dense state by the action of a flocculant. Since this molded product hardly generates hydrates, the change in porosity due to differences in processing temperature is very small compared to molded products that generate hydrates, such as alumina cement. It can be said that it is one of the most dense molded products.

前述した分散剤としては、アルカリ金属のリン酸塩・ポ
リリン酸塩・炭酸塩・カルボン酸及びフミン酸塩等の一
種又は二種以上を混合して使用し、その添加量は0.0
1〜0.6重量%である。
As the above-mentioned dispersant, one or a mixture of two or more of alkali metal phosphates, polyphosphates, carbonates, carboxylic acids, humates, etc. is used, and the amount added is 0.0
It is 1 to 0.6% by weight.

凝集剤としては、カルシウムの水酸化物・硫酸塩・珪酸
塩・アルミン酸塩や仮焼マグネシア等のように水に徐々
に溶解してイオン化に時間を要するものを使用でき、そ
の添加量は1〜10重量%である。
As flocculants, those that gradually dissolve in water and require time to ionize, such as calcium hydroxide, sulfate, silicate, aluminate, and calcined magnesia, can be used, and the amount added is 1 ~10% by weight.

次に、本発明による遠心成形耐火物について図面を参照
して説明する。
Next, a centrifugally formed refractory according to the present invention will be explained with reference to the drawings.

第1図は、遠心成形の仕組みを断面図で説明したもので
ある。前記した耐火材料の2.5〜10mm程度の粗粒
1.1.2〜0.15m程度の細粒2、数十ミクロンな
いし数ミクロンの微粉3.1ミクロン以下の極微粉4を
成形体の厚さに応じて適宜の比率とし6〜12チの水5
を加えて混練した耐火材料混練物7は空気6を狐立泡又
は粗粒1、或いは細粒2、微粉6、極微粉4を包むよう
にして混在している。然し、分散剤を添加した混線物7
の空気6は殆どが独立泡となり、粗粒1、細粒2、微粉
3、極微粉4を包む空気6はなくなり、その表面は水5
で濡れた状態となっている。第1図の(1)は、型枠8
に混線物7を注入した断面図で(1つはその拡大断面図
である。前述したように空気6が相当量混在しており、
第1図の(2)は、型枠8を回転して遠心成形を開始し
たときの断面図で、(的はその拡大図である。遠心力は
当初は重力加速度Iの1〜2倍程度の遠心加速度が与え
られ、混線物7は型枠8に張り付くが、空気6はまだ混
在した状態である。この状態で、しばらく回転を続ける
と混線物7は、はぼ均等な厚さとなり型枠にもよく接し
た状態となる。次に型枠8の回転速度をあげて遠心力を
大きくするに従い、次第に質量の大きい粗粒1が型枠8
側へ動き、空気6、水5が追い出される形で内側へ逃げ
る。粗粒1の間隙を細粒2が埋め、その間隙を微粉3、
又、極微粉4がその間隙を埋める。第1図の(3)は、
遠心力が数十gのときの断面図であり、(3つはその拡
大図である。過剰の水5及び過剰の極微粉4、微粉6並
びに細粒2が内側に集っているところを示すものである
。この過剰の水5及び過剰の極微粉4、微粉6、細粒2
を削りとったのが第1図の(4)であり、その拡大図が
(4つである。以上のようにして、遠心成形したものは
自硬性のある結合材の強度が低くても、容易に型網れや
変形をおこさないものである。粗粒1、細粒2、微粉6
、極微粉4の比率及びその最大粒径は成形体の最小厚さ
に応じて決定される。最大粒径は最小厚さの少なくとも
1/3以下であることが必要であり、最大粒径が大きい
程粗粒1の比率が大きくなり、細粒2、微粉6、極微粉
4の選択幅が多(なる。又、水5の添加量も、微粉6及
び細粒2の粒径が小さく、配合率が大きい程必要となる
が、前述した分散剤の使用により、水5の添加量を減少
させることは可能である。又、粒径が小さい程質量が小
さく、従って遠心力が小さくなり充分締め固めできない
ので細粒2や微粉6を最大粒とするものは数百g乃至数
千9の遠心加速度を必要とする。一般に単一径粒のなす
間隙と細粗混合粒のなす間隙と比較すると単一粒の間隙
が大きく、又単一径粒のものでは粒径が小さくなる程空
隙が多くなる傾向にある。従って本発明は粗粒1から極
微粉4まで各粒径のものを混合したことと活性化した耐
火性の極微粉と分散剤の使用により、粒子間引力が低下
し、団粒化した微粉、極微粉を分散させ微細間隙を遠心
力により充填して緻密な組織を作り、凝集剤の作用によ
り緻密な状態のまま固化し、耐火成形物としたものであ
る。
FIG. 1 is a sectional view explaining the mechanism of centrifugal molding. Coarse particles of about 2.5 to 10 mm 1, fine particles of about 1.2 to 0.15 mm 2, fine particles of several tens of microns to several microns 3. Ultrafine powder of 1 micron or less 4 of the above-mentioned refractory material are used to form a molded body. Depending on the thickness, add 6 to 12 inches of water to 5
The refractory material kneaded material 7 is mixed with air 6 so as to enclose the bubbles or coarse particles 1, fine particles 2, fine powder 6, and ultrafine powder 4. However, the mixed wire 7 with added dispersant
Most of the air 6 becomes closed cells, and the air 6 surrounding the coarse particles 1, fine particles 2, fine particles 3, and ultrafine particles 4 disappears, and the surface becomes water 5.
It is in a wet state. (1) in Figure 1 shows the formwork 8
(One is an enlarged cross-sectional view. As mentioned above, a considerable amount of air 6 is mixed in.
(2) in Figure 1 is a cross-sectional view when centrifugal molding is started by rotating the formwork 8 (the mark is an enlarged view). Initially, the centrifugal force is about 1 to 2 times the gravitational acceleration I. A centrifugal acceleration of It comes into contact with the frame well.Next, as the rotational speed of the formwork 8 is increased to increase the centrifugal force, the coarse particles 1 with a larger mass gradually come into contact with the formwork 8.
It moves to the side, and air 6 and water 5 are expelled and escape inward. Fine particles 2 fill the gaps between coarse particles 1, and fine particles 3 fill the gaps.
Further, the ultrafine powder 4 fills the gaps. (3) in Figure 1 is
These are cross-sectional views when the centrifugal force is several tens of grams (3 are enlarged views). This excess water 5 and excess ultrafine powder 4, fine powder 6, fine particles 2
(4) in Figure 1 is the one that was removed, and the enlarged view is (4).As described above, even if the strength of the self-hardening bonding material is low, It does not easily cause mold mesh or deformation.Coarse grain 1, fine grain 2, fine powder 6
, the ratio of ultrafine powder 4 and its maximum particle size are determined depending on the minimum thickness of the molded body. The maximum particle size must be at least 1/3 of the minimum thickness, and the larger the maximum particle size, the larger the ratio of coarse particles 1, and the wider the selection range of fine particles 2, fine particles 6, and ultrafine particles 4. Also, the amount of water 5 added becomes more necessary as the particle size of fine powder 6 and fine particles 2 becomes smaller and the blending ratio becomes larger, but by using the above-mentioned dispersant, the amount of water 5 added is reduced. In addition, the smaller the particle size, the smaller the mass, and therefore the smaller the centrifugal force, making it impossible to compact the particles sufficiently. Requires centrifugal acceleration.In general, the gaps between single grains are larger than those between single-sized grains and those between fine and coarse mixed grains, and in the case of single-sized grains, the smaller the grain size, the larger the voids. Therefore, in the present invention, by mixing particles of each particle size from coarse particles 1 to ultra-fine particles 4, and by using activated fire-resistant ultra-fine particles and a dispersant, the interparticle attraction force is reduced. Agglomerated fine powder or ultrafine powder is dispersed and minute gaps are filled by centrifugal force to create a dense structure, which is then solidified in a dense state by the action of a flocculant to form a refractory molded product.

第2A図は、本発明による耐火成形物の円筒状成形体9
の遠心成形中の状態を示す側面図、第2B図はその横断
面図で、耐火材料混線物7は型枠8中で型枠8のタイヤ
部10及び遠心機車輪110回転により円筒状に成形さ
れるのである。
FIG. 2A shows a cylindrical molded body 9 of the refractory molded product according to the present invention.
Fig. 2B is a side view showing the state during centrifugal forming, and Fig. 2B is a cross-sectional view thereof, in which the refractory material mixture 7 is formed into a cylindrical shape in a form 8 by rotating the tire portion 10 of the form 8 and the centrifugal wheel 110. It will be done.

第6図は、各種形状の耐火成形物について(1)は平面
図、(2)はその側面図を示すものであるが、この形状
に限定されることなく、各種の形状のものを製造し得る
。第4図は、その遠心成形時の横断面を示すもので、耐
火成形物9はあらかじめ小型枠12を内装して取付けた
型枠8を回転しながら耐火材料混練物7を型枠9へ投入
し、回転数を上げ遠心力を大きくして充分締め固めて成
形されるのである。
Fig. 6 shows (1) a plan view and (2) a side view of refractory molded products of various shapes, but the shapes are not limited to these and various shapes can be manufactured. obtain. Figure 4 shows a cross section during centrifugal molding, in which the refractory material mixture 7 is fed into the formwork 9 while rotating the formwork 8 to which the refractory molded product 9 has been fitted with a small frame 12 inside. Then, the rotation speed is increased and the centrifugal force is increased to sufficiently compact and form the material.

次に本発明による耐火成形物を実炉に使用した結果を示
す。
Next, the results of using the refractory molded product according to the present invention in an actual furnace will be shown.

実施例1として、ポルトランドセメント焼成用ロータリ
ーキルンのバーナーの保護用耐火物に本発明による円筒
状耐火成形物を使用した。第5図にNSP式ポルトラン
ドセメント製造設備の概略を示す。セメント生原料は助
焼炉(プレヒーター)13の通過時に予熱及び脱炭酸さ
れ、ロータリーキルン本体14で焼成される。焼成され
たセメントクリンカ−は7ツド15、クーラー16を紅
て冷却され、粉砕設備へと移動する。また、クーラー1
6の余熱を利用する目的で、廃熱ガスをプレヒーター1
6に導く抽気ダクト17、沈降室18、二次ダクト19
が付設されている。バーナー20は、先端部がロータリ
ーキルン14内に装入されるため、15000以上の熱
負荷を受けるとともに、フットS15、クーラー16か
らのダストによる摩耗による損傷が大きい。従来はバー
ナー保護用耐火物としてキャスタブルが使用されていた
が、施工方法が棒状パイプレーク−を使用した流し込み
であり、施工性を良くするため混線水分量が多くなる傾
向があるので、品質的には緻密になり難く、ばらつきも
多くなり、耐用期間も2〜6ケ月と短く、不安定であっ
た。本発明による円筒状耐火成形物を使用したところ、
6ケ月の連続使用が可能となった。第1表に、従来使用
されていたキャスタブルの品質及び本実施例の成形体の
品質を示した。又、バーナーに直接遠心成形することも
可能であるが、本実施例ではあらかじめ円筒状耐火成形
物を製造しておき現地にてバーナーにセットする、いわ
ゆるカセット方式を採用した。カセット方式の採用によ
り、施工期間の短縮が可能となり操業の安定化にも大き
く寄与するものである。
As Example 1, a cylindrical refractory molded product according to the present invention was used as a protective refractory for a burner of a rotary kiln for firing Portland cement. Figure 5 shows an outline of the NSP type Portland cement manufacturing equipment. The cement raw material is preheated and decarboxylated when passing through an auxiliary furnace (preheater) 13, and then fired in a rotary kiln main body 14. The fired cement clinker is cooled in a cooler 15 and then transferred to a crushing facility. Also, cooler 1
In order to utilize the residual heat from step 6, waste heat gas is transferred to preheater 1.
6, a bleed air duct 17, a settling chamber 18, a secondary duct 19
is attached. Since the tip of the burner 20 is inserted into the rotary kiln 14, the burner 20 is subjected to a thermal load of 15,000 or more, and is also subject to significant damage due to wear caused by dust from the foot S15 and the cooler 16. Conventionally, castable was used as a refractory for burner protection, but the construction method was pouring using a rod-shaped pipe lake, and in order to improve workability, there was a tendency for the amount of cross-conducting moisture to increase, so it was difficult to improve the quality. It was difficult to make it dense, there were many variations, and its service life was short, 2 to 6 months, and it was unstable. When the cylindrical refractory molding according to the present invention was used,
It has become possible to use it continuously for 6 months. Table 1 shows the quality of conventionally used castables and the quality of the molded product of this example. It is also possible to perform centrifugal molding directly on the burner, but in this example, a so-called cassette method was adopted in which a cylindrical refractory molded product is manufactured in advance and set on the burner on site. By adopting the cassette method, it is possible to shorten the construction period and greatly contribute to stabilizing operations.

実施例2として実施例1と同様にポルトランドセメント
製造設備の抽気ダクト17の内張り耐火物として、本発
明による耐火成形物を使用した。
In Example 2, similar to Example 1, the refractory molding according to the present invention was used as a refractory lining for an air bleed duct 17 of a Portland cement production facility.

抽気ダクト17はクーラー16からのダストによる摩耗
が激しく、又、温度も1oooc前後にまであがるので
、従来は耐摩耗性煉瓦や高強度キャスタブルが使用され
ていたが、煉瓦は目地からの損耗と耐摩耗性に、キャス
タノルは耐摩耗性に問題があり、満足する耐用は得られ
ていなかった。
The bleed air duct 17 suffers from severe wear due to dust from the cooler 16, and the temperature rises to around 100 mph, so conventionally wear-resistant bricks or high-strength castables have been used, but bricks are resistant to wear and tear from the joints. Castanol had problems with wear resistance and had not achieved satisfactory durability.

本発明による耐火成形物は、従来の耐摩耗性煉瓦が目地
損耗を主体とした損耗により6ケ月にて脱落した部分に
使用され、2年の耐用を達成した。
The refractory molding according to the present invention was used in a part where conventional wear-resistant bricks had fallen off after 6 months due to wear mainly due to joint wear, and achieved a service life of 2 years.

第2表には、従来の煉瓦の品質と本実施例による耐火成
形物の品質を示した。なお、実施例2に使用した耐火成
形物は焼成品である。
Table 2 shows the quality of conventional bricks and the quality of the refractory molded product according to this example. Note that the refractory molded product used in Example 2 is a fired product.

第1表 第2表 以上の様に、本発明による耐火成形物は脱気が充分にな
されるので、真空加圧成形以上に緻密に成形され特に外
周面は緻密に圧密成形されてその一般的な物理特性も高
性能のものとなる。係る外周面の遠心成形体は、外周面
が高熱に晒される炉内への被焼成物の供給パイプ・ロー
タリーキルン用バーナーのプロテクターなどに好適なも
のである。また、前述したように内筒面の過剰の微粉等
を排出し、調整した遠心成形体は、ロータリーキルンの
内張り耐火物及び筒形金属溶解炉川内張り材等にも適し
ている。
As shown in Table 1 and Table 2 above, the refractory molded product according to the present invention is sufficiently degassed, so it is molded more densely than vacuum pressure molding, and the outer peripheral surface in particular is compactly molded, making it more compact than conventional moldings. The physical properties are also high performance. Such a centrifugally formed body having an outer circumferential surface is suitable for use as a protector for a rotary kiln burner, a supply pipe for a material to be fired into a furnace, and the like, where the outer circumferential surface is exposed to high heat. In addition, the centrifugal molded body prepared by removing excess fine powder from the inner cylinder surface as described above is suitable for refractory lining of rotary kilns, lining of cylindrical metal melting furnaces, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、遠心成形の仕組みを工程順に説明するもので
、その(1)は遠心成形前、その(2)は低速時、その
(3)は高速時、その(4)は仕上時の断面図であり、
その(1つ、(2つ、(3つ、(4つはそれぞれの部分
拡大図であり、第2A図は、遠心成形状態を示す側面図
、第2B図はその横断面図であり、第6図は、各種形状
の耐火成形物についてその(1)は平面図、その(2)
は側面図で示すものであり、第4図は、それら耐火成形
物の遠心成形状態を示す型枠内の横断面図であり、第5
図は、実施例に係る耐火物の使用個所の説明図である。 符号の説明 1・・・粗粒、2・・・細粒、6・・・微粉、4・・・
極微粉、5・・・混練水、6・・・空気、7・・・混練
物、8・・・型枠、9・・・遠心成形物、10・・・型
枠タイヤ、11・・・遠心機、12・・・小型枠、16
・・・助焼炉、14・・・ロータリーキルン本体、 1
5・・・7ツト9、16・・・クーラー、17・・・抽
気ダクト、18・・、・沈降室、 19・・・二次ダク
ト、20・・・バーナー 特許出願人 美濃窯業株式会社 同 大日コンクリート工業株式会社 (外4名) 手続補正書(方式) 3.補正をする者 事件との関係 出 願 人 住所 名称 美濃窯業株式会社 (外1名) 4、代理人 5、補正命令の日付 昭和59年5月29日(発送日)
弄補i−鉾向瞬目 Z補正の内容 (1)明細書の記載を下記の通り訂正。 頁 行 原文 訂正文 5 16 第1図は 第1図の(1)〜(4)は5 1
4 である であり、第1A図の(1)〜(4)は第1
図の夫々の 部分の拡大図である 6 5 (1’) 第1A図の(1) 6 8 (2′) 第1A図の(2) 6 20 (6’) 第1A図の(3)7 5 (4’
) 第1A図の(4) 14 7 その(1’)、(2す、第1A図の(1)、
 (2)、 (3)及(3つ、(4りはそれ び(4)
は第1図の(1,)、(2+。 それ (3)及び(4)のそれぞれ (2)図面第1図を添付図面第1図及び第1A図の通り
訂正。 (3)別紙の通り委任状を補正。 以上
Figure 1 explains the mechanism of centrifugal molding in the order of steps. (1) is before centrifugal molding, (2) is at low speed, (3) is at high speed, and (4) is during finishing. A cross-sectional view,
(1, (2), (3), (4) are partially enlarged views of each of them. Figure 6 shows (1) a plan view and (2) a plan view of refractory moldings of various shapes.
is shown in a side view, FIG.
The figure is an explanatory diagram of the locations where the refractory material according to the example is used. Explanation of symbols 1...Coarse particles, 2...Fine particles, 6...Fine powder, 4...
Ultrafine powder, 5... Kneading water, 6... Air, 7... Kneaded product, 8... Formwork, 9... Centrifugal molded product, 10... Formwork tire, 11... Centrifuge, 12...Small frame, 16
... Auxiliary firing furnace, 14 ... Rotary kiln main body, 1
5...7 9, 16... Cooler, 17... Bleeding duct, 18... Sedimentation chamber, 19... Secondary duct, 20... Burner patent applicant Mino Ceramics Co., Ltd. Dainichi Concrete Industry Co., Ltd. (4 others) Procedural amendment (method) 3. Relationship with the case of the person making the amendments Applicant Name of address Mino Ceramics Co., Ltd. (1 other person) 4. Agent 5. Date of amendment order May 29, 1980 (shipment date)
Supplement I-Contents of Hokomukai blink Z correction (1) The description in the specification has been corrected as follows. Page Line Original text Correction text 5 16 Figure 1 is Figure 1 (1) to (4) are 5 1
4, and (1) to (4) in Figure 1A are the first
6 5 (1') (1) in Figure 1A 6 8 (2') (2) in Figure 1A 6 20 (6') (3) 7 in Figure 1A 5 (4'
) Figure 1A (4) 14 7 Its (1'), (2) Figure 1A (1),
(2), (3) and (3, (4) and (4)
(1,) and (2+) in Figure 1. (3) and (4) respectively (2) Figure 1 of the drawing has been corrected as shown in the attached drawings Figures 1 and 1A. (3) As shown in the attached sheet. Amend the power of attorney.

Claims (1)

【特許請求の範囲】[Claims] 粒度調整されたアルミナ・シリカ・マグネシア・ジルコ
ン・ジルコニア及びクロム等の金属酸化物、又は、炭素
化合物及び窒素化合物からなる耐火材料の少なくとも一
種以上を骨材とし、水又はその他の溶媒を加えて混練し
、筒形等に組み立てた型枠に注入し、その型枠を回転す
る事により、注入物に加わる遠心力にて、脱気・脱水さ
れ、且つ注入物内の各粒度の骨材が組み合され圧密され
ることにより成形されて、脱型・養生・及び乾燥してな
る耐火成形物並びにその耐火成形物を焼成してなる耐火
成形物。
The aggregate is made of at least one type of refractory material consisting of particle size-adjusted metal oxides such as alumina, silica, magnesia, zircon, zirconia, and chromium, or carbon compounds and nitrogen compounds, and is kneaded by adding water or other solvents. By pouring it into a formwork assembled into a cylindrical shape, etc., and rotating the formwork, the centrifugal force applied to the injected material deaerates and dehydrates it, and the aggregate of each particle size in the injected material is assembled. A refractory molded product formed by combining and compacting, demolding, curing, and drying, and a refractory molded product obtained by firing the refractory molded product.
JP59039870A 1984-03-02 1984-03-02 Refractory moldings Pending JPS60186454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039870A JPS60186454A (en) 1984-03-02 1984-03-02 Refractory moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039870A JPS60186454A (en) 1984-03-02 1984-03-02 Refractory moldings

Publications (1)

Publication Number Publication Date
JPS60186454A true JPS60186454A (en) 1985-09-21

Family

ID=12565008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039870A Pending JPS60186454A (en) 1984-03-02 1984-03-02 Refractory moldings

Country Status (1)

Country Link
JP (1) JPS60186454A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839121A (en) * 1986-10-21 1989-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High density tape casting system
JPH01176508A (en) * 1987-12-29 1989-07-12 Kubota Ltd Centrifugal cast molding method for multi-layer ceramic molded material
JPH02147203A (en) * 1988-11-29 1990-06-06 Teikoku Fume Kan Kk Centrifugal molding method of concrete product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839121A (en) * 1986-10-21 1989-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High density tape casting system
JPH01176508A (en) * 1987-12-29 1989-07-12 Kubota Ltd Centrifugal cast molding method for multi-layer ceramic molded material
JPH02147203A (en) * 1988-11-29 1990-06-06 Teikoku Fume Kan Kk Centrifugal molding method of concrete product

Similar Documents

Publication Publication Date Title
CN108727040B (en) Porous refractory castable, its use and manufacture
KR101832945B1 (en) Use of unfired refractory products as a lining in large-volume industrial furnaces, as well as an industrial furnace lined with said unfired refractory products
JP4470207B2 (en) Refractory brick
FI3237356T3 (en) Use of refractory products
US4120734A (en) Monolithic refractory compositions
JPS60186454A (en) Refractory moldings
JP2003321276A (en) Silicon carbide material for monolithic refractory excellent in driability and monolithic refractory material
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JP2604310B2 (en) Pouring refractories
US2543752A (en) Refractory and semirefractory materials and process for manufacture
JPH05163073A (en) Filler for gap between refractory bricks
JPS60215567A (en) Manufacture of ceramic sintered body
RU2153482C2 (en) Method of manufacturing aluminosilicate and corundum refractory products
JP3426024B2 (en) Construction method of refractory construction body
JP3117180B2 (en) Amorphous refractory molded body and method of manufacturing the same
JPH07110780B2 (en) Sintered fireproof material
JP2869881B2 (en) Spray material for kiln repair
JP3143731B2 (en) Lightweight fireproof castable
JP2004262740A (en) Magnesia-alumina-based clinker and refractory obtained by using it
JPS59141463A (en) Heat resistant material
JPH04362070A (en) Castable refractory
JP4414496B2 (en) Construction method of irregular refractories
Pivinskii et al. New population of refractory concretes: Cement free concretes
JP2596594B2 (en) Spray repair material for atmosphere furnace