JPS60183038A - Methanol reforming catalyst - Google Patents
Methanol reforming catalystInfo
- Publication number
- JPS60183038A JPS60183038A JP3724284A JP3724284A JPS60183038A JP S60183038 A JPS60183038 A JP S60183038A JP 3724284 A JP3724284 A JP 3724284A JP 3724284 A JP3724284 A JP 3724284A JP S60183038 A JPS60183038 A JP S60183038A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- copper
- catalyst
- vanadium
- chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】 不発I!14は、メターノール改負用触媒に関する。[Detailed description of the invention] Misfire I! No. 14 relates to a methanol reforming catalyst.
更に詳しくは、メタノール全水素と一酸化炭素を含有す
るガスに改質する方法において、水素と一酸化炭素全選
択的に生成をせ、低温で高活性かつ長寿命の触媒を提供
するものである。More specifically, in a method of reforming methanol into a gas containing all hydrogen and carbon monoxide, it selectively generates hydrogen and carbon monoxide, and provides a highly active and long-life catalyst at low temperatures. .
メタノールは、石炭、天然ガスなどから合成ガスを経由
して大規模に製造することができ、しかも、輸送が容易
であることから、将来、石油に代るエネルギー源、ある
いは、種々の化学工業原料として大きな関心がもたれて
いる。そ酸化炭素金倉むガスに分解し、これを自動車用
無公害燃料、あるいは還元ガス製造用原料として利用す
る方法がある。一方、この分解ガスから水素を分離し、
この水素ケ燃料亀池発電用燃料として、又石油相製工業
における各イ重有機化合物の水素化などの水素諒として
Δυ用でき、−酸化炭素についても各種有機化合物のカ
ルボニル化プロセスに利用できる。Methanol can be produced on a large scale from coal, natural gas, etc. via synthetic gas, and is easy to transport, so in the future it will be used as an energy source to replace petroleum or as a raw material for various chemical industries. There is great interest as a There is a method of decomposing it into carbon oxide gas and using it as a pollution-free fuel for automobiles or as a raw material for producing reducing gas. On the other hand, hydrogen is separated from this cracked gas,
This hydrogen fuel can be used as a fuel for Kameike power generation, or as a hydrogen fuel for the hydrogenation of various heavy organic compounds in the petroleum industry, and -carbon oxide can also be used for the carbonylation process of various organic compounds.
メタノールの分解反応は、熱力学的には比較的低温で起
りうるが、これ全経済的に行わせるためKは、触媒の存
在が不可欠である。従来、メタノール全分解する触媒と
しては、アルミナ(以下、At203と記す)などの担
体に白金などの白金属元素又は銅、ニッケル、クロム、
亜鉛などの卑金属元系及びその酸化物など全担持した触
媒、あるいは、銅、クロム、亜鉛の一種以上の金M酸化
物からなる触媒が提案されているが、これらの触媒は、
低温活性に乏しく、耐熱性がなく、又寿命が短いなど、
現在までのところ多くの間頚点ケ残してい杭
上記従来の触媒の中で、例えば、単にアルミナ担体に銅
、亜鉛、ニッケル、クロムからなる群の一種以上の金属
、又はその酸化物を担持させた触媒は、比較的低温でも
メタノールと反応するが、水素又は−酸化炭素に改質す
る選択性が低く、メタン、炭酸ガス、ジメチルエーテル
などを生成する副反応が起りやすく、゛かっ触媒寿命が
短いという問題がある。Although the decomposition reaction of methanol can occur thermodynamically at a relatively low temperature, the presence of a catalyst is indispensable for K in order to carry out the reaction economically. Conventionally, catalysts for total decomposition of methanol include platinum metal elements such as platinum, copper, nickel, chromium, etc. on a carrier such as alumina (hereinafter referred to as At203).
Catalysts entirely supported on base metals such as zinc and their oxides, or catalysts consisting of one or more gold M oxides of copper, chromium, and zinc have been proposed;
It has poor low-temperature activity, lacks heat resistance, and has a short lifespan.
Up to now, many of the conventional catalysts mentioned above have remained at their necks, for example, by simply supporting an alumina support with one or more metals from the group consisting of copper, zinc, nickel, and chromium, or their oxides. Although these catalysts react with methanol even at relatively low temperatures, they have low selectivity for reforming into hydrogen or carbon oxides, tend to cause side reactions that produce methane, carbon dioxide, dimethyl ether, etc., and have a short catalyst life. There is a problem.
又、銅、クロム、亜鉛、ニッケルの群から選ばれた一種
以上の金属、又はその酸化物全組合せた触媒は、活性な
らびに選択性の点では優れているが、寿命が短いという
欠点がるる。Catalysts made of a combination of one or more metals selected from the group of copper, chromium, zinc, and nickel, or oxides thereof, are excellent in terms of activity and selectivity, but have the disadvantage of short life.
なかでも、銅−クロム系酸化物からなる触媒は、比較的
低温でメタノールを水素と一酸化炭素に改質するが、長
期寿命試験の結果、第1図の曲線(a)に示す如く、比
較的短時間で性能の低下を来す。この原因について、種
々解析検討全行った結果、活性柳である銅の酸化物が還
元され、金属銅の状態に変化し、失活することが判った
。Among them, catalysts made of copper-chromium oxides reform methanol into hydrogen and carbon monoxide at relatively low temperatures, but as a result of long-term life tests, as shown in curve (a) in Figure 1, the comparison performance deteriorates in a short period of time. As a result of conducting various analyzes and studies to determine the cause of this, it was found that the copper oxide in activated willow is reduced, changes to the state of metallic copper, and is deactivated.
このような状況に鑑み、本発明者らは、上記の問題全解
決すべく種々研究を重ね、活性棟である銅の酸化物、例
えばOuO又はcu、o が、金纏銅(aU )に還元
されることを抑制するため、銅−クロム系酸化物又は、
銅−亜鉛系酸化物に第5成分全含有せしめることに着目
し、更に、鋭意研究を重ねた結果、第3成分としてチタ
ン、バナジウムの酸化物全含有させた組成物に、ニッケ
ルを担持させた触媒が、メタノールの改質反応に対して
高活性、かつ高選択性で、寿命も長く、極めて優れるこ
とを見出した。すなわち、本発明は、銅−亜鉛又は銅−
クロム系酸化物とチタン、バナジウムの酸化物からなる
組成物に、ニッケルを担持させたメタノール改質用触媒
に関する。In view of this situation, the present inventors have conducted various studies in order to solve all of the above problems, and have found that active copper oxides such as OuO or cu, o are reduced to gold-coated copper (aU). Copper-chromium oxide or
We focused on making the copper-zinc oxide contain all of the fifth component, and as a result of extensive research, we were able to support nickel on a composition that contained all of the oxides of titanium and vanadium as the third component. It has been found that the catalyst has high activity and selectivity for the methanol reforming reaction, has a long life, and is extremely excellent. That is, the present invention provides copper-zinc or copper-zinc
The present invention relates to a methanol reforming catalyst in which nickel is supported on a composition consisting of a chromium-based oxide and oxides of titanium and vanadium.
本発明において、銅−亜鉛又は銅−クロム系酸化物から
なる組成物′t−脚製するには、市販の銅、亜鉛、クロ
ムの酸化物又は水酸化物をそのまま用いても良いし、上
記金属の化合物の水溶液に、沈でん剤としてアルカリ金
属の化合物、又は、アルカリ土類金属元素の水酸化物又
は炭酸塩を、そのまま、あるいは水溶液にしたもの、又
は、アンモニア水等を混合し、沈でんを作ることにより
調製しても良い。さらに、これら全焼成することにより
酸化物に変えても良い。In the present invention, in order to prepare a composition consisting of copper-zinc or copper-chromium oxides, commercially available copper, zinc, or chromium oxides or hydroxides may be used as they are, or the above-mentioned An aqueous solution of a metal compound is mixed with an alkali metal compound, a hydroxide or carbonate of an alkaline earth metal element as a precipitant, either as it is or in an aqueous solution, or with aqueous ammonia, and precipitated. It may be prepared by making. Furthermore, they may be converted into oxides by completely firing them.
具体的には、例えは、銅−クロム系酸化物をhaする方
法としては、下記の方法がある。Specifically, for example, as a method for hazing a copper-chromium oxide, there are the following methods.
(11粉末あるいはペースト状の酸化銅と酸化クロムに
JIII量の水を加え、よく混合した後、乾燥する。(11 Add JIII amount of water to powdered or paste-like copper oxide and chromium oxide, mix well, and then dry.
(2) 硝酸鋼の水浴液VC*クロム酸ソーダ、又は重
クロム酸アンモニウムとアンモニア水との混合水溶液を
加え、よく混合して沈でんを作りた後、洗浄、乾燥し、
焼成する。(2) Nitric acid steel water bath solution VC* Add sodium chromate or a mixed aqueous solution of ammonium dichromate and aqueous ammonia, mix well to form a precipitate, then wash and dry.
Fire.
(3)硝酸鋼及び硝酸クロムの水浴液に水酸化バリウム
の水浴液を加え、よく混合して沈でんを作った後、洗浄
、乾燥し、焼成する。(3) Add the barium hydroxide bath solution to the nitrate steel and chromium nitrate bath solution, mix well to form a precipitate, and then wash, dry, and fire.
又、銅−亜鉛系酸化物の調製法としては、次の方法が一
般に知られている。即ち、硝&銅と硝酸亜鉛の水浴液に
炭酸ソーダ又はアンモニア水の中和剤を加え、沈でん會
作った後、洗浄乾燥し、焼成することにより、得られる
。The following method is generally known as a method for preparing copper-zinc oxides. That is, it is obtained by adding a neutralizing agent such as sodium carbonate or aqueous ammonia to a bath solution of nitrate, copper, and zinc nitrate to form a precipitate, followed by washing, drying, and firing.
以上示したのは一例であって、本発明t%に限定するも
のではない。The above is an example, and the present invention is not limited to t%.
次にチタン及びバナジウムの酸化物全含有させる方法に
ついてであるが、チタンの酸化物としては、アナターゼ
型の結晶形態を持つ酸化チタンが好適に使用できる。ま
た、バナジウム酸化物は、v!O5の形態で酸化チタン
と混合し、例えば、上記銅−クロム系酸化物又は銅−亜
鉛系酸化物と混合しても良く、あるいはこれら酸化物の
沈でんを作る踪に、酸化チタン、バナジウム酸化物金子
め混合し、沈でん生成と同時に混合するか、又はバナジ
ウム化合物の水溶液を銅又はクロム化合物あるいは亜鉛
化合物の水浴液と混合し、沈でん剤で共沈させる方法な
どが利用できる。Next, regarding the method of containing all the oxides of titanium and vanadium, titanium oxide having an anatase crystal form can be suitably used as the titanium oxide. Moreover, vanadium oxide is v! It may be mixed with titanium oxide in the form of O5, for example, with the copper-chromium oxide or copper-zinc oxide, or to form a precipitate of these oxides, titanium oxide, vanadium oxide, etc. Methods that can be used include mixing metallurgical ingredients and mixing simultaneously with the formation of precipitate, or mixing an aqueous solution of a vanadium compound with a water bath solution of a copper or chromium compound or zinc compound and co-precipitating with a precipitating agent.
このようにして得られた組成物にニッケルを担持する方
法は、従来がら用いられている方法で良く、例えば、ニ
ッケルの硝酸塩水溶液に担体としての組成物を浸油後、
焼成することによりニッケルの酸化物(Nip)が担持
きれた触媒が、又、それ全水素還元処理すれば、金属ニ
ッケルが担持された触媒が得られる。The method of supporting nickel on the composition obtained in this way may be any conventional method. For example, after soaking the composition as a carrier in an aqueous solution of nickel nitrate,
If the catalyst on which nickel oxide (Nip) is completely supported by firing is subjected to a complete hydrogen reduction treatment, a catalyst on which metallic nickel is supported can be obtained.
本発明の触媒の組成としては、次の範囲が好ましい。The composition of the catalyst of the present invention is preferably in the following range.
まず、OuO10r20gの割合は、it比で80/2
030 / 70の範囲が好ましい。又、OuO/ZΩ
0の割合は、xi比で70150〜50/70の範囲、
好ましくは60 / 40〜40 / 60の範囲であ
る。First, the ratio of OuO10r20g is 80/2 in terms of IT ratio.
A range of 0.030/70 is preferred. Also, OuO/ZΩ
The ratio of 0 is in the range of 70150 to 50/70 in xi ratio,
Preferably it is in the range of 60/40 to 40/60.
次に、酸化チタン及びバナジウム酸化物の含有割合は、
OuOの割合に対し、T10≧+V、Osの合計で10
〜50%(重量比)、このうち、TIOハ05の比率は
3/1〜1/2(重量比)の範囲が好ましい。又、これ
ら組成物に担持する]1jlOの割合は、0.1〜10
fL′Ji:%の範囲が適当でるり、特に[L5〜5]
i1t%の範囲が好ましい。Next, the content ratio of titanium oxide and vanadium oxide is
For the proportion of OuO, T10≧+V, the total of Os is 10
~50% (weight ratio), of which the ratio of TIO Ha05 is preferably in the range of 3/1 to 1/2 (weight ratio). In addition, the ratio of 1jlO supported in these compositions is 0.1 to 10
fL'Ji: % range is suitable, especially [L5~5]
A range of i1t% is preferred.
バナジウム酸化物は、酸素供与物質として知られたTl
O2との組合せによりその作用を発揮する。従って、■
冨Os 単独では、効果が少ない。Vanadium oxide is Tl, which is known as an oxygen donor.
It exerts its effect in combination with O2. Therefore, ■
TomiOs alone has little effect.
又、T10!+ V、Osの割合が多くなると活性が低
下し、メタンなど副生物が多くなるため、好ましくない
。Also, T10! + If the ratio of V and Os increases, the activity will decrease and by-products such as methane will increase, which is not preferable.
以上のようにして得られた触媒は、メタノール全水素と
一酸化炭素を含むガスに改質する反応に対し、550℃
という低温で^活性を示し、さらに改質ガス中の水素と
一酸化炭素の割合が90%以上という非電に選択性に優
れた触媒活性を示すものである。The catalyst obtained as described above can be used at 550°C for the reaction of reforming methanol into a gas containing total hydrogen and carbon monoxide.
It exhibits activity at such a low temperature, and also exhibits catalytic activity with excellent selectivity toward non-electrolysis, with the ratio of hydrogen and carbon monoxide in the reformed gas being 90% or more.
以下、実施例により、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.
実施例1
重クロム酸アンモン252.1 f (1モル)全1t
の水に溶解し、アンモニア水(2818液)500cc
f加え、これに酸化チタン(アナターゼ型)の粉末6.
5g及び三塩化バナジウム5、6 f ’i添加し、次
いで、硝酸銅結晶48S22(2モル)’1iltの水
に溶解したものを攪拌しながら滴下した。生成した沈で
ん混合物を水洗、乾燥し、450℃で3時間焼成して、
OuO二 0rlO,:TiO,:V2O3,= 4
9 : 5 1 : 6.5 : 3. 5(重量比)
の組成からなる混合組成物を得た。Example 1 Ammonium dichromate 252.1 f (1 mol) total 1 t
Dissolve in water and add 500cc of ammonia water (2818 liquid)
f and titanium oxide (anatase type) powder 6.
5 g of vanadium trichloride and 5,6 f'i of vanadium trichloride were added, and then copper nitrate crystal 48S22 (2 mol) dissolved in 1 lt of water was added dropwise with stirring. The resulting precipitate mixture was washed with water, dried, and calcined at 450°C for 3 hours.
OuO2 0rlO, :TiO, :V2O3, = 4
9: 5 1: 6.5: 3. 5 (weight ratio)
A mixed composition having the following composition was obtained.
この組成物全微粉砕し1.sl+llの円柱状に打錠成
形し、これをニッケルの硝酸塩水溶液に浸漬し、NIO
担持濃度が1重量%になるよう担持した触媒1會調製し
た。The entire composition was pulverized.1. It was formed into a cylindrical tablet of sl+ll, immersed in an aqueous solution of nickel nitrate, and
One batch of supported catalyst was prepared so that the supported concentration was 1% by weight.
」コ幻1
従来知られている銅−クロム酸化物系触媒金、次のよう
に調製した。"Kogen 1 A conventionally known copper-chromium oxide catalyst gold was prepared as follows.
重クロム酸アンモン252.12(1モル)ヲ1tの水
に溶解し、アンモニア水(28%水溶液)500cc
t−加え、これに硝酸銅結晶485.2g(2モル)1
tの水に溶解したものを攪拌しながら滴下した。生成し
た沈でん全水洗、乾燥し、450℃でS時間焼成したの
ち、実施例1と同様の5101の円柱状に打錠成形して
、比較触媒を調製した。Dissolve 252.12 (1 mol) of ammonium dichromate in 1 ton of water and make 500 cc of ammonia water (28% aqueous solution).
t-added to this, 485.2 g (2 mol) of copper nitrate crystals 1
t dissolved in water was added dropwise while stirring. The resulting precipitate was completely washed with water, dried, and calcined at 450° C. for S hours, and then compressed into 5101 cylindrical tablets similar to those in Example 1 to prepare a comparative catalyst.
実施例2
実施例1で得た紋媒1及び比較例で調製した触媒を各々
10mφの反応器(8US 504 )に5 cc 充
填し、予め水素気流中(水素濃度=1%/N意 バラン
ス)、150℃から250℃に昇温しながら水素還元処
理した。その後、反応温度550℃、大気圧下でメタノ
ール(純度=99.9%以上) f LH8V 2 h
r−”で供給し、触媒の活性及び寿命試験を行なった。Example 2 5 cc of each of the catalyst 1 obtained in Example 1 and the catalyst prepared in Comparative Example were charged into a 10 mφ reactor (8US 504), and placed in advance in a hydrogen stream (hydrogen concentration = 1%/N balance). , hydrogen reduction treatment was carried out while raising the temperature from 150°C to 250°C. After that, methanol (purity = 99.9% or more) f LH8V 2 h was added at a reaction temperature of 550°C and under atmospheric pressure.
The catalyst was tested for activity and life.
その結果を、第1図に示す。図中、曲線(b)は本発明
触媒(触媒1)の性能を示し、曲線(a)は比較触媒の
性能を示す。The results are shown in FIG. In the figure, curve (b) shows the performance of the catalyst of the present invention (catalyst 1), and curve (a) shows the performance of the comparative catalyst.
なお、メタノール反応率90%以上のところでの分解ガ
スの組tct=分析したところ、本発明触媒(触媒1)
全使用した場合は、モル基準でH,65,8チ、CO5
五1%、co、05%、0H4El 6チであった。Incidentally, when analyzed, the set tct of cracked gas at a methanol reaction rate of 90% or more was found to be the catalyst of the present invention (catalyst 1).
If all used, on a molar basis H, 65,8 H, CO5
51%, co, 05%, 0H4El 6chi.
実施例S
硝酸亜鉛(6水塩)269fと硝酸第二銅(3水塩)4
55ft−水2tK溶解し、これに酸化チタン(アナタ
ーゼ型)粉末&5F及び三塩化バナジウムa6f’i添
加し、攪拌しながら、炭酸ナトリウムの1モル溶液を滴
下した。生成した沈でん混合物全水洗、乾燥し、30
’0℃で6時間焼成した。この組成物全実施例1と同様
の方法で成形し、ニッケルの硝酸塩水溶液に浸漬してN
10担持濃度が1重量%になるよう担持した触媒2全調
製した。Example S Zinc nitrate (hexahydrate) 269f and cupric nitrate (trihydrate) 4
55ft - 2tK of water was dissolved, titanium oxide (anatase type) powder &5F and vanadium trichloride a6f'i were added thereto, and a 1 molar solution of sodium carbonate was added dropwise while stirring. The resulting precipitate mixture was washed with water and dried for 30 minutes.
It was baked at 0°C for 6 hours. This composition was molded in the same manner as in Example 1, and immersed in an aqueous solution of nickel nitrate.
10 All catalysts 2 were prepared so that the supported concentration was 1% by weight.
この触媒の性能評価全反応温度1300℃にした以外は
実施例2と同様の方法で評価し、第2図に示す結果全行
た。図中、曲線(C)はOuO−ZnO系の触媒の性能
を示し、曲線(d)は、本実施例でv4製した触媒2の
性能を示す。Performance evaluation of this catalyst Evaluation was carried out in the same manner as in Example 2 except that the total reaction temperature was 1300° C., and the results are shown in FIG. 2. In the figure, the curve (C) shows the performance of the OuO-ZnO-based catalyst, and the curve (d) shows the performance of the catalyst 2 manufactured by v4 in this example.
実施例4
実施例1と同じ方法で、OuO: cr2o3: Ti
01 二■205の割合が第1表に示すような組成とな
るよう各々調製し、これヲ5WII+1の内柱状に打錠
成形したのち、ニッケルの硝酸塩水溶液に浸漬し、Ni
O担持濃贋が1重量%になるよう担持した触媒3〜11
を調製した。Example 4 In the same manner as in Example 1, OuO: cr2o3: Ti
01, 2, 2, and 205 were each prepared to have a composition as shown in Table 1, which was then compressed into a 5WII+1 inner column shape, and then immersed in a nickel nitrate aqueous solution to form a Ni
Catalysts 3 to 11 supported so that the concentration of O supported was 1% by weight
was prepared.
これらの触媒について、実施例2の同様の条件で活性評
価、寿命試験を行なった。その結果を第1表に示す。ま
た、比較V/l、フ、担体としての組成物に、TIO,
及びv*Osr含有しない触媒12及びTIO,又はv
*0sfi−各々単独で含有させた触媒13.14を調
製し、実施例2と同様の性能評価を行なった。その結果
も第1表に示す。These catalysts were subjected to activity evaluation and life test under the same conditions as in Example 2. The results are shown in Table 1. In addition, the composition as a carrier for comparison V/l, TIO,
and v*Osr-free catalyst 12 and TIO, or v
*0sfi-Catalysts 13 and 14 containing each of them alone were prepared, and the same performance evaluation as in Example 2 was performed. The results are also shown in Table 1.
第 1 表
り:耐久時間は、メタノール反応率が90%以下となる
までの持続時間を表わしたものである。なお、触媒5,
7.11については、メタノール反応率が80%以下と
なるまでの耐久時間を示した。Table 1: Durability time represents the duration until the methanol reaction rate becomes 90% or less. In addition, the catalyst 5,
Regarding No. 7.11, the durability time until the methanol reaction rate became 80% or less was shown.
実施例5
実施例6と同じ方法で、OuO: ZnO: TiCl
2 :V、O,の割合が第2表に示すような組成となる
よう各々調製し、これ?実施例1と同様な方法で成形後
、NIO担持a度が、1重量%になるよう担持した触媒
15〜21を調製した。これらの触媒の性能評11il
lヲ、反応温度金500℃VCL、た以外は実施例2と
同じ条件で行なった。その結果を第2表に示す。Example 5 In the same manner as in Example 6, OuO: ZnO: TiCl
2: Each composition was prepared so that the proportions of V and O were as shown in Table 2, and this? After molding in the same manner as in Example 1, catalysts 15 to 21 were prepared in which NIO was supported at a degree of 1% by weight. Performance evaluation of these catalysts 11il
The reaction was carried out under the same conditions as in Example 2, except that the reaction temperature was 500°C (VCL). The results are shown in Table 2.
第2表
実施例6
硝酸銅(3水塩) 101.29及び硝酸クロム(9水
塩) 175.2 fを1tの水に浴解し、これlc5
塩化バナジウム5.69 f加え、更に酸化チタン粉末
(アナターゼ型)6.5ff加えて、十分攪拌した。こ
の水浴液にi (mol/l)の炭酸ナトリウム水浴液
全力口え、沈でん全生成させた後、洗浄し、乾燥、焼成
後、5朋円柱状に打錠成形した。これ全ニッケルの硝酸
塩水溶液に浸漬し、NiO担持濃度が1M量チになるよ
う担持した触媒22を調製した。この触媒22全実施例
2と同様の条件で寿命試験全行なったところ、第1図の
曲線(1))とほぼ同じ性能を示した。Table 2 Example 6 Copper nitrate (trihydrate) 101.29 and chromium nitrate (nase hydrate) 175.2 f were dissolved in 1 t of water, and this lc5
5.69 f of vanadium chloride was added, and further 6.5 ff of titanium oxide powder (anatase type) was added, followed by thorough stirring. I (mol/l) of a sodium carbonate water bath solution was added to this water bath solution to completely form a precipitate, and then washed, dried, fired, and then compressed into 5-diameter cylindrical tablets. This was immersed in a total nickel nitrate aqueous solution to prepare a catalyst 22 in which NiO was supported at a concentration of 1M. When this catalyst 22 was subjected to a life test under the same conditions as in Example 2, it showed almost the same performance as curve (1) in FIG. 1.
実施例2
実施例1及び実施例3で調製した触媒のうち、担体とし
て使用した組成物(C!uo−OrzO3−TiOl
−VxOs) k用いて、NiOの担持濃#を変化きせ
、触媒23〜28を調製した。これらの触媒について、
実施例2と同じ方法で性能評価を行なった。この結果を
第3表に示す。Example 2 Among the catalysts prepared in Example 1 and Example 3, the composition used as a carrier (C!uo-OrzO3-TiOl
Catalysts 23 to 28 were prepared by varying the loading concentration of NiO using -VxOs)k. Regarding these catalysts,
Performance evaluation was performed in the same manner as in Example 2. The results are shown in Table 3.
以上、実施例で示した如く、本発明における触媒は、メ
タノール全水素と一酸化炭素を含むガスに改質する反応
に対し、低温で高活性、高選択性かつ長寿命の触媒であ
る。父、上記実施例においては、メタノール単独につい
て記載したが、水蒸気、空気などを含治したガスとの共
存下でメタノール改質反応全行なわせても何ら支障はな
い。As shown in the examples above, the catalyst of the present invention has high activity, high selectivity, and long life at low temperatures for the reaction of reforming methanol into a gas containing total hydrogen and carbon monoxide. In the above examples, methanol alone was described, but there is no problem in carrying out the entire methanol reforming reaction in the coexistence of a gas containing water vapor, air, etc.
第1図及び第2図は、本発明触媒と従来触媒とのメタノ
ール反応における耐久時間の比較を示す。
復代理人 内 1) 明
復代理人 萩 原 亮 −
88S 写 8
″)<艷\−吠ビ檀址 X
\h\−吠匪四+4 ベFIG. 1 and FIG. 2 show a comparison of durability times in methanol reaction between the catalyst of the present invention and a conventional catalyst. Sub-agent 1) Meifu agent Ryo Hagiwara - 88S photo 8'')
Claims (1)
の酸化物からなる組成物に、ニッケルを担持させたこと
を特徴とする、メタノール改質用触媒。A methanol reforming catalyst characterized in that nickel is supported on a composition consisting of a copper-zinc or steel-chromium oxide and an oxide of titanium and vanadium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3724284A JPS60183038A (en) | 1984-03-01 | 1984-03-01 | Methanol reforming catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3724284A JPS60183038A (en) | 1984-03-01 | 1984-03-01 | Methanol reforming catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60183038A true JPS60183038A (en) | 1985-09-18 |
Family
ID=12492146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3724284A Pending JPS60183038A (en) | 1984-03-01 | 1984-03-01 | Methanol reforming catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60183038A (en) |
-
1984
- 1984-03-01 JP JP3724284A patent/JPS60183038A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6051163A (en) | Catalyst for steam-reforming methanol | |
EP0406896B1 (en) | Catalyst for reforming hydrocarbon with steam | |
US7906098B2 (en) | Method for making hydrogen using a gold containing water-gas shift catalyst | |
JPS60147244A (en) | Modified copper and zinc-containing catalyst and production of methanol using said catalyst | |
JPH0768171A (en) | Catalyst for reduction reaction of carbon dioxide | |
CN113226540B (en) | Catalyst for olefin production comprising oxygen carrier material and dehydrogenation catalyst | |
JPH09131533A (en) | Catalyst composition for production of synthetic gas and production of synthetic gas using same | |
KR20140020492A (en) | Nickel catalysts for reforming hydrocarbons | |
US6238640B1 (en) | Conversion method of carbon monoxide and catalyst | |
KR100976789B1 (en) | Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same | |
JP3328845B2 (en) | Hydrogen production method and catalyst used for it | |
JP4505126B2 (en) | Reforming catalyst manufacturing method | |
JP2004209408A (en) | Catalyst for reforming hydrocarbon and method for reforming hydrocarbon | |
JPH0977501A (en) | Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials | |
JP2535760B2 (en) | Method for producing catalyst for steam reforming of methanol | |
JPS5870839A (en) | Catalyst for steam reforming of methanol | |
JPS60183038A (en) | Methanol reforming catalyst | |
JP2002126528A (en) | Method for preparing reforming catalyst | |
KR101400889B1 (en) | Carbonhydrate reforming catalyst and the method of preparation thereof | |
JPH0371174B2 (en) | ||
JP5207755B2 (en) | Method for producing hydrocarbon reforming catalyst | |
JPS60110337A (en) | Catalyst for preparing hydrogen rich gas | |
KR100395095B1 (en) | A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst | |
JPS59131501A (en) | Modification of methanol with steam | |
JPS60122038A (en) | Catalyst for reforming methanol |