JPS60186334A - Method of forming bearing ball track - Google Patents

Method of forming bearing ball track

Info

Publication number
JPS60186334A
JPS60186334A JP59259420A JP25942084A JPS60186334A JP S60186334 A JPS60186334 A JP S60186334A JP 59259420 A JP59259420 A JP 59259420A JP 25942084 A JP25942084 A JP 25942084A JP S60186334 A JPS60186334 A JP S60186334A
Authority
JP
Japan
Prior art keywords
ball
meridional
track
grinding
tracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59259420A
Other languages
Japanese (ja)
Inventor
ダニエル・ウエスレイ・ヘイズブルツク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Driveline North America Inc
Original Assignee
GKN Automotive Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKN Automotive Components Inc filed Critical GKN Automotive Components Inc
Publication of JPS60186334A publication Critical patent/JPS60186334A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • B23P13/02Making metal objects by operations essentially involving machining but not covered by a single other subclass in which only the machining operations are important
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/762Coupling members for conveying mechanical motion, e.g. universal joints
    • B21K1/765Outer elements of coupling members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/06Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for grinding races, e.g. roller races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/11Joints, e.g. ball joints, universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22309Details of grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、精密な玉軌道を部品、特に、自在継手の外レ
ース部材に形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of forming precision ball tracks in components, particularly outer race members of universal joints.

〔従来技術〕[Prior art]

軸受の玉と係合するための玉軌道が中に形成さその部品
に玉軌道を成形する方法、軌道を荒仕上げ加工物に研削
、加工まだは冷開成形(コールド・フォーミング)で形
成する方法、部品の成形工程の間に最初の大ざっばに寸
法を合わせた軌道を冷開成形または鍛造し次に成形圧軌
道を精密形状に研削、加工する方法などがある。最後に
あげた方法は、上溝の精密形状が要求されるときに用い
られる最も一般的な方法であって、それにより精密寸法
の上溝が材料をそれほど無駄にしないで作ることができ
るからである。更に、上溝を形成するこの方法によれば
、最初に玉軌道が作られていない加工物に、玉軌道を研
削する場合よりも、研削、加工工具に摩耗が生じる度合
は少ない。
A method in which a ball raceway is formed to engage the balls of a bearing; a method in which the ball raceway is molded into the part; a method in which the raceway is formed in a rough-finished workpiece by grinding, machining or cold forming; There are methods such as first cold-opening or forging a roughly sized raceway during the molding process of the part, and then grinding and machining the molding pressure raceway into a precise shape. The last mentioned method is the most common method used when a precise shape of the top groove is required, as it allows the top groove of precise dimensions to be made without wasting much material. Furthermore, this method of forming the upper groove causes less wear on the grinding and machining tools than when grinding ball tracks on a workpiece that does not initially have ball tracks.

精密玉軌道が必要になるのは、たとえば、球状にはめあ
わされる内レース部材および外レース部材を有し、それ
らがその中の玉保合用の子午線状の溝に配置された複数
個の軸受玉によって係合される型の自在継手においてで
ある。この型の自在継手の例は、 1936年7月7日
にアルフレッド・エイチー/l/7エツパ(Alfre
d H,Rzeppa)に付与された米国特許第2 、
046 、584号、および同じ発明者に1928年4
月10日に付与された米国特許第1.665,280号
に開示されている。この型の自在継手の大きな特長は、
不変速度性乃至等速性を有することである。すなわち、
内レース部材と相互接続された軸の回転速度は、所定範
囲の相対角度位置内における内、外レース部材間の相対
角度位置にかかわらず、外レース部材に相互接続された
軸の回転速度と同じである。
Precision ball tracks are required, for example, for bearings with spherically fitted inner and outer race members arranged in meridian grooves for ball retention. In a universal joint of the type engaged by. An example of this type of universal joint was published on July 7, 1936 by Alfred H.
U.S. Patent No. 2, issued to d H.
046, No. 584, and to the same inventor, 4/1928.
No. 1,665,280, issued May 10, 2003. The major features of this type of universal joint are:
It is to have constant speed property or uniform speed property. That is,
The rotational speed of the shaft interconnected with the inner race member is the same as the rotational speed of the shaft interconnected with the outer race member, regardless of the relative angular position between the inner and outer race members within a range of relative angular positions. It is.

それ故、この型の自在継手は、自動車の前輪駆動装置に
おいて一般的に用いられるようになった。
This type of universal joint has therefore become commonly used in front wheel drive systems of automobiles.

上記した型の典型的な等速自在継手は、しばしばルツエ
ツバ継手とよばれ、内レース部材の球状内表面の6個の
子午線状の精密な玉軌道とともに、内レース部材の球状
外表面に形成された6個の子材に最初に成形され、次に
各玉軌道が所望の精密形状を有するように加工される。
A typical constant velocity universal joint of the type described above, often referred to as a Lutzetsuba joint, is formed on the spherical outer surface of the inner race member with six meridional precision ball trajectories on the spherical inner surface of the inner race member. The ball is first formed into six child parts, and then machined so that each ball track has the desired precise shape.

研削、加工作業の間に工具の加工面の一部は摩耗してし
まうので、加工、研削作業の精度を維持するためには、
工具を定期的に交換することが必要となる。このような
定期的な交換は、工具を交換する費用の点および工具を
交換している間の作業時間のロスの点で不経済である。
During grinding and machining operations, part of the machined surface of the tool will wear out, so in order to maintain the accuracy of machining and grinding operations,
Tools will need to be replaced regularly. Such periodic replacement is uneconomical in terms of the cost of replacing the tool and the loss of working time while changing the tool.

玉軌道が、部品内に冷開成形操作で形成される場合は、
その部品の金属は、特に玉軌道の頂部領域でかなり移動
させられる。玉軌道の頂部領域の金属は、玉軌道の形成
にあたり最も形成し難い部分となる。それ故、玉軌道の
頂部領域に何んらかの逃げを設けることが成形工程を容
易にするだめに望ましい。
If the ball track is formed in the part in a cold-open forming operation,
The metal of the part is moved considerably, especially in the top region of the ball track. The metal in the top region of the ball track is the most difficult part to form when forming the ball track. Therefore, it is desirable to provide some relief in the top region of the ball track to facilitate the forming process.

玉軌道が部品内に研削される場合は、研削工具は、玉軌
道の頂部から外側へ延びる軸を中心に回転される。した
がって、玉軌道の頂部付近の研削工具の部分は、比較的
ゆっくり動き、最大量の摩擦を受ける。玉軌道の頂部領
域での摩擦で研削工具が急に劣化するので、しばしば研
削工具を交換することが必要となり、またかなりの休止
時間が必要となる。この摩擦で熱も発生し、部品内でひ
び割れが生じる可能性もある。それ故各部品は、微細な
割れを発見するために注意深く検査されなければならな
い。かなりの量のスクラップが微細な割れの検査から生
じ、部品あたりの製造コストが増大する。品質管理問題
も検出されないきすの為に生じる可能性がある。
When a ball race is ground into a part, the grinding tool is rotated about an axis extending outwardly from the top of the ball race. Therefore, the portion of the grinding tool near the top of the ball track moves relatively slowly and experiences the greatest amount of friction. Friction in the top region of the ball race causes rapid deterioration of the grinding tool, so that it is often necessary to replace the grinding tool and considerable downtime is required. This friction also generates heat, which can cause cracks within the part. Therefore each part must be carefully inspected to detect microscopic cracks. A significant amount of scrap results from inspection for microcracks, increasing manufacturing costs per part. Quality control problems can also arise due to undetected waste.

従って、ルツエツパ継手およびそれに類似した等速自在
継手ならびに精密玉軌道が必要な他の機械要素の製造の
ために、研削、加工工具の摩擦の量および製造中にでき
るスクラップの量を減少できる玉軌道の製法が望まれて
いる。
Therefore, for the production of Rutseppa joints and similar constant velocity universal joints and other machine elements where precision ball tracks are required, the ball track can reduce the amount of grinding, machining tool friction and the amount of scrap produced during manufacturing. A manufacturing method is desired.

〔発明の概要〕[Summary of the invention]

本発明は、加工物の精密な玉軌道すなわちボール・トラ
ックの製造方法を提供するもので、その方法により玉軌
道の研削、加工に用いられる工具の摩擦が、従来の方法
に較べて少なくなり、冷開成形操作が容易になり、加工
物に微細な割れが生じる度合も少なくなる。本発明の方
法は、ルツエッパ継手のようカ等速自在継手の外レース
部材を製造するのに特に有用である。
The present invention provides a method for manufacturing a precision ball track for a workpiece, which reduces the friction of the tool used for grinding and machining the ball track compared to conventional methods. The cold-open molding operation becomes easier and the degree of micro-cracking in the workpiece is reduced. The method of the present invention is particularly useful for manufacturing outer race members of constant velocity universal joints, such as Lutzepper joints.

本発明の方法によれば、加工物は、成形子軌道および成
形圧軌道内でそれに沿って延びる成形逃げ溝を備えるよ
うにして最初に形成される。玉軌道は次に所定の精密形
状に研削2機械加工され精密玉軌道ができる。加工、研
削が最もしにくい領域で工具とかみ合わせられる表面領
域を逃げ溝を設けて減少させることにより、加工、研削
工具の摩擦を減少させる。更に逃げ溝は、冷間成形操作
の間に玉軌道の頂部での金属の流れを促進する。
According to the method of the invention, a workpiece is initially formed with a forming relief groove extending within and along a forming die track and a forming pressure track. The ball track is then ground and machined to a predetermined precision shape to produce a precision ball track. Friction of machining and grinding tools is reduced by providing relief grooves to reduce the surface area that can be engaged with tools in areas where machining and grinding is most difficult. Additionally, the relief grooves facilitate metal flow at the top of the ball track during cold forming operations.

逃げ溝は、土性に沿って延びているのが望ましい。これ
は、冷間成形装置、−!だは、加工若しくは研削工具に
対しての最大量の抵抗が部品に生じる領域である。
It is desirable that the relief groove extends along the soil texture. This is a cold forming device, -! This is the area where the part experiences the greatest amount of resistance to the machining or grinding tool.

好適な実施例においては、等速自在継手の外レース部材
が複数個の離隔した子午線状のレース溝を備えるように
して形成され、各子午線状のレース溝はその頂部に形成
された子午線状の逃げ溝を有している。各子午線状レー
ス溝は、精密形状に加工、研削され、複数個の精密な玉
軌道ができる。
In a preferred embodiment, the outer race member of the constant velocity universal joint is formed with a plurality of spaced apart meridian race grooves, each meridian race groove having a meridional groove formed at the top thereof. It has an escape groove. Each meridian race groove is machined and ground to a precise shape, resulting in multiple precision ball trajectories.

等速自在継手の内レース部材は、同様にして、複数個の
離隔した子午線状のレース溝を備えるようにして形成す
ることによって製造できる。各子午線状のレース溝は、
その頂部に形成された子午線状の逃げ溝を有している。
The inner race member of a constant velocity universal joint can be manufactured in a similar manner by forming it with a plurality of spaced apart meridian race grooves. Each meridian lace groove is
It has a meridian relief groove formed at its top.

各子午線状のレース溝は、所定の精密形状に研削されて
、複数個の精密玉軌道ができる。
Each meridian race groove is ground to a predetermined precision shape to create a plurality of precision ball tracks.

本発明の主たる目的は、部品に精密玉軌道を形成する方
法を提供することであって、その方法によって、精密な
玉軌道をつくるのに使用される加工、研削工具の有効寿
命が長くなり、それによって製造機械の休止時間を減少
し、その製造機械から得られる収率を高められるような
方法を提供することである。
The primary object of the present invention is to provide a method for forming precision ball trajectories in parts, which method increases the useful life of machining and grinding tools used to create precision ball trajectories; It is an object of the present invention to provide a method whereby the downtime of a manufacturing machine can be reduced and the yield obtained from the manufacturing machine can be increased.

本発明の他の目的は、内および外レース部材に一連の玉
保合用の子午線状レース溝を有する自在継手の内および
外レース部材を形成する方法を提供することである。
Another object of the present invention is to provide a method of forming inner and outer race members of a universal joint having a series of ball-retaining meridional race grooves in the inner and outer race members.

本発明の更に他の目的は、内および外レース部材に形成
された一連の玉保合用子午線状レース溝を有する型の等
速自在継手用の精密な内レース部材および精密な外レー
ス部材を提供することである。
Still another object of the present invention is to provide precision inner race members and precision outer race members for constant velocity universal joints of the type having a series of ball-retaining meridional race grooves formed in the inner and outer race members. It is to be.

本発明の更に他の目的は、部品に精密玉軌道を形成し、
冷開成形操作によって精密玉軌道の成形を促進するよう
な方法を提供することである。
Still another object of the present invention is to form a precision ball trajectory on a component;
It is an object of the present invention to provide a method that facilitates the formation of precision ball trajectories through a cold-open forming operation.

本発明のこれらの目的および他の多くの目的。These and many other objects of the invention.

特徴、利点は、以下の詳細な説明および添付図面の説明
により、当業者に明らかになろう。
Features and advantages will become apparent to those skilled in the art from the following detailed description and description of the accompanying drawings.

〔実施例〕〔Example〕

図面、特に第1図および第2図を参照すると、ルツエン
バ型の等速自在継手10が示されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, and in particular to FIGS. 1 and 2, a Ruthember-type constant velocity universal joint 10 is shown.

この等速自在継手10は、技術的には周知のものである
から、ここで詳細に図示したり説明したりしない。
Constant velocity universal joint 10 is well known in the art and will not be illustrated or described in detail herein.

等速自在継手10は外レース部材12を有し、この外レ
ース部材は第1の方向に延びる一体軸14を有している
。球状空洞16か外レース部材12中に形成されている
。球状空洞16は、第1の方向と逆の第2の方向に開口
している。
Constant velocity universal joint 10 has an outer race member 12 having an integral shaft 14 extending in a first direction. A spherical cavity 16 is formed in the outer race member 12. The spherical cavity 16 is open in a second direction opposite to the first direction.

第1図および第2図に示されているように、第1の軌道
1Bが一連の軸受圧20用に外レース部材内に形成され
ている。第1の軌道18は、一連の玉保合用の子午線状
のレース溝を形成し、ゴシックアーチ形状を有している
As shown in FIGS. 1 and 2, a first track 1B is formed in the outer race member for a series of bearing pressures 20. As shown in FIGS. The first track 18 forms a series of meridian race grooves for ball engagement and has a Gothic arch shape.

内レース部材22が、外レース部材12の球状空洞16
内に形成されている。内レース部材22は、スプライン
26を介して軸24にマワントされる。内レース部材2
2は、外レース部材12の球状空洞16の直径よりも相
当小さな直径の外球面28を備えている。
The inner race member 22 is connected to the spherical cavity 16 of the outer race member 12.
formed within. Inner race member 22 is mounted to shaft 24 via splines 26 . Inner race member 2
2 has an outer spherical surface 28 with a diameter considerably smaller than the diameter of the spherical cavity 16 of the outer race member 12.

第2の軌道30が、第1図および第2図に示されている
ように、内レース部材22の外球面28内に形成されて
いる。第2の軌道30は、軸受圧20と係合するだめの
ゴシックアーチ型の一連の玉保合用の子午線状の溝を形
成する。
A second track 30 is formed within the outer spherical surface 28 of the inner race member 22, as shown in FIGS. 1 and 2. The second track 30 defines a series of meridian ball-retaining grooves in the form of a gothic arch that engages the bearing pressure 20 .

第1の軌道の各々は、第2の軌道の1つと心合せされ、
公知の態様で軸受圧の1つをその間で捕えて、外レース
部材の一体軸14に対して、内レース部材22と相互接
続した軸24の角運動を可能にする。軸受圧20は、一
体軸14と軸24との間の回転トルクを公知の態様で伝
達する。もし望むなら、球状の保持片42を内レース部
材22の外球面2Bと外レース部材12の球状空洞16
の間に設けて、公知の態様で軸受圧20を捕えるように
してもよい。
each of the first orbits is aligned with one of the second orbits;
One of the bearing pressures is captured therebetween in a known manner to permit angular movement of the shaft 24 interconnected with the inner race member 22 relative to the integral shaft 14 of the outer race member. Bearing pressure 20 transmits rotational torque between integral shaft 14 and shaft 24 in a known manner. If desired, the spherical retaining piece 42 can be attached to the outer spherical surface 2B of the inner race member 22 and the spherical cavity 16 of the outer race member 12.
The bearing pressure 20 may be captured in a known manner.

ところで、従来の方法によれば、内レース部材22およ
び外レース部材12は、鋳造または鍛造工程によって成
形され、第1の軌道18および第2の軌道30は、それ
ぞれその上に、研削または加工工具を用いたひきつづい
た研削、加工作業によって形成される。この研削、加工
作業では、研削または加工工具にかなりの量の摩擦が生
じ、この研削工具をひんばんに交換することが必要とな
る。したがって、内レース部材および外レース部材をつ
くるのに使用する製造機械の動作にはかなシの休止時間
が必要で、収率も劣ることになる。
By the way, according to the conventional method, the inner race member 22 and the outer race member 12 are formed by a casting or forging process, and the first raceway 18 and the second raceway 30 are formed by grinding or processing tools thereon, respectively. It is formed by continuous grinding and machining operations. This grinding and machining operation creates a significant amount of friction on the grinding or machining tool, requiring frequent replacement of the grinding tool. Therefore, the operation of the manufacturing machinery used to make the inner and outer race members requires significant downtime and yields are poor.

しかし、本発明によれば、内レース部材22および外レ
ース部材12は、加工工具上の摩擦の量を減少できるか
ら、収率が向上し、製造機械の休止時間も減少するので
ある。
However, in accordance with the present invention, the inner race member 22 and outer race member 12 can reduce the amount of friction on the processing tool, thereby increasing yields and reducing manufacturing machine downtime.

第1図、第2図、および第3図に示されているように、
容筒1の軌道18は、その長さに沿って延びる小溝32
を備えている。同様に、第1図および第2図に示されて
いるように、容筒2の軌道30は、それに沿って形成さ
れた小溝34を備えている。小溝32.34は逃げ溝と
なって、第1゜第2の軌道18.30を、所定の精密形
状に研削。
As shown in FIGS. 1, 2, and 3,
The track 18 of the container 1 has a small groove 32 running along its length.
It is equipped with Similarly, as shown in FIGS. 1 and 2, the track 30 of the container 2 is provided with a groove 34 formed therealong. The small grooves 32, 34 serve as relief grooves, and the first and second raceways 18, 30 are ground into a predetermined precise shape.

加工するのに用いる研削、加工工具の摩擦の量を減少さ
せる。
Grinding reduces the amount of friction on the machining tools used for machining.

すなわち、所定の第1の軌道に関して第3図に示されて
いるように、小溝32は、それに関連した第1の軌道の
頂部に形成されているのが望ましい。なぜなら、最大の
研削、加工抵抗力は、軌道の頂部で生じるからである。
That is, as shown in FIG. 3 for a given first track, the groove 32 is preferably formed at the top of the associated first track. This is because the maximum grinding and machining resistance force occurs at the top of the raceway.

このように、所定の第1の粗軌道18a上の仕上げに用
いる研削、加工工具では、小溝32が無い場合よりもか
なり摩擦が少なくなる。
In this way, the grinding and processing tools used for finishing on the predetermined first rough raceway 18a have considerably less friction than when the small grooves 32 are not provided.

小溝32は、所定の第1の粗軌道18aについて、深さ
dよりもかなり大きな幅Wを有しているのが望ましく、
それによって外レース部材12をほとんど弱化しないで
使用する研削、加工工具の摩擦をかなり減らすことがで
きる。たとえば、小溝32の幅Wは、深さdの2〜4倍
でよい。さらに、小溝32は、所定の第1の粗軌道18
aの周囲の一部に幅をもっていて、弧の角度θを定める
。所定角度θは、研削、加工工具の摩擦を最小にするよ
うに、しかも所定の第1の軌道とそこに配置される軸受
玉との接触に十分な表面を与えるように選ばれる。図示
された例では、所定角度θは約20であるが、10〜3
0の角度でもよい。
It is desirable that the small groove 32 has a width W considerably larger than the depth d for a predetermined first rough track 18a.
Thereby, the friction of the grinding and machining tools used can be significantly reduced without substantially weakening the outer race member 12. For example, the width W of the small groove 32 may be 2 to 4 times the depth d. Further, the small groove 32 is formed on a predetermined first rough track 18.
There is a width in a part of the periphery of a, and the angle θ of the arc is determined. The predetermined angle θ is selected to minimize friction on the grinding and machining tools, yet provide sufficient surface for contact between the predetermined first raceway and the bearing balls disposed thereon. In the illustrated example, the predetermined angle θ is approximately 20, but 10 to 3
It may be an angle of 0.

本発明の方法によれば、外レース部材12は、最初に鋳
造または鍛造で成形され、成形半径r工をもった成形表
面36が中に形成された所定の第1の粗軌道18aを有
している。次ぎの研削、加工は、所定の第1の粗軌道1
8aに対して行なわれて、最小の研摩半径r2を有する
最小研摩表面38と最大の研摩半径r8を有する最大研
摩表面40との間の所定の公差内の研摩表面をつくる。
According to the method of the invention, the outer race member 12 is first formed by casting or forging and has a predetermined first rough raceway 18a formed therein with a formed surface 36 having a forming radius r. ing. The next grinding and machining are performed on the predetermined first rough orbit 1.
8a to produce a polished surface within a predetermined tolerance between the smallest polished surface 38 with the smallest polished radius r2 and the largest polished surface 40 with the largest polished radius r8.

小溝32の深さdは、最大研摩半径r8と成形半径r0
との差より大きく選ばれるので、研削、加工工具が小溝
32の底44に当たることはない。
The depth d of the small groove 32 is the maximum polishing radius r8 and the forming radius r0.
Since the difference is selected to be larger than the difference between the two, the grinding and processing tools will not hit the bottom 44 of the small groove 32.

内、外レース部材22.12のその余の第1゜第2の軌
道18.30は、それぞれ上記した所定の第1の軌道の
形成方法と同様の方法で形成される。
The remaining first and second tracks 18.30 of the inner and outer race members 22.12 are each formed in a manner similar to the method for forming the predetermined first tracks described above.

本発明の方法は、内レース部材22よりも、外レース部
材12に対してより好適に適用されることに注意しなけ
ればならない。外レース部材12用の第1の軌道18は
、軌道の頂部を含まない軌道表面と玉20が通常は係合
するように、軸受玉20に対して釣合うように設計され
ている。軸受玉20と外レース部材12の間の軸受面積
を最大にするために、そのようになされる。したがって
It should be noted that the method of the present invention is more preferably applied to the outer race member 12 than to the inner race member 22. The first raceway 18 for the outer race member 12 is designed to be counterbalanced to the bearing ball 20 such that the ball 20 normally engages the raceway surface not including the top of the raceway. This is done to maximize the bearing area between the bearing balls 20 and the outer race member 12. therefore.

第1の軌道18の一部を小溝32を設けて除去しても、
何ら負荷を負担しない第1の軌道の一部を除去するだけ
である。それ故1本発明の方法は等速自在継手10の外
レース部材12の製作に用いると、加工、研削工具に最
大の抵抗力を与える、第1の軌道18aの成形表面36
の部分を、l1II受玉20とそれに関連した第1の軌
道との係合の機能に影響を及ぼすことなく除去すること
によって用いる研削、加工工具の有効寿命を増大させる
ことができる。
Even if a part of the first track 18 is removed by providing a small groove 32,
It only removes the part of the first track that does not carry any load. Therefore, when the method of the present invention is used to fabricate the outer race member 12 of the constant velocity universal joint 10, the formed surface 36 of the first raceway 18a provides maximum resistance to machining and grinding tools.
The useful life of the grinding and machining tool used can be increased by removing this portion without affecting the function of engagement of the I1II ball 20 and its associated first track.

これに対して、内レース部材22の第2の軌道は、一般
には、その頂部の付近で表面接触を実質的に行うような
態様で設計されている。したがって、内レース部材22
を1本発明の方法に従がって上記したように作ると、軸
受玉20とそれに関連した第2の軌道300間の最大接
触の領域は、小溝34の両側にあることになる。
In contrast, the second track of the inner race member 22 is generally designed in such a manner as to provide substantial surface contact near its top. Therefore, the inner race member 22
When made as described above according to the method of the present invention, the areas of maximum contact between the bearing ball 20 and its associated second raceway 300 will be on either side of the minor groove 34.

それ故、適用例によっては、外レース部材12だけを本
発明の方法に従がって形成し、内レース部材22は従来
の方法で形成することもある。壕だ、内レース部材22
の容筒2の軌道30に形成される小溝34は、第2の軌
道の頂部以外の個所に形成してもよい。たとえば、図示
しないが、2つの小溝を、容筒2の軌道の頂部の両側で
、頂部から所定の距離角度だけ離隔させるようにして。
Therefore, in some applications, only the outer race member 12 may be formed according to the method of the present invention, and the inner race member 22 may be formed by conventional methods. It's a trench, inner race member 22
The small groove 34 formed in the track 30 of the container 2 may be formed at a location other than the top of the second track. For example, although not shown, two small grooves may be formed on both sides of the top of the track of the container 2 and spaced apart from the top by a predetermined distance and angle.

第2の軌道に設けてもよい。It may also be provided on the second track.

上記の記載は本発明を実施するために、出願の時点で発
明者によって想起された最良の態様である。上記の記載
は本発明の単なる例示にすぎず、当業者には上記説明お
よび添付図面に基づいて本発明の精神から離れることな
しに種々の修正、変形が想起できるだろう。たとえば1
本発明による研削、加工工程は、といし車をもっ単穴型
または抜穴型でも実施できる。このような変形は、当然
、特許請求の範囲に含まれるものである。
What has been described above is the best mode contemplated by the inventors at the time of filing of this application for carrying out the invention. The above description is merely illustrative of the present invention, and various modifications and variations will occur to those skilled in the art based on the above description and the accompanying drawings without departing from the spirit of the invention. For example 1
The grinding and processing steps according to the present invention can be carried out using a single-hole type or punch-hole type with a grinding wheel. Such modifications are naturally included within the scope of the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法によって作られた等速自在継手
の一部切欠の側面図である。 第2図は、第1図の2−2線に沿う断面図である。 ゛ 第3図は、第1図および第2図の自在継手の拡大部分断
面図であって、その逃げ溝を詳細に説明するだめのもの
である。 10・・・・等速自在継手、12・・・・外レース部材
、22・・・・内レース部材、18・・・・第1の軌道
、30・・・・第2の軌道、20・・・・軸受圧、32
.34・・・・(逃げ溝となる)小溝。 特許出願人 ジーケーエヌ・オートモーテイブ・コンポ
ニネンッ・インコーポレーテッド代理人 山川数構((
・ビ)2名)
FIG. 1 is a partially cutaway side view of a constant velocity universal joint made by the method of the present invention. FIG. 2 is a sectional view taken along line 2-2 in FIG. 1. 3 is an enlarged partial cross-sectional view of the universal joint of FIGS. 1 and 2, and is for explaining the relief groove in detail. DESCRIPTION OF SYMBOLS 10... Constant velocity universal joint, 12... Outer race member, 22... Inner race member, 18... First track, 30... Second track, 20... ...Bearing pressure, 32
.. 34...Small groove (becomes an escape groove). Patent Applicant GKN Automotive Components Incorporated Agent Kazuka Yamakawa ((
・B) 2 people)

Claims (1)

【特許請求の範囲】 (1)部品に精密軸受玉軌道を形成する方法であって; 前記部品に成形上軌道およびその玉軌道に沿って延びる
逃げ溝を成形する工程と; 前記成形上軌道を所定の精密形状に研削して前記精密玉
軌道を作る研削工程と を含むことを特徴とする軸受玉軌道幹阪方法。 (2、特許請求の範囲第1項記載の方法であって、前記
部品は自在継手の内レース部材を含み、その内レース部
材は複数個の玉係合用子午線状軌道を含み、前記精密玉
軌道は前記複数個の玉係合用子午線状軌道の少なくとも
1つを含むことを特徴とする方法。 (3)特許請求の範囲第1項記載の方法であって、前記
部品は自在継手の外レース部材を含み、その外レース部
材は複数個の玉保合用子午線状軌道を含み、前記精密玉
軌道は前記複数個の玉係合用子午線状軌道の少なくとも
1つを含むことを特徴とする方法。 (4)特許請求の範囲第1項記載の方法であって、前記
逃げ溝は前記成形上軌道の頂部に沿って延びることを特
徴とする方法。 (5)特許請求の範囲第1項記載の方法であって、前記
逃げ溝は、前記成形上軌道に対して深さより実質的に大
きな幅を有していることを特徴とする方法。 (6)特許請求の範囲第1項記載の方法であって、前記
逃げ溝は、前記研削工程の間研削の深さより実質的に大
きな所定の深さを有していることを特徴とする方法。 (刀 特許請求の範囲第1項記載の方法であって、前記
逃げ溝は、前記成形上軌道に関して10〜20の弧をな
して周辺に延びていることを特徴とする方法。 (8)内レース部材、外レース部材、およびこれらレー
ス内の一連の玉保合用子午線状レース軌道を有する自在
継手の外レース部材を形成する方法であって; 中に形成された空洞およびその空洞内に形成された複数
個の離隔した子午線状レース軌道を有し、その各レース
軌道がその頂部に形成された子午線状逃げ溝を有してい
る外レースを形成する工程と;前記各離隔した子午線状
軌道を所定の形状に研削して複数個の精密玉軌道を形成
する研削工程との連続的々工程を含むことを特徴とする
軸受玉軌道形板方法。 (9)特許請求の範囲第8項記載の方法でろって、前記
各子午線状逃げ溝は、それに付随した前記複数個の離隔
した子午線状レース軌道のそれぞれについて、深さ寸法
よりも実質的に大きい幅寸法を有していることを特徴と
する方法。 00 特許請求の範囲第8項記載の方法であって、前記
各子午線状逃げ溝は、前記研削工程の間、研削の深さよ
りも実質的に大きい所定の深さ寸法を有することを特徴
とする方法。 (11) %許請求の範囲第8項記載の方法であって、
前記各子午線状逃げ溝は、それに付随の前記複数個の離
隔した子午線状レース軌道のそれぞれについて、10〜
30の角度の弧をなして周辺で延びていることを特徴と
する方法。 (12)外レース部材、内レース部材、およびこれら部
材内の一連の玉係合用子午線状レース軌道を有する自在
継手の内レース部材を形成する方法であって、 外球状表面およびその上に形成された複数個の離隔した
子午線状レース軌道を有し、その各子午線状レース軌道
はその頂部に形成された子午線状逃げ溝を有している内
レース部材を形成する工程と; 前記各子午線状レース軌道を所定の精密形状に研削して
複数個の精密玉軌道を形成する研削工程との連続的々工
程を含むことを特徴とする軸受玉軌道形べ方法。 (13)特許請求の範囲第12項記載の方法でろって、
前記各子午線状逃げ溝は、それに付随の前記子午線状レ
ース軌道のそれぞれについて、深さ寸法よりも実質的に
大きい幅寸法を有することを特徴とする方法。 (14)特許請求の範囲第12項記載の方法であって、
前記各子午線状逃げ溝は、前記研削工程の間、研削の深
さ寸法よりも実質的に大きい所定の深さを有することを
特徴とする方法。 (15) 4?許請求の範囲第12項記載の方法であっ
て、前記子午線状逃げ溝は、それに付随の前記複数個の
離隔した子午線状レース軌道のそれぞれについて10〜
300角度の弧をなして周辺で延びていることを特徴と
する方法。
[Scope of Claims] (1) A method for forming a precision bearing ball raceway in a component, comprising: forming a molded upper raceway and a clearance groove extending along the ball raceway in the component; and forming the molded upper raceway into a predetermined shape. A bearing ball track Mikisaka method comprising: a grinding step of producing the precision ball track by grinding it into a precise shape. (2. The method according to claim 1, wherein the component includes an inner race member of a universal joint, the inner race member includes a plurality of meridian tracks for ball engagement, and the precision ball track includes at least one of the plurality of ball-engaging meridian tracks. (3) The method according to claim 1, wherein the component is an outer race member of a universal joint. , wherein the outer race member includes a plurality of ball-engaging meridional tracks, and the precision ball track includes at least one of the plurality of ball-engaging meridian tracks. (4) ) The method according to claim 1, characterized in that the escape groove extends along the top of the formed upper track. (5) The method according to claim 1, The method according to claim 1, wherein the relief groove has a width substantially larger than a depth with respect to the molded track. A method according to claim 1, characterized in that the relief groove has a predetermined depth substantially greater than the depth of grinding during the grinding step. A method characterized in that the relief groove extends around the periphery in an arc of 10 to 20 with respect to the molded track. (8) An inner race member, an outer race member, and a series of ball retaining meridians in these races. 1. A method of forming an outer race member of a universal joint having a shaped race track, the method comprising: a cavity formed therein and a plurality of spaced apart meridional race tracks formed within the cavity, each race track having a cavity formed therein; a step of forming an outer race having a meridian relief groove formed at its top; a grinding step of grinding each of the spaced meridian tracks into a predetermined shape to form a plurality of precision ball tracks; (9) In the method according to claim 8, each of the meridional relief grooves is formed in the plurality of grooves associated therewith. 9. The method of claim 8, wherein each of the spaced meridional race tracks has a width dimension that is substantially greater than a depth dimension. The method of claim 8, wherein each meridional relief groove has a predetermined depth dimension that is substantially greater than the depth of grinding during the grinding step. A method,
Each said meridian relief groove has a diameter of 10 to 10 for each of said plurality of spaced apart meridian race tracks associated therewith.
A method characterized in that it extends around the periphery in an arc of 30 degrees. (12) A method of forming an inner race member of a universal joint having an outer race member, an inner race member, and a series of ball-engaging meridional race trajectories within these members, the inner race member comprising: an outer spherical surface; forming an inner race member having a plurality of spaced apart meridional race tracks, each meridional race track having a meridional relief groove formed at the top thereof; A method for shaping a bearing ball raceway, comprising a continuous process including a grinding process for forming a plurality of precision ball races by grinding the raceway into a predetermined precision shape. (13) The method according to claim 12,
The method characterized in that each said meridional relief groove has a width dimension that is substantially greater than a depth dimension for each of said meridional race tracks associated therewith. (14) The method according to claim 12,
The method characterized in that each meridional relief groove has a predetermined depth that is substantially greater than a grinding depth dimension during the grinding step. (15) 4? 13. The method of claim 12, wherein the meridional relief groove has a diameter of 10 to 10 for each of the plurality of spaced meridian race tracks associated therewith.
A method characterized in that it extends around the periphery in an arc of 300 degrees.
JP59259420A 1984-03-12 1984-12-10 Method of forming bearing ball track Pending JPS60186334A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58851484A 1984-03-12 1984-03-12
US588514 1984-03-12

Publications (1)

Publication Number Publication Date
JPS60186334A true JPS60186334A (en) 1985-09-21

Family

ID=24354153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259420A Pending JPS60186334A (en) 1984-03-12 1984-12-10 Method of forming bearing ball track

Country Status (11)

Country Link
JP (1) JPS60186334A (en)
KR (1) KR890000213B1 (en)
AU (1) AU567376B2 (en)
BR (1) BR8406297A (en)
CA (1) CA1241532A (en)
DE (1) DE3508487C2 (en)
ES (1) ES8606052A1 (en)
FR (1) FR2560948A1 (en)
GB (1) GB2155367B (en)
IT (1) IT1184902B (en)
MX (1) MX171215B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509637A (en) * 1999-09-14 2003-03-11 イプロテック マシーネン−ウント エーデルシュタールプロドゥクテ ゲーエムベーハー Ball cage

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2289518B (en) * 1993-02-06 1996-04-17 Gkn Automotive Ag Torque transmitting assemblies
GB9302359D0 (en) * 1993-02-06 1993-03-24 Gkn Technology Ltd Torque transmitting assemblies
ES2109862B1 (en) * 1993-02-06 1998-08-01 Gkn Automotive Ag TORQUE TRANSMISSION SETS.
DE4407346A1 (en) * 1993-09-07 1995-06-29 Gkn Automotive Ag Link outer part mfg. process
DE4410298C2 (en) * 1994-03-25 1998-07-02 Loehr & Bromkamp Gmbh Constant velocity joint
GB2318852B (en) * 1996-10-31 2000-05-17 Gkn Hardy Spicer Limited Constant-velocity-ratio universal joints
US6132316A (en) * 1996-10-31 2000-10-17 Gkn Automotive Ag Constant-velocity-ratio universal joints
DE19858324C1 (en) * 1998-12-17 2000-03-16 Gkn Loebro Gmbh Method of production of motor vehicle drive homokinetic coupling outer shell involves reshaping outer sleeve and separating base section
DE10056132C2 (en) * 2000-11-13 2002-10-24 Emag Maschfab Gmbh Method and device for machining hubs of homokinetic joints
US6557257B2 (en) * 2000-11-30 2003-05-06 Visteon Global Technologies, Inc. Method for reducing hard machining time of a constant velocity joint
DE10142805C2 (en) * 2001-08-31 2003-10-16 Gkn Sinter Metals Gmbh One-piece joint body
DE10163040C1 (en) * 2001-12-21 2003-08-21 Daimler Chrysler Ag Tool for producing an inner joint part for a constant velocity joint
DE102004003147B4 (en) * 2004-01-21 2016-01-21 Volkswagen Ag Method and device for milling ball raceways on constant velocity joint hubs
DE102005019160B4 (en) * 2005-04-25 2007-04-05 Emag Holding Gmbh Method for producing ball hubs for constant velocity joints
DE102010023029B4 (en) * 2010-06-08 2013-11-21 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Method for producing an outer part blank and an inner blank of a cardan shaft and cardan shaft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756225B2 (en) * 1972-10-30 1982-11-29

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1665280A (en) * 1927-04-02 1928-04-10 Alfred H Rzeppa Universal joint
US2046584A (en) * 1934-08-08 1936-07-07 Alfred H Rzeppa Universal joint
US2322570A (en) * 1941-12-26 1943-06-22 Adiel Y Dodge Universal joint
GB962455A (en) * 1960-03-09 1964-07-01 Brd Co Ltd Improvements in or relating to universal joints
US3367139A (en) * 1966-06-29 1968-02-06 Gen Motors Corp Universal joint
GB1322792A (en) * 1969-07-12 1973-07-11 Bellomo A Homokinetic joint
GB1389903A (en) * 1971-06-26 1975-04-09 Bellomo A Homokinetic joint
JPS6039897B2 (en) * 1978-12-04 1985-09-07 エヌ・テ−・エヌ東洋ベアリング株式会社 Constant velocity joint
JPS55163324A (en) * 1979-06-01 1980-12-19 Toyota Motor Corp Constant velocity ball joint
JPS5756225U (en) * 1980-09-19 1982-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756225B2 (en) * 1972-10-30 1982-11-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509637A (en) * 1999-09-14 2003-03-11 イプロテック マシーネン−ウント エーデルシュタールプロドゥクテ ゲーエムベーハー Ball cage

Also Published As

Publication number Publication date
GB2155367A (en) 1985-09-25
AU567376B2 (en) 1987-11-19
CA1241532A (en) 1988-09-06
KR850007018A (en) 1985-10-30
BR8406297A (en) 1985-10-08
GB8506364D0 (en) 1985-04-11
IT1184902B (en) 1987-10-28
KR890000213B1 (en) 1989-03-10
MX171215B (en) 1993-10-08
IT8567247A0 (en) 1985-03-12
AU3545484A (en) 1985-09-19
DE3508487C2 (en) 1993-12-23
DE3508487A1 (en) 1985-09-12
ES541159A0 (en) 1986-04-01
IT8567247A1 (en) 1986-09-12
FR2560948A1 (en) 1985-09-13
GB2155367B (en) 1987-09-03
ES8606052A1 (en) 1986-04-01

Similar Documents

Publication Publication Date Title
US4611373A (en) Method of forming a precision ball track
JPS60186334A (en) Method of forming bearing ball track
JP4034356B2 (en) Constant velocity universal joint
US6506121B2 (en) Cage for constant-velocity joint and method for manufacturing the same
JP5882172B2 (en) Torque transmission device, method for manufacturing a component having two functional areas for transmitting torque, and joint shaft
EP0463531B1 (en) Constant velocity joint having cross grooves
US4143983A (en) Flexible joint construction
US8510955B2 (en) Inner joint part for a constant velocity universal joint and process of producing same
GB2117088A (en) Universal joint components
US6557257B2 (en) Method for reducing hard machining time of a constant velocity joint
US6922897B1 (en) Ball cage
JP4537304B2 (en) Fixed constant velocity universal joint
US5609527A (en) Constant velocity universal joint having an improved cage design
US5967900A (en) Cross-grove type constant velocity joint
USRE32830E (en) Method of forming a precision ball track
US6422946B1 (en) Universal joint outer race and method for manufacturing the same
US4437331A (en) Universal transmission coupling and a process for manufacturing such a coupling
EP2251559B1 (en) Inner joint member for constant velocity universal joint, method of producing the same, and constant velocity universal joint
JPH0741351B2 (en) Punch for forging
JPH0914281A (en) Constant velocity universal joint and manufacture thereof
CA1223434A (en) Universal joint cross member trunnion and method
USH885H (en) Bearing device for a crankshaft
JPS622895B2 (en)
JPH0658123B2 (en) Outer lace of Rebrojointo
KR20230117605A (en) Counter track joint and counter track joint production method