JP2596594B2 - Spray repair material for atmosphere furnace - Google Patents

Spray repair material for atmosphere furnace

Info

Publication number
JP2596594B2
JP2596594B2 JP63196255A JP19625588A JP2596594B2 JP 2596594 B2 JP2596594 B2 JP 2596594B2 JP 63196255 A JP63196255 A JP 63196255A JP 19625588 A JP19625588 A JP 19625588A JP 2596594 B2 JP2596594 B2 JP 2596594B2
Authority
JP
Japan
Prior art keywords
alumina
ultrafine
particles
weight
repair material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63196255A
Other languages
Japanese (ja)
Other versions
JPH0248471A (en
Inventor
倫 中村
龍巳 大塚
吉村  正
正徳 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63196255A priority Critical patent/JP2596594B2/en
Publication of JPH0248471A publication Critical patent/JPH0248471A/en
Application granted granted Critical
Publication of JP2596594B2 publication Critical patent/JP2596594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼材加熱炉、均熱炉等の雰囲気炉の耐火物
内張りの寿命延長を図るための吹付補修材に関する。
Description: TECHNICAL FIELD The present invention relates to a spray repair material for extending the life of a refractory lining of an atmosphere furnace such as a steel heating furnace and a soaking furnace.

〔従来の技術〕[Conventional technology]

雰囲気炉の操業は、耐火物内張りにとっては苛酷な加
熱,冷却の繰り返しである。そのため、長時間使用する
に従い、内張り耐火物の損耗が進み、定期的な内張り耐
火物の張り替えが必要となる。
The operation of the atmosphere furnace is a repetition of severe heating and cooling for refractory lining. Therefore, the wear of the refractory lining progresses as it is used for a long time, and it is necessary to replace the refractory lining periodically.

従来、内張り耐火物の張り替え作業は流し込み施工が
多く採用されているが、枠セット、耐火物混練、圧送、
流し込み施工、養生、乾燥、昇温等の煩雑な作業工程か
らなり、施工時間,補修コスト面で満足できるものでは
なかった。
In the past, refilling work for lining refractories has often been carried out by casting, but frame setting, refractory kneading, pressure feeding,
It consisted of complicated work processes such as pouring, curing, drying and heating, and was not satisfactory in terms of construction time and repair cost.

この内張り耐火物の張り替え作業に、短時間で用意に
補修できる吹付補修法の適用が考えられる。
For this relining work of refractory lining, it is conceivable to apply a spraying repair method that can easily repair in a short time.

吹付材としての作業性として、付着帯の剥離がない
こと、 内張り耐火物の接着性が強固であること、 加熱,冷却の繰り返し操業であるために容積安定性
が良いこと、 800〜1400℃での高温度域での繰り返し使用でも耐
スポール性に優れ、強度劣化がないことが必要である。
The workability as a spraying material is that there is no peeling of the adhesion zone, the adhesion of the refractory lining is strong, the volume stability is good due to the repeated operation of heating and cooling, and 800 to 1400 ° C It is necessary that the material has excellent spall resistance even when repeatedly used in a high temperature range and has no strength deterioration.

ところが、従来の吹付材は、セメント、燐酸塩、珪酸
塩、耐火粘土等の結合材を多量に使用しているために、
上記条件を満足することができず、実際の適用はできな
い。
However, conventional spray materials use a large amount of binders such as cement, phosphate, silicate, refractory clay, etc.
The above conditions cannot be satisfied, and no practical application is possible.

また、吹付施工体の強度,組織を改善するために、粒
度調整された耐火骨材に粘土,シリカ超微粒子,アルミ
ナ超微粒子等を1〜10重量%,アルミナセメント,分散
剤,硬化促進材を添加することが特開昭62−36071号公
報に開示されている。
In addition, in order to improve the strength and structure of the sprayed construction, 1-10% by weight of clay, ultrafine silica particles, ultrafine alumina particles, etc., alumina cement, dispersant, and hardening accelerator are added to the refractory aggregate whose particle size has been adjusted. The addition is disclosed in JP-A-62-36071.

しかし、上記公報に開示されている材料は、雰囲気
炉、特に雰囲気炉の天井部においては、保型性に劣るこ
とから早期に脱落し、補修効果に乏しい。
However, the material disclosed in the above-mentioned publication falls off early in an atmosphere furnace, particularly in a ceiling portion of the atmosphere furnace due to poor shape retention, and has a poor repair effect.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明において解決すべき課題は、高温度域での熱間
特性及び接着性,容積安定性に優れ、とくに雰囲気炉用
として好適な内張り補修材を提供することにある。ま
た、材料を簡単に、且つ確実に吹付け補修することによ
り、施工時間の短縮,寿命延長,炉材コストの低減を達
成することにある。
The problem to be solved in the present invention is to provide a lining repair material which is excellent in hot properties, adhesiveness and volume stability in a high temperature range and is particularly suitable for use in an atmosphere furnace. Another object of the present invention is to achieve shortening of construction time, extension of life, and reduction of furnace material cost by easily and surely spraying and repairing a material.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、耐火骨材にシリカ超微粒子,アルミナ超微
粒子を添加し、アルミナセメント,分散剤,硬化促進剤
を含む低セメントボンドのキャスタブルが高温度域の熱
間特性、母材との接着性及び容積安定性に優れた接着性
を有することを見い出し、本発明の吹付け補修材を完成
した。
According to the present invention, a low cement bond castable containing silica cement, a dispersant, and a hardening accelerator, which is obtained by adding ultrafine silica particles and ultrafine alumina particles to a refractory aggregate, has a high temperature range of hot properties, and an adhesive property with a base material. And found to have excellent adhesiveness with excellent volume stability, and completed the spray repair material of the present invention.

すなわち、アルミナセメント及び分散剤を含む粒度調
整された耐火物に、シリカ及びアルミナの超微粒子を合
量で5〜10重量%と、硬化促進剤を0.2〜2.0重量%とを
含む雰囲気炉用吹付補修材であり、さらに、シリカ超微
粒子及びアルミナの超微粒子が重量比で1/1〜3/2の範囲
にあることが望ましい。
That is, spraying for an atmosphere furnace containing ultra-fine particles of silica and alumina in a total amount of 5 to 10% by weight and a hardening accelerator in a range of 0.2 to 2.0% by weight to a refractory having a controlled particle size containing alumina cement and a dispersant. It is a repair material, and it is desirable that the ultrafine silica particles and the ultrafine alumina particles are in the range of 1/1 to 3/2 by weight.

本発明に使用する耐火骨材としては、電融アルミナ,
焼結アルミナ,ボーキサイト等の高アルミナ原料が挙げ
られるが、必ずしもこれらに限定されるものではない。
The refractory aggregate used in the present invention includes fused alumina,
Examples include high alumina raw materials such as sintered alumina and bauxite, but are not necessarily limited thereto.

マトリックス部には高温域での熱間特性,母材との接
着性,容積安定性の点から、アルミナ超微粒子及びシリ
カ超微粒子を使用する。
For the matrix portion, ultrafine alumina particles and ultrafine silica particles are used from the viewpoint of hot properties in a high temperature range, adhesion to a base material, and volume stability.

アルミナセメント及び分散剤を含む粒度調整された耐
火材料に対し、シリカ超微粒子及びアルミナ超微粒子を
使用することにより、少量のアルミナセメント量で燐酸
塩,珪酸塩,耐火粘土をバインダとする吹付材以上の良
好な母材との接着性を得ることができ、従来のセメント
ボンド吹付材の欠点である高温度域での熱間特性,容積
安定性を付与することが可能となった。
By using ultrafine silica particles and ultrafine alumina particles for refractory materials whose particle size has been adjusted to include alumina cement and a dispersant, a spray material with phosphate, silicate, refractory clay as a binder in a small amount of alumina cement The adhesive properties with the base material can be obtained, and the hot properties and volume stability in a high temperature range, which are the drawbacks of the conventional cement bond spraying material, can be imparted.

シリカ超微粒子としては、金属シリコン,シリコン合
金製造の際に副生する揮発シリカあるいは湿式,乾式で
製造されるホワイトカーボンと称されるシリカフラワー
が挙げられ、この一次粒子は粒径1μm以下のものが好
ましい。
Examples of the ultrafine silica particles include volatile silica produced as a by-product during the production of metallic silicon and silicon alloys and silica flour called white carbon produced by a wet or dry process. The primary particles have a particle size of 1 μm or less. Is preferred.

アルミナ超微粒子としては、粒径が10μm以下、より
好ましくは5μm以下の仮焼アルミナが好適である。
As the alumina ultrafine particles, calcined alumina having a particle size of 10 μm or less, more preferably 5 μm or less, is suitable.

シリカ超微粒子とアルミナ超微粒子の使用量は合量で
5〜10重量%の範囲にあり、シリカ超微粒子とアルミナ
超微粒子が重量比率で1/1〜2/3の範囲であることが、接
着性と容積安定性の点において優れている。
The total amount of silica ultra-fine particles and alumina ultra-fine particles is in the range of 5 to 10% by weight, and the weight ratio of silica ultra-fine particles and alumina ultra-fine particles is in the range of 1/1 to 2/3. Excellent in properties and volume stability.

シリカ超微粒子とアルミナ超微粒子の合量が5重量%
未満であると接着性が劣り、10重量%超であると容積安
定性に劣る。また、シリカ超微粒子とアルミナ超微粒子
が重量比率で1/1未満であると接着性に劣り、3/2超であ
ると容積安定性に劣る。その理由としては、シリカ超微
粉の粒径が1μm以下であるために、壁面との接着性に
著しく活性的に働くためである。
The total amount of silica ultra-fine particles and alumina ultra-fine particles is 5% by weight
If it is less than 10%, the adhesiveness is poor, and if it exceeds 10% by weight, the volume stability is poor. When the weight ratio of the ultrafine silica particles and the ultrafine alumina particles is less than 1/1, the adhesiveness is poor, and when it exceeds 3/2, the volume stability is poor. The reason for this is that since the particle size of the ultrafine silica powder is 1 μm or less, the silica ultrafine powder works extremely actively on the adhesion to the wall surface.

第1図は、シリカ超微粒子とアルミナ超微粒子との重
量比と接着せん断強度との関係を示す図であり、第2図
はシリカ超微粒子とアルミナ超微粒子との重量比と1400
℃まで昇温したときの膨張率との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the weight ratio of ultrafine silica particles and ultrafine alumina particles and the adhesive shear strength, and FIG. 2 is a graph showing the weight ratio of ultrafine silica particles and ultrafine alumina particles to 1,400.
It is a figure which shows the relationship with the expansion coefficient when it heats up to ° C.

第1図に示すように、シリカ超微粒子とアルミナ超微
粒子との重量比が大きくなるにつれ接着せん断強度は増
大する。しかし、この重量比が大きくなると焼結性が向
上し、第2図に示すように、収縮傾向が強くなり、壁面
との接着性が劣ることになる。
As shown in FIG. 1, the adhesive shear strength increases as the weight ratio between the ultrafine silica particles and the ultrafine alumina particles increases. However, when this weight ratio is increased, the sinterability is improved, and as shown in FIG. 2, the tendency of shrinkage is increased, and the adhesion to the wall surface is deteriorated.

更に、吹付材としての作業性を維持するために硬化促
進剤を添加する必要がある。この凝集剤としては、吹付
け水分の増加を伴わない陰イオン凝集剤の硝酸カリ,硫
酸アルミニウム,硫酸マグネシウム,塩化カリウム,水
酸化カルシウム及び且つ凝集硬化促進剤としての水酸化
カルシウムが挙げられる。
Furthermore, it is necessary to add a curing accelerator in order to maintain the workability as a spray material. Examples of the flocculant include anionic flocculants such as potassium nitrate, aluminum sulfate, magnesium sulfate, potassium chloride, calcium hydroxide, and calcium hydroxide as a flocculation hardening accelerator, which do not increase the sprayed water content.

第3図は硬化促進剤の添加量と吹付け後1時間での曲
げ強さと、最大吹付け厚みを得るために必要な吹付け水
分量を示す図である。
FIG. 3 is a graph showing the addition amount of a curing accelerator, the bending strength one hour after spraying, and the amount of sprayed water necessary for obtaining the maximum sprayed thickness.

第3図を参照して、硬化促進剤の添加量は、全量で0.
2〜2.0重量%が好ましく、第3図に示すように0.2重量
%未満では吹付施工においてタレが発生して充分な施工
厚みが確保できず、また2.0重量%超では吹付水分が多
量に必要となり、施工体の組織が劣化し充分な強度が得
られ難く、母材との接着性が劣化する。
Referring to FIG. 3, the addition amount of the curing accelerator was 0.
2 to 2.0% by weight is preferable. As shown in FIG. 3, if it is less than 0.2% by weight, sagging occurs during spraying and a sufficient work thickness cannot be secured, and if it exceeds 2.0% by weight, a large amount of spray water is required. In addition, the structure of the construction body is deteriorated, and it is difficult to obtain sufficient strength, and the adhesion to the base material is deteriorated.

〔実施例〕〔Example〕

第1表のA,Bに本発明の実施例を挙げ、雰囲気炉用吹
付補修材として要求な物性における測定値を示す。
Examples A and B of Table 1 show examples of the present invention, and show measured values of physical properties required as spray repair materials for atmosphere furnaces.

従来の吹付材(E〜G)は全ての物性値を満足するも
のはなく、接着性,熱間物性,容積安定性のいずれかの
物性で適当でない。
None of the conventional spraying materials (E to G) satisfy all the physical property values, and are not suitable because of any of adhesiveness, hot physical properties, and volume stability.

比較例Cについては、シリカ超微粒子量が多く熱間物
性,容積安定性が劣り、高温域では接着性も大幅に劣化
する。
In Comparative Example C, the amount of ultrafine silica particles was large, the hot physical properties and the volume stability were poor, and the adhesion was significantly deteriorated in a high temperature range.

比較例Dについては、アルミナ超微粒子が多く熱間物
性は良好であるが、シリカ超微粒子量が不足し接着強度
が劣化する。
In Comparative Example D, there were many alumina ultrafine particles and the hot properties were good, but the amount of silica ultrafine particles was insufficient and the adhesive strength was deteriorated.

このように、シリカ超微粒子/アルミナ超微粒子の重
量比が1/1〜3/2の範囲を外れた比較例C,Dの場合には雰
囲気炉吹付補修材としては接着性に問題があった。
Thus, in the case of Comparative Examples C and D in which the weight ratio of silica ultra-fine particles / alumina ultra-fine particles was out of the range of 1/1 to 3/2, there was a problem in adhesiveness as an atmosphere furnace spray repair material. .

実験的に第4図に示す炉内天井部へ100mm厚みで吹付
施工を行い、第5図に示す昇温曲線に従い800〜1400℃
の加熱,冷却を繰り返しテストを実施した。
Experimentally, spraying was performed with a thickness of 100 mm on the ceiling in the furnace shown in FIG.
Heating and cooling were repeated and a test was performed.

第2表に施工体剥離発生までの回数を示す。 Table 2 shows the number of times until the peeling of the construction body occurs.

第6図に示すように、加熱炉の加熱帯,均熱帯の天井
面の内張り耐火物損傷部に本発明材料(第1表中のA)
を乾式吹付機を用いてノズル部分で水と混合しながら吹
付施工を行った。
As shown in Fig. 6, the material of the present invention (A in Table 1) was used in the heating zone of the heating furnace and the damaged portion of the refractory lining on the soaking roof.
Was sprayed while mixing with water at the nozzle using a dry spray machine.

その結果、付着率は85%を越え、作業性に関する支障
は全くなかった。補修後1ケ年経過した時点でも補修材
は健全であった。
As a result, the adhesion rate exceeded 85%, and there was no problem with workability. The repair material was still healthy one year after the repair.

〔発明の効果〕〔The invention's effect〕

本発明は次のような優れた長所を有するものである。 The present invention has the following advantages.

(1) 内張り耐火物の長寿命が計れ、耐火物コストが
低減できる。
(1) Long life of refractory lining can be measured and refractory cost can be reduced.

(2) 熱間での特性(強度,容積安定性)及び内張り
耐火物との接着性に優れる。
(2) Excellent in hot properties (strength, volume stability) and adhesion to refractory lining.

(3) 吹付け施工により短時間で施工でき、特別な乾
燥が不要である。
(3) Spraying can be performed in a short time, and no special drying is required.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は本発明の補修材におけるシリカ/
アルミナの重量比が施工体に与える影響を示し、第3図
は硬化促進剤の影響を示す図である。 第4図から第6図は本発明の補修材のテスト条件を示す
図である。
FIG. 1 and FIG. 2 show the silica / metal in the repair material of the present invention.
FIG. 3 shows the effect of the weight ratio of alumina on the construction body, and FIG. 3 shows the effect of the curing accelerator. 4 to 6 are diagrams showing test conditions of the repair material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉村 正 福岡県北九州市八幡西区東浜町1番1号 黒崎窯業株式会社内 (72)発明者 古賀 正徳 福岡県北九州市八幡西区東浜町1番1号 黒崎窯業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tadashi Yoshimura 1-1, Higashihama-cho, Yawatanishi-ku, Kitakyushu-shi, Fukuoka (72) Inventor Masanori Koga 1-1-1, Higashihama-cho, Yawatanishi-ku, Kitakyushu-shi, Fukuoka Kurosaki Ceramics Co., Ltd.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒度調整された耐火骨材に、 粒子径が1μm以下のシリカ超微粒子と粒子径が10μm
以下のアルミナ超微粒子とを合量で5〜10重量%と、 アルミナセメント2〜6重量%と、 分散剤0.1〜1.0重量%と、 硬化促進剤0.2〜2.0重量%と を含有せしめてなることを特徴とする雰囲気炉用吹付補
修材。
1. A refractory aggregate whose particle size has been adjusted, ultrafine silica particles having a particle diameter of 1 μm or less and a particle diameter of 10 μm.
5 to 10% by weight of the following ultra-fine particles of alumina, 2 to 6% by weight of alumina cement, 0.1 to 1.0% by weight of dispersant, and 0.2 to 2.0% by weight of hardening accelerator A spray repair material for atmosphere furnaces.
【請求項2】含有シリカ超微粒子とアルミナ超微粒子と
の重量比が1/1〜3/2である特許請求の範囲第1項記載の
雰囲気炉用吹付補修材。
2. The spray repair material for an atmospheric furnace according to claim 1, wherein the weight ratio between the ultrafine silica particles and the ultrafine alumina particles is 1/1 to 3/2.
JP63196255A 1988-08-06 1988-08-06 Spray repair material for atmosphere furnace Expired - Lifetime JP2596594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63196255A JP2596594B2 (en) 1988-08-06 1988-08-06 Spray repair material for atmosphere furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63196255A JP2596594B2 (en) 1988-08-06 1988-08-06 Spray repair material for atmosphere furnace

Publications (2)

Publication Number Publication Date
JPH0248471A JPH0248471A (en) 1990-02-19
JP2596594B2 true JP2596594B2 (en) 1997-04-02

Family

ID=16354768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63196255A Expired - Lifetime JP2596594B2 (en) 1988-08-06 1988-08-06 Spray repair material for atmosphere furnace

Country Status (1)

Country Link
JP (1) JP2596594B2 (en)

Also Published As

Publication number Publication date
JPH0248471A (en) 1990-02-19

Similar Documents

Publication Publication Date Title
CN111362676A (en) High-wear-resistance quick-drying refractory castable and preparation method thereof
JP2000016843A (en) Alumina cement, alumina cement composition, its amorphous refractory, and spay application using the same
US11097982B2 (en) Batch for producing an unshaped refractory ceramic product, method for producing an unshaped refractory ceramic product, and an unshaped refractory ceramic product produced thereby
US3430940A (en) Refractory coated composite oxygen lance
MXPA02003437A (en) Synthetic, refractory material for refractory products, and process for producing the product.
JP2596594B2 (en) Spray repair material for atmosphere furnace
WO2020071189A1 (en) Hot dry spraying material and method for hot dry spraying work
CN1202039C (en) Heat resistance substance for refractory moulding body and its fabricated moulding body
JP7174184B1 (en) Monolithic refractory for dry spraying and dry spraying construction method using the same
JP2003321276A (en) Silicon carbide material for monolithic refractory excellent in driability and monolithic refractory material
EP4263468A1 (en) Cementitious composition
JP7247172B2 (en) Refractory batch, method for producing monolithic refractory ceramic product from said batch, monolithic refractory ceramic product obtained by said method
US11059750B2 (en) Single additive refractory materials suitable for multiple application methods
US20120252653A1 (en) Setting agent accelerator for refractory material
JP4384351B2 (en) Refractory for blast furnace tuyere
JPH09301779A (en) Castable refractory, application method therefor and industrial furnace using the same
CN107176828A (en) A kind of refractory brick of slag adhesion
JP2951430B2 (en) Fired magnesia spinel brick
JPH05163073A (en) Filler for gap between refractory bricks
JPH05148041A (en) Refractory produced by gunning
JP4456193B2 (en) Refractory spraying method
Khlystov et al. Ways to improve physical and thermal performance of refractory lining materials
JP3143731B2 (en) Lightweight fireproof castable
JP2869881B2 (en) Spray material for kiln repair
CN113024264A (en) Heat-insulating coating for permanent layer of torpedo ladle