JPS60182173A - Voltage impressing circuit - Google Patents

Voltage impressing circuit

Info

Publication number
JPS60182173A
JPS60182173A JP59036024A JP3602484A JPS60182173A JP S60182173 A JPS60182173 A JP S60182173A JP 59036024 A JP59036024 A JP 59036024A JP 3602484 A JP3602484 A JP 3602484A JP S60182173 A JPS60182173 A JP S60182173A
Authority
JP
Japan
Prior art keywords
voltage
node
power supply
nodes
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59036024A
Other languages
Japanese (ja)
Other versions
JPH069226B2 (en
Inventor
Takaaki Hagiwara
萩原 隆旦
Yuji Tanida
谷田 雄二
Shinichi Minami
真一 南
Shinji Nabeya
鍋谷 慎二
Ken Uchida
憲 内田
Norimasa Yasui
安井 徳政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3602484A priority Critical patent/JPH069226B2/en
Publication of JPS60182173A publication Critical patent/JPS60182173A/en
Publication of JPH069226B2 publication Critical patent/JPH069226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Abstract

PURPOSE:To impress voltage without erroneous writing or erasing by a method wherein, after impressing a specified node with power supply voltage, multiple nodes are impressed with high voltage in a 5V single power supply EEPROM. CONSTITUTION:A voltage impressing circuit is composed by means of connecting an MNOS element comprising a gate 3, a drain 5 and a substrate 7 to a high voltage decoder 102 which grounds or boosts voltage up to high voltage VP (voltage of node 110) utilizing a transistor 103 impressed with power supply voltage, a boosting circuit 101 and input signals B-D. In case of writing in, firstly impress an input signal A with high voltage (VCC) (this may be performed after input signal C) and impress another input signal C with high voltage and then impress the other signal B with high voltage. The other input signal D shall be constantly grounded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、EEPROMにおいて誤書込みゃ誤消去を防
止するための電圧印加手段に関するものであり、特に5
v単−電源方式等のEKPROMにおいて好適な電圧印
加手段を提供する回路に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a voltage application means for preventing erroneous writing and erasing in an EEPROM.
The present invention relates to a circuit that provides suitable voltage application means in an EKPROM such as a single-voltage power supply system.

〔発明の背景〕[Background of the invention]

gEPROMにおいては、薔込みゃ消去を行なう際に高
い電圧を印加するが、その際誤書込みゃ誤消去を防止す
るために一定の順序で電圧を印加しなければならない。
In a gEPROM, a high voltage is applied when erasing data, but the voltages must be applied in a certain order to prevent erroneous writing or erasing.

これを、NMO8(金属−窒化膜一酸化膜一半導体)素
子をメモリ素子として用いる場合を例にとって説明する
が、趣旨は他の型の素子、例えば浮遊ゲート型素子を用
いる場合でも同様である。
This will be explained by taking as an example the case where an NMO8 (metal-nitride-monoxide-semiconductor) element is used as a memory element, but the gist is the same even when using other types of elements, such as floating gate type elements.

第1図にMNO8素子の断面図を示す。本素子はMOS
のゲート酸化膜をシリコン窒化膜1(例えば厚さ300
A)と極めて博いSiO□2(例えば厚さ20人)に置
換えた構造をしており、以後これを第2図に示す記号で
衣わず。第1図、第2図における3はゲート、4はn型
ノース、5はn型ドレイン、6はn型基板、7はha 
N OS形成領域に設けたp型ウェルである。
FIG. 1 shows a cross-sectional view of the MNO8 element. This element is a MOS
The gate oxide film is replaced with a silicon nitride film 1 (for example, 300 mm
It has a structure in which A) is replaced with extremely thick SiO□2 (for example, 20 layers thick), and this will be referred to by the symbol shown in Fig. 2 from now on. In Figures 1 and 2, 3 is the gate, 4 is the n-type north, 5 is the n-type drain, 6 is the n-type substrate, and 7 is the ha
This is a p-type well provided in the NOS formation region.

本素子に書込みや消去を行なう場合の電圧印加方法を4
3図に示す。書込みビットには第3図(a)に示すよう
に、ゲート3に高い電圧■ (例えば15v)を印加し
、ソース4、ドレイン5、ウェル7はいずれも接地する
。このビットとゲート電極を共有し、かつ記憶情報を変
更したくないビットに対しては、第3図(b)に示す様
にドレイン5はフローティングとし、ソース4に■、と
等しいか或いは■、よりも高い電圧■1を印加する。 
以降説明の便宜のため、■、は■、と同一であると仮定
するが、本発明の趣旨は■、がV、と異なっていても全
く同様である。
There are 4 ways to apply voltage when writing or erasing to this device.
Shown in Figure 3. For the write bit, as shown in FIG. 3(a), a high voltage (for example, 15 V) is applied to the gate 3, and the source 4, drain 5, and well 7 are all grounded. For a bit that shares a gate electrode with this bit and whose stored information is not desired to be changed, the drain 5 should be floating as shown in FIG. 3(b), and the source 4 should be equal to or Apply a voltage (1) higher than that.
Hereinafter, for convenience of explanation, it is assumed that ■ is the same as ■, but the gist of the present invention is exactly the same even if ■ is different from V.

一方消去時には第3図(C1の様に、ウェルに高電圧V
を印加し、ゲートは接地する。この時ドレインはフロー
ティングとし、ソースには、ウェル−ソース間の接合が
順方向となって電流が流れることのない様V、を印加す
る。さらにこのビットとウェルを共有し、かつ消去を行
なわないビットについては、#!3図に示す様にゲート
にもVpを印加する。
On the other hand, during erasing, as shown in Figure 3 (C1), a high voltage V is applied to the well.
is applied and the gate is grounded. At this time, the drain is made floating, and V is applied to the source so that the junction between the well and the source is in the forward direction and no current flows. Furthermore, for bits that share a well with this bit and are not erased, #! As shown in FIG. 3, Vp is also applied to the gate.

以上の様な電圧印加により本素子の書込み消去がなされ
る訳であるが、これを5■琳−電源のEgPROMにお
いて実現する際には、茨の様な問題がある。それは% 
V、やvlが同一基板上に設けられた昇圧回路において
発生されるために、各電極にV、やvlを印加する前に
一旦゛峨圧電圧と同じか或いは電源電圧よりも低い所定
の電圧を印加する必責のある事である。
Writing and erasing of this element is performed by applying the voltage as described above, but there are many problems when realizing this in an EgPROM with a 5-inch power supply. it is%
Since V and vl are generated in a booster circuit provided on the same substrate, before applying V and vl to each electrode, a predetermined voltage that is equal to the boost voltage or lower than the power supply voltage is applied. It is necessary to apply this.

5v単一電源EEPROM等において用いられる電圧印
加回路の例を第4図に示す。図において101は同一基
板上に設けられた昇圧回路で、信号Aによって制御され
、昇圧時にはノード110、 に高電圧■ を発生する
。102は高電圧デコーダで、入力信号(本図において
B、 C%i)等の記号で示す)がHigb(通常電源
電圧VcCに等しく、以降そのままに仮定する)の時は
、ノード110の電圧■2をそのまま出力ノード(3,
4,7)に通過させ、入力信号がLow (接地)の場
合は、出力ノードも接地する。高電圧デコーダ102の
回路例を第5図に示すが、本回路はトランジスタ120
.121とキャパシタ122及びクロック信号123よ
りなる。
FIG. 4 shows an example of a voltage application circuit used in a 5V single power supply EEPROM or the like. In the figure, reference numeral 101 denotes a booster circuit provided on the same substrate, which is controlled by signal A, and generates a high voltage (2) at node 110 during boosting. 102 is a high voltage decoder, and when the input signal (indicated by symbols such as B and C%i in this figure) is Higb (equal to the normal power supply voltage Vcc, which will be assumed as it is from now on), the voltage at the node 110 is 2 as is, output node (3,
4, 7), and if the input signal is Low (grounded), the output node is also grounded. An example of the circuit of the high voltage decoder 102 is shown in FIG.
.. 121, a capacitor 122, and a clock signal 123.

本回路を用いる場合、入力ノード124にまずHigh
信号を加え、出力ノード125をVc cに近い電圧V
lにまで上昇させる。ノード125がVccに近い電圧
V1に上昇すると、 トランジスタ103がカットオフ
となり、高電圧デコーダ102が働らき始めて出力ノー
ド125の電位はさらに上昇して最終的に高電圧デコー
ダの入力ノード126の電圧(即ら昇圧回路出力電圧V
 )と同じ電圧にまで上昇する。
When using this circuit, the input node 124 is first set to High.
signal and pulls the output node 125 to a voltage close to Vc c
Increase the temperature to 1. When the voltage at the node 125 rises to a voltage V1 close to Vcc, the transistor 103 is cut off, the high voltage decoder 102 starts working, and the potential at the output node 125 further increases until the voltage at the input node 126 of the high voltage decoder ( That is, the booster circuit output voltage V
) rises to the same voltage as

ノード125がVlから■、にまで上昇する時間は、通
常昇圧回路101の昇圧時間にほぼ等しく、数十μsな
いし数百μs程度であり、従って第4図におけるメモリ
素子の各ノード(3,4,7)はほぼ等しい上昇速度を
有するが、ノード125を■、にする時間は、入力ノー
ド124に印加する信号の立上り時間や、出力ノード1
25の浮遊容量等できまるため、その出力ノードがメモ
リ素子のゲートに接続されている場合、ソースに接続さ
れている場合、ウェルに接続されている場合で異なる。
The time it takes for the voltage of the node 125 to rise from Vl to V is usually approximately equal to the boosting time of the booster circuit 101, which is about several tens of μs to several hundred μs. , 7) have almost the same rising speed, but the time to make the node 125 change to 1 depends on the rise time of the signal applied to the input node 124 and the output node 1
Since it is determined by the stray capacitance of 25, etc., it differs depending on whether the output node is connected to the gate, source, or well of the memory element.

従って入力ノード124に信号を印加するタイミングに
よっては、出力ノードに接続されているメモリ素子に瞬
間的に誤書込みや誤消去を起させる様な電圧が印加され
る恐れがある。
Therefore, depending on the timing of applying a signal to the input node 124, there is a possibility that a voltage that instantaneously causes erroneous writing or erasing to occur in the memory element connected to the output node may be applied.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、5V単−電源方式等の同一基板上に昇
圧回路を有するEEPROMにおいて、上記の欠点をな
くシ、誤読込みや誤消去を起さない電圧印加方法を提供
することにある。
An object of the present invention is to provide a voltage application method that eliminates the above-mentioned drawbacks and does not cause erroneous reading or erasing in an EEPROM having a booster circuit on the same substrate, such as a 5V single power supply type EEPROM.

〔発明の概責〕[Overview of the invention]

本発明の趣旨は、高電圧を印加すべき複数のノードに対
して、所定のタイミングをもって電源電圧Vc cに等
しいか、又はそれに近くてそれよりも低い電圧v1を印
加し、しかる後に該複数ノードの電圧をほぼ同時に所定
の高電圧V に引き上げる事にある。
The gist of the present invention is to apply a voltage v1 equal to, or close to and lower than the power supply voltage Vcc, at a predetermined timing to a plurality of nodes to which a high voltage is to be applied, and then to The purpose is to raise the voltages of the two voltages to a predetermined high voltage V almost simultaneously.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第6図に示す。前と同様、MNO8素
子の場合を例にとって説明する。本実施例は、所定のビ
ットに書込みを行なう場合にそれとゲートを共有し、か
つ薔込みを行ないたくないビットに対する電圧印加タイ
ミングを示したものである。
An embodiment of the invention is shown in FIG. As before, the case of 8 MNO elements will be explained as an example. This embodiment shows the voltage application timing for a bit that shares a gate with a predetermined bit when writing is to be performed and that is not desired to be programmed.

本発明の責旨は、書込み開始時に入力信号BをHigh
 (通常vce)とする前に、入力信号CをHighと
する点にある。入力信号りは、書込みを行なう場合は常
に接地に保持する。入力信号Aは昇圧回路を起動する信
号であるので、B、Cとのタイミングはどういう関係に
あっても構わないが、この例ではBがHighになる前
にHighとなることとした(これを線151で示す)
。この場合、第4図におけるノード110,3,4.7
における電圧波形を第7図の110′、3′、4′、7
′に示す。
The purpose of the present invention is to set the input signal B to High at the start of writing.
(usually vce), the input signal C is set to High. The input signal is always held at ground when writing. Input signal A is a signal that starts the booster circuit, so the timing relationship with B and C does not matter, but in this example, it is set to go high before B goes high (this (shown by line 151)
. In this case, nodes 110, 3, 4.7 in FIG.
The voltage waveforms at 110', 3', 4', and 7 in FIG.
′ is shown.

まずノード110の電圧が上り始め、次いでソースノー
ド4がve、、またはそれに近い電圧v1 に上昇し、
最後にゲートノード3がVlに上昇し、その後3つのノ
ードは電圧差がほぼゼロとなって一緒にV まで上昇す
る。書込み終了時は、開始時とは逆の順序で、いずれの
ノードも接地に戻す。
First, the voltage at node 110 begins to rise, then source node 4 rises to ve, or voltage v1 close to it,
Finally, gate node 3 rises to Vl, after which the three nodes rise together to V2 with almost zero voltage difference. When writing ends, all nodes are returned to ground in the reverse order from when writing started.

本実施例のごとき電圧印加方法をとれば、いずれの時点
においてもメモリ素子は第3図(alに示すような書込
み状態に相当する電圧印加条件におかaる事はなく、従
って誤書込みは起こらないなお、前にも述べた様に本図
は4「込みを行なうべきビットとゲートを共有し、かつ
書込みを行ないたくないビットに対する電圧波形を描い
たものである。書込みを行なうべきピッHCおいては、
メモリ素子のソース線を常に接地にしておく、従って第
6図においては波形Cが、又第7図においては波形4′
が接地となる。
If the voltage application method of this embodiment is used, the memory element will not be subject to the voltage application condition corresponding to the write state as shown in FIG. As mentioned earlier, this figure depicts the voltage waveform for the bit that shares the gate with the bit to which writing should be performed and which does not want to be written. Then,
The source line of the memory element is always grounded, so waveform C in FIG. 6 and waveform 4' in FIG.
becomes ground.

第8図には、入力信号Aが、第6図の線152の様に入
力信号B%Cより後から印加された場合の電圧波形を示
す。この場合、ノード4及び3にvec又はそれに近い
電圧V1が印加された後に昇圧回路が起動されて、ノー
ド110が一ヒ昇し、ノード4及び3は同時に高電圧V
 にまで昇圧される。
FIG. 8 shows a voltage waveform when input signal A is applied after input signal B%C as shown by line 152 in FIG. In this case, after a voltage V1 equal to or close to vec is applied to nodes 4 and 3, the booster circuit is activated and node 110 rises, and nodes 4 and 3 are simultaneously applied with a high voltage V1.
The pressure is increased to .

第9図には、本発明の第2の実施列を示す。本実施例は
、消去時の′電圧印加波形であって、消去したいビット
とウェルを共有し、かつ消去したくないビットに対する
ものを示した。
FIG. 9 shows a second implementation of the invention. In this embodiment, the voltage application waveform during erasing is shown for a bit that shares a well with a bit to be erased and that is not to be erased.

幽去を行なう際には、ます入力信号Cを)(i ghと
するが、入力信号A(g4図における昇圧回路101を
起動する信号)が川ghとなるのは書込みの場合と同様
Cより前であっても後であっても構わない。第10図に
は、昇圧回路起動信号Aが最初に印加された場合の47
図におけるノード110.4,3.7の電圧波形をそれ
ぞれ110’。
When writing data, the input signal C is set to (i gh), but the input signal A (the signal that starts the booster circuit 101 in the g4 diagram) becomes the river gh, as in the case of writing. It doesn't matter whether it is before or after. Figure 10 shows 47 when the booster circuit activation signal A is first applied.
The voltage waveforms at nodes 110.4 and 3.7 in the figure are respectively 110'.

4’、3’、7’に示す。110’、4’、3’の電圧
印加順序は前の書込みの場合と同様である。消去時には
、消去信号りを最後に印加する。これにより第10図に
示す様にソース−4′、ゲート3′にvccまたはそれ
より低い電圧V1が印加された後にウェル7にvlが印
加され、その後メート3.4.7がほぼ同時にVにまで
上昇する。降圧時は、ウェル7を最後に、次いでゲート
、ソースの順で接地に戻す。本実施例の様な電圧印加方
法をとれば、いずれの時点においても、メモリ素子は第
3図(alに示す様な書込み状態や、第3図(C)に示
す様な消去状態に相当する電圧印加条件におかれる事は
なく、従って誤書込み、誤消去は起こらない。
4', 3', and 7'. The order of applying voltages 110', 4', and 3' is the same as in the previous writing. When erasing, an erase signal is applied last. As a result, as shown in FIG. 10, after Vcc or a lower voltage V1 is applied to the source 4' and gate 3', Vl is applied to the well 7, and then the mate 3, 4, and 7 are applied to V at almost the same time. rises to. When lowering the voltage, the well 7 is returned to ground last, followed by the gate and then the source. If the voltage application method of this embodiment is used, the memory element at any point in time corresponds to the written state as shown in FIG. 3 (al) or the erased state as shown in FIG. 3(C). It is not subjected to voltage application conditions, so erroneous writing or erasing does not occur.

なお1本図は消去ピットとウェルを共有し、かつ消去を
行なわないピットに対する゛電圧波形を描いたものであ
る。消去を行なうべきピットにおいては、ゲートを常に
接地としておくので、第9図においてはBが、渠10図
においては3′が接地となる。
Note that this figure depicts a voltage waveform for a pit that shares a well with an erased pit and is not erased. In the pit to be erased, the gate is always grounded, so B in FIG. 9 and 3' in FIG. 10 are grounded.

、1g11図には、入力信号Aが、第9図の線152′
の様に入力信号B%C,Dより後に印加された場合の電
圧波形を示す。この場合、ノード4.3及び7に■ee
又はそれに近い電圧v1が印加された後に、昇圧回路が
起動されて、ノード110が上昇し、ノード4.3及び
7は同時に高電圧■にまで昇圧される。
, 1g11, the input signal A is connected to line 152' in FIG.
The voltage waveform when applied after the input signals B%C and D is shown as shown in FIG. In this case, ■ee on nodes 4.3 and 7
After the voltage v1 at or close to the voltage v1 is applied, the booster circuit is activated, the node 110 rises, and the nodes 4.3 and 7 are simultaneously boosted to the high voltage (2).

なお、第1、第2の実施例とも、■1からV、への昇圧
時は、高電圧の印加されるべきノードを同時に上昇させ
るが、降圧時は、vlを印加する順序と逆の順序で降圧
させなければならない。これ。
Note that in both the first and second embodiments, (1) When increasing the voltage from 1 to V, the nodes to which high voltage should be applied are simultaneously increased; however, when decreasing the voltage, the order in which vl is applied is reversed. The pressure must be lowered. this.

は、降田速朋は昇圧速度に比べて非常に速いため(通常
昇圧時間は数十μs、降圧時間は数十nsλマトリック
ス状)こ配列された各メモリ素子に対して、同時に電圧
を降下させる事は、マトリックス内の浮遊容量や寄生抵
抗により発生ずる時間遅れのため困難であり、従って所
定の順序がいかなる場合も逆転する事がない様、十分な
時間遅れをもって順次降圧する必責があるためである。
Since the voltage increase speed is very fast compared to the voltage increase speed (normally, the voltage increase time is several tens of μs and the voltage decrease time is several tens of ns in a λ matrix), the voltage is simultaneously decreased for each memory element arranged in this way. This is difficult due to the time delay caused by stray capacitance and parasitic resistance in the matrix, and therefore it is necessary to sequentially step down the voltage with a sufficient time delay so that the predetermined order will not be reversed in any case. It is.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、本発明によれば、5V単一・電源
EEPROM等において誤書込みや誤消去の起きない電
圧印加方法を提供できる。
As described above, according to the present invention, it is possible to provide a voltage application method that does not cause erroneous writing or erasing in a 5V single power supply EEPROM or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMNO8素子の断面図、第2図はその略記号を
示す図、第3図は同素子に対する′電圧印加方法を示す
図、第4図、第5図は同素子に対する′屯田印加回路を
示す図、第6図ないし第11図は、本発明における電圧
印加方法の実施例を示す図である。 3:ゲート 4:ソース 5ニドレイン 7:素子の設けられる基体 才1図 片2図 才3図 (Q) (b) (C) (d) オフ0 ! 千8図 斗9図 葎10口 矛11図 第1頁の続き @発明者 鍋釜 慎二 小平重上A @発 明 者 内 1) 憲 小3ト @発明者 安井 徳政 小平重上A
Figure 1 is a cross-sectional view of the MNO8 element, Figure 2 is a diagram showing its abbreviations, Figure 3 is a diagram showing the voltage application method to the element, and Figures 4 and 5 are the voltage application method to the element. The circuit diagrams of FIGS. 6 to 11 are diagrams showing embodiments of the voltage application method according to the present invention. 3: Gate 4: Source 5 Drain 7: Substrate on which the element is provided Figure 1 Figure 2 Figure 3 Figure 3 (Q) (b) (C) (d) Off 0! Continuation of page 1 of 1,8 drawings, 9 drawings, 10 drawings, 11 drawings @ Inventor Shinji Nabekama Shigegami Kodaira A @ Inventor 1) Ken 3rd grade @ Inventor Norimasa Yasui Shigegami Kodaira A

Claims (1)

【特許請求の範囲】 1、集積回路の内部にあって、電源電圧よりも高い第1
の電圧を発生する手段を有し、該第1の電圧を印加すべ
きノードに対して、まず電源電圧と等しいか或いは電源
電圧よりも低い第2の電圧を印加し、しかる後に第1の
電圧を印加する手段を有することを特徴とする電圧印加
回路。 2、上記電源電圧よりも高い電圧を印加すべきノードを
複数個有し、該複数個のノードには互いに等しいか、或
いは異った電源電圧よりも高い電圧を印加する手段を有
することを特徴とする特許請求の範囲第1項記載の電圧
印加回路。 3、上記複数個のノードに、電源電圧よりも低い第2の
電圧を印加するにあたり、所定の時間遅れをもって順次
印加する手段を有する事を特徴とする特許請求の範囲第
2項記載の電圧印加回路。 4、前記電源′成田よりも高い電圧は、同一基板上に設
けられた高電圧発生回路から供給されている事を特徴と
する特許請求の範囲第1項、第2項又は第3項記載の電
圧印加回路。 5、前記複数個のノードは不揮発性メモリ素子のゲート
及びノースであり、上記所定の時間遅れは、最初にソー
スノードが、次にゲートノードが上昇するように設定さ
れている事を特徴とする特許請求の範囲第4項記載の電
圧印加回路。 6、前記複数個のノードは不揮発性メモリ素子のゲート
、ソース及びウェル又は基板ノードであり、上記所定の
時間遅れは、最初にソースノードが、次にゲートノード
が、最後にウェル又は基板ノードが上昇する様に設定さ
れている事を特徴とする特許請求の範囲第4項記載の電
圧印加回路。
[Claims] 1. A first voltage source located inside the integrated circuit and higher than the power supply voltage.
A second voltage equal to or lower than the power supply voltage is first applied to the node to which the first voltage is applied, and then the first voltage is applied to the node to which the first voltage is applied. A voltage application circuit characterized by having means for applying. 2. It has a plurality of nodes to which a voltage higher than the power supply voltage is applied, and has means for applying a voltage higher than the power supply voltage that is equal to or different from each other to the plurality of nodes. A voltage application circuit according to claim 1. 3. Voltage application according to claim 2, characterized by having means for sequentially applying a second voltage lower than the power supply voltage to the plurality of nodes with a predetermined time delay. circuit. 4. The voltage higher than the power source 'Narita' is supplied from a high voltage generation circuit provided on the same substrate. Voltage application circuit. 5. The plurality of nodes are a gate and a north of a nonvolatile memory device, and the predetermined time delay is set such that the source node rises first and then the gate node rises. A voltage application circuit according to claim 4. 6. The plurality of nodes are gate, source, and well or substrate nodes of a non-volatile memory device, and the predetermined time delay is such that the source node first, then the gate node, and finally the well or substrate node. 5. The voltage application circuit according to claim 4, wherein the voltage application circuit is set so that the voltage increases.
JP3602484A 1984-02-29 1984-02-29 Semiconductor integrated circuit Expired - Lifetime JPH069226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3602484A JPH069226B2 (en) 1984-02-29 1984-02-29 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3602484A JPH069226B2 (en) 1984-02-29 1984-02-29 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS60182173A true JPS60182173A (en) 1985-09-17
JPH069226B2 JPH069226B2 (en) 1994-02-02

Family

ID=12458153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3602484A Expired - Lifetime JPH069226B2 (en) 1984-02-29 1984-02-29 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH069226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446965A (en) * 1987-08-18 1989-02-21 Toshiba Corp Semiconductor integrated circuit device
JPH04310697A (en) * 1991-04-10 1992-11-02 Nec Corp Actuating method for nonvolatile semiconductor storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446965A (en) * 1987-08-18 1989-02-21 Toshiba Corp Semiconductor integrated circuit device
JPH04310697A (en) * 1991-04-10 1992-11-02 Nec Corp Actuating method for nonvolatile semiconductor storage device

Also Published As

Publication number Publication date
JPH069226B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
KR100264223B1 (en) Method and apparatus for reading analog values stored in floating gate nand structures
US6870773B2 (en) Data writing method for semiconductor memory device and semiconductor memory device
KR100223990B1 (en) Semiconductor memory device
JP3152762B2 (en) Nonvolatile semiconductor memory device
US20020163836A1 (en) Semiconductor device
JPH07182884A (en) Nonvolatile semiconductor storage
JPH11273373A (en) Analog recording/reproducing system
US5872734A (en) Semiconductor nonvolatile memory device and computer system using the same
JP3198998B2 (en) Semiconductor nonvolatile memory
JP2732601B2 (en) Nonvolatile semiconductor memory device
JP4398962B2 (en) Data writing method for semiconductor memory device
JP2009277348A (en) Method for writing data in semiconductor memory device
JPS60182173A (en) Voltage impressing circuit
JPH10275481A (en) Non-volatile semiconductor memory
JPS58128090A (en) Dynamic ic memory
EP0757359B1 (en) Semiconductor memory devices
JP2004014052A (en) Nonvolatile semiconductor memory device
US5986930A (en) Non-volatile semiconductor memory device
JP3145981B2 (en) Semiconductor nonvolatile storage device
JPH04229655A (en) Erasure system at nonvolatile semiconductor memory device
JP3133706B2 (en) Nonvolatile semiconductor memory device
JPH0527195B2 (en)
JP2648099B2 (en) Nonvolatile semiconductor memory device and data erasing method thereof
JPS6124094A (en) Memory device for semiconductor
JPH0951043A (en) Involatile semiconductor storage device and its driving method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term