JPS60178718A - Receiver circuit - Google Patents

Receiver circuit

Info

Publication number
JPS60178718A
JPS60178718A JP3388984A JP3388984A JPS60178718A JP S60178718 A JPS60178718 A JP S60178718A JP 3388984 A JP3388984 A JP 3388984A JP 3388984 A JP3388984 A JP 3388984A JP S60178718 A JPS60178718 A JP S60178718A
Authority
JP
Japan
Prior art keywords
frequency
cpu
calibration
data
local oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3388984A
Other languages
Japanese (ja)
Other versions
JPH0344460B2 (en
Inventor
Koji Akiyama
秋山 好司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaesu Musen Co Ltd
Original Assignee
Yaesu Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaesu Musen Co Ltd filed Critical Yaesu Musen Co Ltd
Priority to JP3388984A priority Critical patent/JPS60178718A/en
Publication of JPS60178718A publication Critical patent/JPS60178718A/en
Publication of JPH0344460B2 publication Critical patent/JPH0344460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers

Abstract

PURPOSE:To always keep the high frequency accuracy by storing the control data corrected so that the minimum step frequency of the 2nd local oscillator is held in response to the operation of a correction switch when the power supply of a device is applied and setting the lower digits of the reception frequency by the control data in a reception mode. CONSTITUTION:The frequency display of a receiver is set at a correction frequency through a tuning circuit by the reset release of a CPU or the operation of a correction switch 18 when a power supply is applied. The correction reference data on the CPU to be applied to a D/A converting circuit 16 which delivers the control voltage 161 for the 2nd local oscillation frequency is stored to the CPU. Then the data on each point where the demodulation output frequency increases with the minimum reception frequency is stored over the variation range of lower digit frequencies. Then the lower digit frequencies is reproduced and set by the stored data on the minimum frequency step in a reception mode according to the frequency control operation of the function 17.

Description

【発明の詳細な説明】 この発明はPLL (Phase Loeked Lo
op )制御の第1局部発振器にて受信周波数の上位桁
を設定し、第2局部発振周波数を微調整して受信周波数
の下位桁を設定する構成の無線受信機において、第2局
部発振器の微調整ステソノ周波数のデータ全CPU (
Central Processor Unit )に
記憶し、および再現することによシ、第1局部発振器の
構成を簡略にすると共に下位桁の周波数設定精度を同上
した受信機回路を得るにある。
[Detailed Description of the Invention] This invention is based on PLL (Phase Loeked Lo
op) In a radio receiver configured to set the upper digits of the reception frequency using the first local oscillator under control, and set the lower digits of the reception frequency by finely adjusting the second local oscillation frequency, the fine adjustment of the second local oscillator Adjusted Stesono frequency data for all CPUs (
By storing and reproducing the signals in the central processor unit (Central Processor Unit), it is possible to obtain a receiver circuit in which the configuration of the first local oscillator is simplified and the frequency setting accuracy of the lower digits is the same as described above.

最近の中級以上の無線受信機はスーパーヘテロゲイン方
式の第1ミクサに局部発振周波数を注入する第2局部発
振器’iz PLL制御方式とすることにより、発振周
波数の高安定度と周波数設置の高精度化が可能となって
いる。しかしながら実用上において、PLL制御回路の
基本性能に起因する問題点がある。そのlば、PLL制
御発振器の基本方式では発振周波数の可変ステップ周波
数は位相比較器に入力する基準周波数と同一となるから
、例えば同調周波数の最小可変ステップを100 Hz
 (SSB電波受信においては100 Hzステップ可
変は最小条件である)とするためには基準周波数を10
0Hzとしなければならず、これは水晶発振器の出力を
分周することによシ比叔的容易に得ることができるが、
位相比較器の制御出力をVCO(VoltageCon
trolled 0scillator )に加える回
路にそう人するLPF (Low Pa5s Fite
r )のカットオフ周波数を極めて低く設定しなければ
ならず、LPFの時定数が大きくなる結果として周波数
変化時のロックアツプ時間(発振周波数が位相同期にょ
シ安定化されるまでの時間)が長くなり、同調操作に不
自然感を伴うのみならず、雑音を発生する場合もある。
Recent radio receivers for intermediate and higher grades have a second local oscillator that injects the local oscillation frequency into the first mixer of the super-hetero gain type.By using the PLL control method, high stability of the oscillation frequency and high precision of frequency setting are achieved. It is now possible to However, in practice, there are problems caused by the basic performance of the PLL control circuit. For example, in the basic method of a PLL controlled oscillator, the variable step frequency of the oscillation frequency is the same as the reference frequency input to the phase comparator, so for example, the minimum variable step of the tuning frequency is set to 100 Hz.
(100 Hz step variable is the minimum requirement for SSB radio wave reception), the reference frequency should be set to 10
0Hz, which can be obtained comparatively easily by dividing the output of the crystal oscillator.
The control output of the phase comparator is converted to VCO (VoltageCon
LPF (Low Pa5s Fite) added to the circuit added to the trolled 0scillator
The cutoff frequency of r ) must be set extremely low, and as a result of the large time constant of the LPF, the lock-up time (the time it takes for the oscillation frequency to stabilize in phase synchronization) when the frequency changes becomes long. , the tuning operation not only feels unnatural but also may generate noise.

また問題点の第2は基準周波数が低いほどVCOの制御
電圧中のリップル除去が困難になシ、局部発振器出力の
C/Nが悪化することである。その対策としては基準周
波数を例えば10 kHz以上に高く取って、受信周波
数の上位桁のみi PLL設定し、下位桁はPLL回路
の途中にミクサ段を設けてその局部発振周波数を別のP
LL制御発振器で下位桁周波数全設定する多重PLL制
御方式があるが、当然履雑高価となるので、中級機では
この局部発振器f VXO(Variable Xry
stal 0scillator )等の比較的周波数
安定度の良い発振器の発振周波数をアナログ微調整(例
えば10 kHzの範囲)して等分度化と仮定して下位
桁を表示する場合があるが、アナログ変化の特長として
連続周波数設定が出来る代9に周波数精度は劣ることに
なる。
The second problem is that the lower the reference frequency is, the more difficult it becomes to remove ripples in the control voltage of the VCO, and the C/N of the local oscillator output deteriorates. As a countermeasure, the reference frequency should be set high, for example, 10 kHz or more, and only the upper digits of the receiving frequency should be set to iPLL.For the lower digits, a mixer stage should be installed in the middle of the PLL circuit, and the local oscillation frequency should be set to another PLL circuit.
There is a multiplex PLL control method in which all lower digit frequencies are set using a LL control oscillator, but this is of course expensive, so intermediate models use this local oscillator f VXO (Variable Xry
In some cases, the oscillation frequency of an oscillator with relatively good frequency stability, such as an oscillator (stal 0scillator), is finely adjusted (for example, in the 10 kHz range) and the lower digits are displayed assuming equal division. Its feature is that continuous frequency setting is possible, but the frequency accuracy is inferior to that of the 9th generation.

他の対策として、第1局部発振器は例えば10kHz 
以上の上位桁周波数設定のみとし、第1中間周波段と第
2中間周波段の間の第2ミクサの第2局部発振周波数を
微調整して下位桁周波数を設定する方式がある。この形
式では第1局部発振器の構成が簡素となるのでPLL回
路の安定性やC/′Nは良化するが、第2局部発振器の
周波数微調整にPLL方式かVXO方式を用いることに
よる利害は前述の場合と同様である。
As another measure, the first local oscillator may have a frequency of, for example, 10kHz.
There is a method in which only the above upper digit frequencies are set, and the lower digit frequencies are set by finely adjusting the second local oscillation frequency of the second mixer between the first intermediate frequency stage and the second intermediate frequency stage. This format simplifies the configuration of the first local oscillator, improving the stability and C/'N of the PLL circuit, but there is no benefit in using the PLL method or VXO method for fine-tuning the frequency of the second local oscillator. This is the same as in the previous case.

本発明は図に実施回路構成例を示すように、単一の基準
発振器13によシ制御される、周波数マーカ発生器15
、PLL制御の第1局部発振器11マイクロコンピユー
タ12と、マイクロコンピュータ12によシ周波数制御
されて受信周波数の上位桁を設定する第2局部発振器旦
、中間周波段間ミクサ5のための第2局部発振器6と、
その発振周波数を微調整して受信周波数の下位桁の補間
を行う形式の無線受信機において、機器の電源投入時お
よび較正スイッチ18の操作に応じて第2局部発振器6
の最小ステップ周波数を保持するごとく較正された制御
データ121をCPU 12に記憶せしめ、受信時には
データ121によシ受傷周波数の下位桁設定を行うもの
であること全特徴とする受信機回路である。
As shown in the figure, a frequency marker generator 15 is controlled by a single reference oscillator 13.
, a PLL-controlled first local oscillator 11, a microcomputer 12, a second local oscillator whose frequency is controlled by the microcomputer 12 to set the upper digits of the reception frequency, and a second local section for the intermediate frequency interstage mixer 5. oscillator 6;
In a wireless receiver of the type that finely adjusts the oscillation frequency and interpolates the lower digits of the received frequency, the second local oscillator 6
This receiver circuit is characterized in that control data 121 calibrated to maintain the minimum step frequency of is stored in the CPU 12, and upon reception, the lower digits of the injury frequency are set based on the data 121.

ここで第1局部発振器はPLL制御であって、基本構成
はVCO31の出力は第1ミクサ2に注入すると共にプ
ログラマグル分周器32で周波数分周されて位相比較器
33で基準周波数141と位相比較して、画周波数の位
相差に応する制御電圧133でVCO31ffi制御し
て、位相比較器の位相差がOでVCO周波数が安定する
構成である。ただし図では制御電圧133回路のLPF
は記載上省略しである。第1局部発振器で受信周波数の
10kHzの桁までの設定全行うためにはPLLの基準
周波数141はI Q k)Izとするのが普通である
ので、数MHzの水晶発振器13の出力を分局器14で
分周して得ているが、発振器13の出力は後記のCPU
やマーカ発生器の基準周波数ともなっており、このよう
に単一の基準発振器の周波数によ9機器内の主要の周波
数関係の制御を行うことによシ、周波数確度を保持する
ための調整や保守を容易にする効果があるのでよく用い
られている。
Here, the first local oscillator is under PLL control, and the basic configuration is that the output of the VCO 31 is injected into the first mixer 2, frequency-divided by the programmable frequency divider 32, and then phase-divided by the phase comparator 33 to the reference frequency 141. In comparison, the configuration is such that the VCO 31ffi is controlled by a control voltage 133 corresponding to the phase difference between the image frequencies, and the VCO frequency is stabilized when the phase difference of the phase comparator is O. However, in the figure, the LPF of the control voltage 133 circuit
is omitted from the description. In order to perform all settings up to the 10kHz digit of the reception frequency using the first local oscillator, the PLL reference frequency 141 is normally set to IQk)Iz, so the output of the several MHz crystal oscillator 13 is The output of the oscillator 13 is obtained by dividing the frequency by 14, but the output of the oscillator 13 is
It also serves as the reference frequency for the oscillator and marker generator, and by controlling the main frequency relationships within the nine devices using the frequency of a single reference oscillator, adjustments and maintenance to maintain frequency accuracy are possible. It is often used because it has the effect of making it easier.

第1ミクサ出力は第1IFフイルタ4を通りて第2ミク
サ5に加えるが、フィルタ4は第2ミクサでの相互変調
妨害等を生じない程度でよいので、通過帯域幅10〜2
0kHzのモノリミック形等の比較的簡易な構成でよい
。バッファ増幅器等については図には省略しである。
The output of the first mixer passes through the first IF filter 4 and is added to the second mixer 5. However, since the filter 4 only needs to be used to an extent that does not cause intermodulation interference in the second mixer, the passband width is 10 to 2.
A relatively simple configuration such as a 0 kHz monolithic type may be used. Buffer amplifiers and the like are omitted from the diagram.

第2ミクサ5で第2IFに変換する際に第2局部発振器
6の発振周波数を微調整して、第1局部発振器で設定し
た1 0 kHzステツノの周波数間隔の中間の変化を
補間するのであるが、数MI(z以上の発振周波数に対
して10 kHzの変化量でよいので、手軽で比較的安
定度の良いVXOとし、水晶発振子と直列または並列の
容量を変化して周波数調整を行っている。ここで、本発
明においてはvXOを電圧制御形としく例えば水晶発振
子61と直列または並列の容量に電圧制御可変容量ダイ
オードを用すて、これに制御電圧を加える) CPU 
12に記憶せしめたデータに従って10 kHz以下の
周波赦袖間を行うものであυ、その詳細については後ト
:己する。
When converting to the second IF with the second mixer 5, the oscillation frequency of the second local oscillator 6 is finely adjusted to interpolate the intermediate change in the frequency interval of the 10 kHz step set in the first local oscillator. , a change of 10 kHz is sufficient for an oscillation frequency of several MI (z or more), so a simple and relatively stable VXO is used, and the frequency is adjusted by changing the capacitance in series or parallel with the crystal oscillator. Here, in the present invention, the vXO is of a voltage controlled type, for example, a voltage controlled variable capacitance diode is used as a capacitor in series or parallel with the crystal oscillator 61, and a control voltage is applied to this).
The frequency tolerance of 10 kHz or less is performed according to the data stored in 12, and the details will be explained later.

m 21 Fフィルタ7は主フィルタでおって、例えば
SSB用としては帯域幅2〜2.5 kHzでシエーゾ
ファクタ2以内のものが用いられる。本発明でiシフイ
ルタフの入出力部のスイッチS2と83とによシ、周波
数較正時に主帯域フィルタ7をデフィート(直通)する
。スイッチSz+Ssは他のSt IS4 185と連
動して受信時と較正時の回路構成を転換する。図の1側
が受信状態、2側が較正状態である。
The m 21 F filter 7 is a main filter, and for example, for SSB, a filter with a bandwidth of 2 to 2.5 kHz and a Schieso factor of 2 or less is used. In the present invention, the switches S2 and 83 of the input/output section of the i-shift filter are used to defecate (directly connect) the main band filter 7 during frequency calibration. The switch Sz+Ss works in conjunction with other St IS4 185 to switch the circuit configuration between reception and calibration. The first side of the figure is the reception state, and the second side is the calibration state.

受信時においては同調機能17の出力するチューニング
パルス171 * CPUに取シ込んで、前記の下位桁
周波数補間のだめの記憶データをチューニングパルス1
71の入力ごとに1ステツプ変化させた出力121をD
/A変換器16に加え、その出力電圧161を第2局部
発振器6の水晶発振子と直列または並列に接いだ電圧可
変容量ダイオード62に加えて、例えばL 00 Hz
ステップで10kHzの範囲全増減し、下位桁のオーバ
ーフロー出力122により上位桁周波数の設定を行うも
のである。
At the time of reception, the tuning pulse 171 output from the tuning function 17 is input to the CPU, and the stored data for the lower digit frequency interpolation is converted into the tuning pulse 1.
The output 121 changed by 1 step for each input of
/A converter 16, and its output voltage 161 is applied to a voltage variable capacitance diode 62 connected in series or parallel with the crystal oscillator of the second local oscillator 6, for example, L 00 Hz.
The frequency is increased or decreased over the entire range of 10 kHz in steps, and the upper digit frequency is set by the overflow output 122 of the lower digit.

機器の電源投入時および較正スイッチの操作に応じて第
2局部発振器の最小ステップ周波数を保持するごとく較
正された制御データをCPUに記憶せしめる手段につい
ては特許請求の範囲第2項に開示のように、 電源投入時のCPUのリセット解除または較正スイッチ
18の操作によジ、CPU 12は較正指令123を出
力して(リレー19あるいは電子スイッチによシ) (a) アンテナ回路を切り離して、マーカ出力を入力
部に注入する操作と、主帯域フィルタ7kSzhS3に
kpデフィートせしめる操作と、復調器9のBFO周波
数を正規の較正動作位置に84をセットする操作と、必
要ならばS5によp音声出力を遮断する操作を行い、 (b)(同調機能17により)受信壁の周波数表示を較
正周波数に合わせ、 (c) 復調器9の出力91全波形整形回路11全通し
てCPU 12に取り込んでカウントし、復調器出力周
波数がBFOのLSB時の周波数とUSB時の周波数の
差の半分の周波数となるように、第2局部発振周波数を
制御する制御電圧161を出力する約変換回路16への
CPUの較正基準出力データを設定するプログラムと、 (d) 該較正基準出力データをCPUに記憶した後に
、CPUは復調出力周波数が最小受信周波数ステップで
増加する各点のデータを下位桁周波数変化範囲にわたっ
て記憶するプログラムと、(e) 上記較正の終了と共
に81〜S5の較正状態全受信状態に復帰する(信号を
123に出力する)操作とによシ構成され、 (f) 受信状態において、(同調機能17の)周波数
調整操作に伴い、下位桁周波数は前記最小周波数ステッ
プの記憶データによシ(121に)再現設定されるもの
であることを特徴とする特許請求の範囲第1項記載の受
信機回路である。
The means for causing the CPU to store control data calibrated to maintain the minimum step frequency of the second local oscillator when the device is powered on and in response to the operation of the calibration switch is as disclosed in claim 2. , When the CPU is reset when the power is turned on or when the calibration switch 18 is operated, the CPU 12 outputs the calibration command 123 (via the relay 19 or electronic switch) (a) Disconnects the antenna circuit and outputs the marker. to the input section, to cause the main band filter 7kSzhS3 to defeat kp, to set the BFO frequency of the demodulator 9 to the normal calibration operating position 84, and if necessary, to output p audio to S5. (b) Adjust the frequency display on the receiving wall to the calibrated frequency (using the tuning function 17); (c) The output 91 of the demodulator 9 and the entire waveform shaping circuit 11 are all passed through to the CPU 12 and counted. , the CPU outputs the control voltage 161 for controlling the second local oscillation frequency so that the demodulator output frequency becomes half the difference between the frequency at the time of the BFO LSB and the frequency at the time of the USB. a program for setting calibration reference output data; (d) after storing the calibration reference output data in the CPU, the CPU stores data at each point where the demodulated output frequency increases by the minimum received frequency step over the lower digit frequency change range; (e) Upon completion of the above calibration, the calibration state of 81 to S5 is returned to the full receiving state (outputting the signal to 123); (f) In the receiving state, (tuning function 17) The receiver according to claim 1, wherein the lower digit frequency is reproduced (at 121) according to the stored data of the minimum frequency step in accordance with the frequency adjustment operation. It is a circuit.

ここで用いられるマーカ周波数としては、受信機のどの
バンドでも較正ができ、マーカ位置を探す手間が掛らな
いようド、通常100 kHz間隔で受信出来るように
なっている。それには100kHzの基準周波数をダイ
オード等の非直線回路を通すか、マルチバイブレータ発
振を100 kHzに同期して100 kHzの高調波
全発生させている。
The marker frequencies used here can be calibrated in any band of the receiver, and can normally be received at 100 kHz intervals to avoid the hassle of searching for marker positions. To do this, a reference frequency of 100 kHz is passed through a nonlinear circuit such as a diode, or a multivibrator oscillation is synchronized with 100 kHz to generate all harmonics of 100 kHz.

図の回路では基準周波数がPLL回路と共通に書いであ
るが、実際は分周器14の適当な分周出力全利用して所
望の周波数を得ることが可能である。
In the circuit shown in the figure, the reference frequency is the same as that of the PLL circuit, but in reality, it is possible to obtain the desired frequency by using all the appropriate frequency division outputs of the frequency divider 14.

前記(、)項において、「主帯域フィルタ7 ’c S
 z 。
In the above paragraphs (,), "main band filter 7 'c S
z.

S3によシブフィートせしめる操作」は第2局部発振器
6の周波数を較正の際に下位桁周波数変化範囲にわたっ
て変化せしめる際に、マーカ周波数と第1局部発振周波
数は一定に保たれるから第2ミクサ5に入力する第1I
F周波数は一定であシ、従って第2局部発振周波数が変
化した分だけ第2IF周波数が変化することになシ、第
2IFフイルタ7の通過帯域を外れる(フィルタ7の帯
域幅はSSB用の場合は2〜3 kHzであるのに対し
、下位桁周波数変化範囲は10 kHzとなる)ために
最も簡便に通過帯域幅を拡げるだめの手段である。
The "operation to cause the sive feet to S3" is performed by the second mixer because the marker frequency and the first local oscillation frequency are kept constant when the frequency of the second local oscillator 6 is changed over the lower digit frequency change range during calibration. 1st I input to 5
The F frequency is constant, so the second IF frequency does not change by the amount that the second local oscillation frequency changes, and is outside the passband of the second IF filter 7 (the bandwidth of the filter 7 is for SSB). is 2 to 3 kHz, whereas the lower digit frequency change range is 10 kHz), this is the simplest means to widen the passband width.

前記(c)項において、「復調器出力周波数がBFOの
LSB時の周波数とUSB時の周波数の差の半分の周波
数」というのは、一般にLSB時のBFO周波数はフィ
ルタ7の中心周波数+1.5 kHz (ただし、この
場合は復調器入力においてであシ、受信波とは必ずしも
一致しない)であ、9、USB時のBFO周波数は中心
周波数−1,5kHzであるから、LSB時のBFO周
波数とUSB時のBFO周波数の差は3 kHzであシ
、その半分の1500 Hzに復調器9の出力91が合
致する状態はマーカ信号がフィルタ7の中心にあシ、下
位桁周波数はO(正確には0O9OkHz )であるこ
とを意味してお9、この状態が第2局部発振器の基準動
作点となる。従ってこのときの「第2局部発振周波数全
制御する制御電圧161を出力するD/A変換回路16
へのCPUの較正基準出力データ」121が(d)項に
おいて、「該較正基準出力データをCPUに記憶」シ、
続いてr CPUは復調出力周波数が最小受信周波数ス
テップで増加する各点のデータを下位桁周波数変化範囲
にわたって記憶する」というのは、CPUに入力する復
調周波数が1500Hzi基準として、この場合は次の
ステップでは1600 Hzが第2点となシ、以後は1
00 Hz間隔で増加して、11,400Hzまでの1
00点をC’PUはステップ周波数データとして記憶す
るプログラムをもって下位桁周波数較正を行うものであ
る。ここでr CPUは・・・最小受信周波数ステップ
で増加する各点のデータを・・・記憶する」と規定した
のは、第2IF周波数を第1IF周波数よシ低く変換す
る場合に、局部周波数を入力周波数よシ高く取れば、局
部周波数と→i−−i鉢台第2IF周波数は比例的に増
減するが、局部周波数を第2IF周波数よシ低く取った
場合には第2IF周波数は局部周波数と反比例的に増減
するし、vXOの発振周波数にしても可変容量ダイオー
ドを水晶発振子と直列にするか並列にするかでも同一制
御電圧でも周波数の増減が逆になるというように、同一
の効果を得るための細部の構成の組合わせが幾通シもあ
るので、「復調出力周波数が最小受信周波数ステップで
増加する」ような構成であることを条件としたものであ
る。
In section (c) above, "the demodulator output frequency is half the difference between the BFO LSB frequency and the USB frequency" means that the BFO frequency at LSB is generally the center frequency of filter 7 + 1.5. kHz (however, in this case, this is not the case at the demodulator input, and it does not necessarily match the received wave). 9. Since the BFO frequency during USB is the center frequency - 1.5 kHz, the BFO frequency during LSB is The difference in BFO frequency during USB is 3 kHz, and when the output 91 of the demodulator 9 matches half of that, 1500 Hz, the marker signal is at the center of the filter 7, and the lower digit frequency is O (exactly). means that the frequency is 0O9OkHz), and this state is the reference operating point of the second local oscillator. Therefore, at this time, the "D/A conversion circuit 16 that outputs the control voltage 161 that fully controls the second local oscillation frequency"
"Calibration standard output data of the CPU" 121 is set to "store the calibration standard output data in the CPU" in section (d),
Then, the CPU stores data at each point where the demodulated output frequency increases by the minimum received frequency step over the lower digit frequency change range.This means that the demodulated frequency input to the CPU is based on 1500 Hz, and in this case, the following In the step, 1600 Hz is the second point, then 1
1, increasing in 00 Hz steps up to 11,400 Hz.
The C'PU performs lower digit frequency calibration using a program that stores the 00 point as step frequency data. The reason why the CPU stores the data of each point that increases with the minimum reception frequency step is that when converting the second IF frequency to a lower value than the first IF frequency, the local frequency is If the input frequency is set higher than the input frequency, the local frequency and the second IF frequency will increase or decrease proportionally, but if the local frequency is set lower than the second IF frequency, the second IF frequency will be the local frequency. It increases or decreases in inverse proportion to the oscillation frequency of vXO, and the same effect can be obtained even if the control voltage is the same, the frequency increases or decreases in the opposite way regardless of whether the variable capacitance diode is connected in series or parallel to the crystal oscillator. Since there are many combinations of detailed configurations to obtain this, the condition is that the configuration is such that the demodulated output frequency increases by the minimum reception frequency step.

この較正方法の特長は、アナログの復調周波数i CP
U内のカウンタで計測するのであるから、D/Aの段数
を多?設定することによp、Hzの単位までも楽に設定
することが出来、vXO6やD/A変換16の持つ周波
数非直線性は自動的に補正されて問題とならないことで
ある。
The feature of this calibration method is that the analog demodulation frequency i CP
Since it is measured by a counter inside U, is the number of D/A stages large? By setting, even the units of p and Hz can be easily set, and the frequency nonlinearity of the vXO6 and the D/A converter 16 is automatically corrected and does not pose a problem.

第2局部発振器のための周波数設定データ121の較正
と記憶が完了すると、CPUは較正指令123を受信指
令に変更して出力し、スイッチ81〜S5を1側に倒し
て受信状態とする。
When the calibration and storage of the frequency setting data 121 for the second local oscillator is completed, the CPU changes the calibration command 123 to a reception command and outputs it, and turns the switches 81 to S5 to the 1 side to enter the reception state.

BFOはLSB用とUSB用全備えて、受信波のモード
に応じて切換使用するようになって居シ、図ではS4に
よシ水晶発振子全切換えているが、VXO式に水晶発振
子回路のコンデンサ全切換える回路や、2台のBF’O
i切換える方法でも動作的には同一である。商用通信で
はUSBが常用されるが、アマチュア通信ではバンドに
よシ常用サイドバンドが異るので、S4の1側で常用サ
イドバンドが受信でき、2側で較正が行えるように水晶
発振子101と102を配列する必要がある。
The BFO is equipped with both LSB and USB, and is used by switching according to the mode of the received wave.In the figure, S4 has all the crystal oscillators switched, but the VXO type has a crystal oscillator circuit. A circuit that switches all of the capacitors, and two BF'O
The operation is the same even if the i switching method is used. USB is commonly used in commercial communications, but in amateur communications, the commonly used sideband differs depending on the band, so the crystal oscillator 101 and It is necessary to arrange 102.

以上に述べた周波数較正動作は電源スイツチ投入ごとに
自動的に行なわれ、また必要ならば較正スイッチ18に
よシ随時行うこともできるので、基準発振器13の周波
数さえ正確に保たれて居れば経年変化の心配は全く無く
、基準発振周波数はJJY等の標準電波を受信して極め
て正確に補正することが出来るから、本発明の受信機回
路においては常に高度の周波数確度を保持できる便宜が
ある。
The frequency calibration operation described above is automatically performed each time the power switch is turned on, and can also be performed at any time using the calibration switch 18 if necessary, so as long as the frequency of the reference oscillator 13 is maintained accurately, There is no need to worry about changes, and the reference oscillation frequency can be corrected very accurately by receiving standard radio waves such as JJY, so the receiver circuit of the present invention has the advantage of always maintaining a high degree of frequency accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施回路構成図例である。 1・・・アンテナ、2・・・第1ミクサ、旦・・・第1
局部発振器、4・・・第1IFフイルタ、5・・・第2
ミクサ、6・・・第2局部発振器、7・・・第2IFフ
イルタ、8・°・増幅器、9・・・復調器、10・・・
BFo、11・・・波形整形器、12・・・CPU、1
3・・・基準周波数発振器、14・・・分局器、15・
・・マーカ発生器、16・・1A変換器、17・・・同
調機能、18・・・較正スイッチ、19・・・リレー、
31hS2rS3+’541sfi+・+リレー接点ま
たは電子スイッチ。 特許出願人 八重洲無線株式会社
The figure is an example of a circuit configuration diagram for implementing the present invention. 1... Antenna, 2... 1st mixer, Dan... 1st
Local oscillator, 4... first IF filter, 5... second
Mixer, 6... Second local oscillator, 7... Second IF filter, 8...Amplifier, 9... Demodulator, 10...
BFo, 11... Waveform shaper, 12... CPU, 1
3... Reference frequency oscillator, 14... Branch unit, 15.
... Marker generator, 16 ... 1A converter, 17 ... Tuning function, 18 ... Calibration switch, 19 ... Relay,
31hS2rS3+'541sfi+・+Relay contact or electronic switch. Patent applicant Yaesu Musen Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)単一の基準発振器によシ制御される、周波数マー
カ発生器、PLL制御の第1局部発振器、マイクロコン
ピュータと、該°マイクロコンピュータによシ周波数制
御されて受信周波数の上位桁全設定する第1局部発振器
、中間周波段間ミクサのための第2局部発振器と、その
発振周波敷金微調整して受信周波数の下位桁の補間を行
う形式の無線受信機において、機器の電源投入時および
較正スイッチの操作に応じて第2局部発振器の最小ステ
ップ周波数全保持するごとく較正された制御データi 
CPUに記憶せしめ、受信時には該データによシ受信周
波数の下位桁設定を行うものであることを特徴とする受
信機回路。
(1) Frequency marker generator, PLL-controlled first local oscillator, and microcomputer all controlled by a single reference oscillator, and all upper digits of the receiving frequency controlled by the microcomputer In a radio receiver of the type that includes a first local oscillator for the intermediate frequency interstage mixer, a second local oscillator for the intermediate frequency interstage mixer, and interpolation of the lower digits of the receiving frequency by finely adjusting the oscillation frequency deposit, Control data i calibrated to maintain the entire minimum step frequency of the second local oscillator according to the operation of the calibration switch.
1. A receiver circuit, which is stored in a CPU, and sets lower digits of a reception frequency based on the data upon reception.
(2)機器の電源投入時および較正スイッチの操作に応
じて第2局部発振器の最小ステップ周波数全保持するご
とく較正された制御データをCPUに記憶せしめる手段
は、電源投入時のCPHのリセット解除または較正スイ
ッチの操作によシ、CPUは較正指令を出力して (a) アンテナ回路を切シ離して、マーカ出力を入力
部に注入する操作と、主帯域フィルタ(通常第2中間周
波数)をデフィート(直通)せしめる操作と、復調器の
BFO周波数を正規の較正動作位置にセットする操作と
、必要ならば音声出力を遮断する操作を行い、 (b) 受信機の周波数表示を較正周波数に合わせ、(
e) 復調器出力を波形整形回路を通してCPHに取シ
込んでカウントし、復調器出力周波数がBFOのLSB
時の周波数とUSB時の周波数の差の半分の周波数とな
るように、第2局部発振周波数を制御する制御電圧を出
力するD/A変換回路へのCPUの較正基準出力データ
を設定するプログラムと、(d) 該較正基準出力デー
タをCPUに記憶した後に、CPUは復調出力周波数が
最小受信周波数ステップで増加する各点のデータを下位
桁周波数変化範囲にわたって記憶するプログラムと、(
、) 上記較正の終了と共に較正状態を受信状態に復帰
する操作とによ多構成され、 (f) 受信状態において、周波数調整操作に伴い、下
位桁周波数は前記最小周波数ステップの記憶データによ
シ再現設定されるものであることを特徴とする特許請求
の範囲第1項記載の受信機回路。
(2) The means for making the CPU store the control data calibrated to maintain the entire minimum step frequency of the second local oscillator when the device is powered on and in response to the operation of the calibration switch is to cancel the reset of the CPH when the power is turned on or By operating the calibration switch, the CPU outputs a calibration command and (a) disconnects the antenna circuit, injects the marker output into the input section, and defaults the main band filter (usually the second intermediate frequency). (b) Adjust the frequency display of the receiver to the calibration frequency, and set the demodulator's BFO frequency to the normal calibration operating position. (
e) The demodulator output is input to the CPH through the waveform shaping circuit and counted, and the demodulator output frequency is the LSB of BFO.
A program that sets the CPU's calibration reference output data to a D/A conversion circuit that outputs a control voltage that controls the second local oscillation frequency so that the frequency is half the difference between the frequency at the time of operation and the frequency at the time of USB. , (d) After storing the calibration reference output data in the CPU, the CPU stores a program for storing data at each point where the demodulated output frequency increases by the minimum received frequency step over the lower digit frequency change range;
(f) In the reception state, with the frequency adjustment operation, the lower digit frequency is reset by the stored data of the minimum frequency step. A receiver circuit according to claim 1, characterized in that the receiver circuit is reproducibly set.
JP3388984A 1984-02-24 1984-02-24 Receiver circuit Granted JPS60178718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3388984A JPS60178718A (en) 1984-02-24 1984-02-24 Receiver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3388984A JPS60178718A (en) 1984-02-24 1984-02-24 Receiver circuit

Publications (2)

Publication Number Publication Date
JPS60178718A true JPS60178718A (en) 1985-09-12
JPH0344460B2 JPH0344460B2 (en) 1991-07-08

Family

ID=12399096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3388984A Granted JPS60178718A (en) 1984-02-24 1984-02-24 Receiver circuit

Country Status (1)

Country Link
JP (1) JPS60178718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312728A (en) * 1987-06-15 1988-12-21 Matsushita Electric Ind Co Ltd Frequency synthesizer receiver
JPH04329029A (en) * 1991-03-29 1992-11-17 Internatl Business Mach Corp <Ibm> Voltage control oscillator, linearization and temperature compensation system and method, and scanning type superheterodyne esm receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312728A (en) * 1987-06-15 1988-12-21 Matsushita Electric Ind Co Ltd Frequency synthesizer receiver
JPH04329029A (en) * 1991-03-29 1992-11-17 Internatl Business Mach Corp <Ibm> Voltage control oscillator, linearization and temperature compensation system and method, and scanning type superheterodyne esm receiver

Also Published As

Publication number Publication date
JPH0344460B2 (en) 1991-07-08

Similar Documents

Publication Publication Date Title
US4940950A (en) Frequency synthesis method and apparatus using approximation to provide closely spaced discrete frequencies over a wide range with rapid acquisition
US4395777A (en) Double superheterodyne receiver
KR910003230B1 (en) Mujlti-band fm receiver for receiving fm broadcasting signals and tv broadcasting sound signals
JPS63219225A (en) Clock signal generator
US4061980A (en) Radio receiver with plural converters and frequency control
JPS60178718A (en) Receiver circuit
GB2250877A (en) Shifting spurious frequencies away from signal frequency
JP3096636B2 (en) PLL circuit
US4095190A (en) Tuning system
JPS6221418B2 (en)
JP2814638B2 (en) Automatic oscillator calibration in heterodyne radio receivers.
JPS6131647B2 (en)
JPS63217830A (en) Frequency synthesizer tuner
JPS5823018B2 (en) electronically tuned receiver
JPS62204609A (en) Preset tuner
JPH0416501Y2 (en)
EP1091487B1 (en) Method and apparatus for eliminating self quieter signals generated in synthesiser receivers
JPH021962Y2 (en)
JP2790121B2 (en) Receiving machine
JP2529602Y2 (en) High frequency equipment
JP2704626B2 (en) Frequency converter
JPS6246337Y2 (en)
JP2600714Y2 (en) Circuit for generating carrier signal and test signal of RF modulator
JPS6342601Y2 (en)
JPS5820169B2 (en) wireless communication device circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term