JPS60177213A - Measuring device for tilt angle - Google Patents

Measuring device for tilt angle

Info

Publication number
JPS60177213A
JPS60177213A JP3190284A JP3190284A JPS60177213A JP S60177213 A JPS60177213 A JP S60177213A JP 3190284 A JP3190284 A JP 3190284A JP 3190284 A JP3190284 A JP 3190284A JP S60177213 A JPS60177213 A JP S60177213A
Authority
JP
Japan
Prior art keywords
air bubble
bubble
image sensor
prism
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3190284A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nakagawa
義之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP3190284A priority Critical patent/JPS60177213A/en
Publication of JPS60177213A publication Critical patent/JPS60177213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the influence of temperature variation by dividing both end positions of an air bubble image by a split projection optical means according to the inclination of an air bubble tube so that both end positions moves in the opposite directions, and forming split images without overlapping. CONSTITUTION:Projection light from a light source 1 consisting of plural light emitting diodes arranged successively is made incident on a diffusing plate 2 and then transmitted light from an air bubble tube 3 is made incident on an alignment prism 4 and projected on a linear image sensor 6 such as CCD through an optical path changing prism 4a and a projection lens 5. The alignment prism 4 is arranged having the center (l) off the center of the air bubble tube 3, and the air bubble image is separated in the lengthwise direction of the linear image sensor 6. Consequently, even if the length of the air bubble is decreased, the interval between tips of the air bubble images is constant.

Description

【発明の詳細な説明】 (発明の技術分り 本発明は、気泡管を利用した傾斜角測定装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical understanding of the invention) The present invention relates to an inclination angle measuring device using a bubble tube.

(発明の背景) この種の簡単な装置としては、管形気泡管の気泡像を投
影1/ンズによってイメージセンサ上へ直接投影し、イ
メージセンサ上での気泡管の移動量を測定する構造の装
置が考えられるが、このような単純な構造の装置では温
度変化により気泡長が変わってし1うため、別に温度を
測定して補正し々ければならず装置が複雑化してしまう
という欠点があった。
(Background of the Invention) A simple device of this type has a structure in which a bubble image of a tubular level is directly projected onto an image sensor using a projection lens, and the amount of movement of the level is measured on the image sensor. However, in a device with such a simple structure, the bubble length changes due to temperature changes, so the temperature must be measured and corrected separately, making the device complicated. there were.

(発明の目的) 本発明は温度変化に対する気泡長の変化の影響をなくし
た簡単な構造の傾斜角測定装置を提供することを目的と
する。
(Objective of the Invention) An object of the present invention is to provide a tilt angle measuring device with a simple structure that eliminates the influence of changes in bubble length due to temperature changes.

(実施例) 第1図は本発明の一実施例の正面図、第2図は合致プリ
ズムと光路変更プリズムの平面図である。
(Embodiment) FIG. 1 is a front view of an embodiment of the present invention, and FIG. 2 is a plan view of a matching prism and an optical path changing prism.

複数の発光ダイオードを並置して成る光源1からの射出
光は、拡散板2へ入射した後、管形気泡管3を裏面から
透過照明する。管形気泡管3の透過光は合致プリズム4
へ入射した後、光路変更プリズム4a、投影レンズ5を
通って、CCI)(電荷結合素子)等の一次元イメージ
センサ6上に投影される。合致プリズム4はその中心l
が管形気泡管3の中心よりもずれて配置されており、そ
のずれ敬は、−次元イメージセンサ6の長手方向に気泡
像が分離するに十分な量である。実際には、投影レンズ
5の倍率Mがかかるので、−次元イメージセンサ6上で
の分離した気泡像の間隔をaとすれば、上記ずれ量はa
/Mとなる。
Light emitted from a light source 1 made up of a plurality of light emitting diodes arranged side by side enters a diffuser plate 2, and then transmits and illuminates a tubular vial 3 from the back side. The light transmitted through the tubular bubble tube 3 passes through the matching prism 4
The light passes through the optical path changing prism 4a and the projection lens 5, and is projected onto a one-dimensional image sensor 6 such as a CCI (charge coupled device). The matching prism 4 has its center l
is placed offset from the center of the tubular bubble tube 3, and the offset is sufficient to separate the bubble images in the longitudinal direction of the -dimensional image sensor 6. Actually, since the magnification M of the projection lens 5 is applied, if the interval between the separated bubble images on the -dimensional image sensor 6 is a, the above deviation amount is a
/M.

このような構造であるから、管形気泡管3が傾き零の場
合には、−次元イメージセンサ6上には第3図に実線で
示し/′ζような周辺部が帯状に光竜減少した気泡像7
a、7bが生ずる。気泡像7a、71)の先端の間隔は
aである。温度変化によって気泡長が伸縮しても、気泡
像7a、7bの先端の間隔aは一定である。すなわち、
一方の気泡像7aが波線で示したようにΔa縮んでも、
他方の気泡像7bも波線で示したようにΔa縮むので、
先端の間隔は変化しないわけである。
Because of this structure, when the inclination of the tubular bubble tube 3 is zero, the peripheral area shown by the solid line in FIG. bubble image 7
a and 7b occur. The distance between the tips of the bubble images 7a, 71) is a. Even if the bubble length expands or contracts due to temperature changes, the distance a between the tips of the bubble images 7a and 7b remains constant. That is,
Even if one bubble image 7a shrinks by Δa as shown by the broken line,
The other bubble image 7b also shrinks by Δa as shown by the broken line, so
The spacing between the tips does not change.

ここで管形気泡管3が傾くと、第4図に波線で示したよ
うに気泡像7a、7bの間隔が変化する。
When the tubular bubble tube 3 is tilted, the distance between the bubble images 7a and 7b changes as shown by the broken line in FIG.

この間隔をXとすれば、管形気泡管3の傾きθは−2−
m=に依イfする。いま、管形気泡管3の感度をP秒/
 2 mmとすれば、イメージ七ンサ6上での1x−a
、t’ 2 2M ・・・・・(1) と換算することができる。
If this interval is X, the inclination θ of the tubular vial 3 is -2-
f depends on m=. Now, set the sensitivity of the tubular vial 3 to P seconds/
If 2 mm, 1x-a on image sensor 6
, t' 2 2M (1).

従って、第5図、第6図に示したように、−次元イメー
ジセンサ6を有する映像信号出力手段8から出力される
第6図(a)の波線の如き映像信号を波形整形回路9に
よって所定のレベルV。を定める等して第6図(b)の
如き矩骸信号に整形し、パルス発生回路10によって第
6図(C)の如き矩形信号の立ち上りで生ずるパルスを
得、パルス間隔測定回路11にて気泡像7a、7bの間
隔に相当するパルス間隔をめれば、あらかじめ値a、P
、Mを設定器12により入力されている演算回路13に
よって、式(1)の演算を行なわせることができ、表示
回路14から傾きθを読み取ることができる。
Therefore, as shown in FIGS. 5 and 6, the waveform shaping circuit 9 converts the video signal as indicated by the dotted line in FIG. level V. The pulse generation circuit 10 obtains a pulse generated at the rising edge of the rectangular signal as shown in FIG. 6(C), and the pulse interval measuring circuit 11 generates a rectangular signal as shown in FIG. If we calculate the pulse interval corresponding to the interval between the bubble images 7a and 7b, we can obtain the values a and P in advance.
.

第3図で説明したように、この場合にも温度変化があっ
たとしても間隔Xは変化しない。
As explained in FIG. 3, even in this case, the interval X does not change even if there is a temperature change.

なお、上述の装置は、例えば、デジタルセオドライトの
如く、鉛直角、水平角を電気信号とし、て得られる装置
に組み込むことによって、重器の傾きKよる誤差を自動
的に補旧することができる。 。
In addition, the above-mentioned device can automatically correct errors caused by the tilt K of heavy equipment by incorporating it into a device such as a digital theodolite that generates electrical signals from vertical and horizontal angles. . .

なお、上述の装置を水準傾斜計として使用すれば、任意
点からの傾斜角測定が出来るので有効である。
It should be noted that it is effective to use the above-mentioned device as a leveling inclinometer, since the inclination angle can be measured from any point.

(発明の効果) 以上述べたように本発明によれば、温度変化の影響を受
けることなく簡単に傾斜角を自動測定できる傾斜角測定
装置を得ることができる、
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain an inclination angle measuring device that can easily and automatically measure an inclination angle without being affected by temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の正面図、第2図は第1図の
合致プリズムと光路変更プリズムの平面図、第3図は温
度変化の影響の無いことを説明するために、−次元イメ
ージセンサ」二の気泡像を示す1ネ1、第4図は気泡管
の傾によって気泡1家の位置が変化することを説明する
ために、−次元イメージセンサ上の気泡像を示す南、第
5図は本発明の一実施例の処理ブロック図、第6図は第
5図の各部の波形図、である。 (主要部分の符号の説明) 3・・管形気泡管、4・・・合致プリズム、4a・・光
路変更プリズム、5・・・投影レンズ、6・・・−次元
イメージセンサ。 ’!’II’ 、+1出願人 日本光学工業株式会社代
理人 渡 辺 隆 男
FIG. 1 is a front view of an embodiment of the present invention, FIG. 2 is a plan view of the matching prism and optical path changing prism shown in FIG. 1, and FIG. 3 is a diagram showing that there is no influence of temperature changes. Figure 4 shows the bubble image on the -dimensional image sensor to explain that the position of the bubble changes depending on the tilt of the bubble tube. FIG. 5 is a processing block diagram of an embodiment of the present invention, and FIG. 6 is a waveform diagram of each part of FIG. (Explanation of symbols of main parts) 3. Tubular bubble tube, 4. Matching prism, 4a. Optical path changing prism, 5. Projection lens, 6. -Dimensional image sensor. '! 'II', +1 applicant Takao Watanabe, agent of Nippon Kogaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 管形気泡管と、−次元イメ、−ジセンサと、前記気泡管
の気泡像を分割して前記イメージセンサ上に形成する分
割投影光学手段と、を有し、前記分割投影光学手段が、
前記気泡像の両端位置が前記気泡管の傾きによって逆方
向へ移動するように前記気泡像を分割すると共に、該分
割像が重なり合わないように前記分割像を形成すること
を特徴とする傾斜角測定装置。
It has a tubular bubble tube, a -dimensional image sensor, and a division projection optical means for dividing a bubble image of the bubble tube and forming it on the image sensor, and the division projection optical means comprises:
An inclination angle characterized in that the bubble image is divided such that both end positions of the bubble image move in opposite directions depending on the inclination of the bubble tube, and the divided images are formed so that the divided images do not overlap. measuring device.
JP3190284A 1984-02-22 1984-02-22 Measuring device for tilt angle Pending JPS60177213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3190284A JPS60177213A (en) 1984-02-22 1984-02-22 Measuring device for tilt angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3190284A JPS60177213A (en) 1984-02-22 1984-02-22 Measuring device for tilt angle

Publications (1)

Publication Number Publication Date
JPS60177213A true JPS60177213A (en) 1985-09-11

Family

ID=12343930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3190284A Pending JPS60177213A (en) 1984-02-22 1984-02-22 Measuring device for tilt angle

Country Status (1)

Country Link
JP (1) JPS60177213A (en)

Similar Documents

Publication Publication Date Title
US4371261A (en) Range finder
JPH0762614B2 (en) Optical sensor
DK151437B (en) SYSTEM TO BRING AN IMAGE IN REGISTER
JPH067219B2 (en) Camera focus detector
US5109161A (en) Light emitter and optical system for a distance measuring device
JPH0434092B2 (en)
US4494868A (en) Rangefinder device with focused elongated light source
JPS5899712A (en) Slant angle measuring device
JPS60177213A (en) Measuring device for tilt angle
JPH0484705A (en) Optical size measuring apparatus
JP2000146574A (en) Multi-axis system inclinometer for measuring inclination and inclination change
JPS61281914A (en) Survey device
US6229602B1 (en) Photometering apparatus
JP2503408B2 (en) Transparent original image reading device
JPS6120849B2 (en)
JPS57190202A (en) Device for reading optical scale
SU813136A1 (en) Device for remote angle measurement
JPS62170809A (en) Measuring instrument for road surface
JP2903472B2 (en) Distance measuring device
SU1089405A1 (en) Photoelectric microscope
JP2936635B2 (en) Focus adjustment imaging method
JPH0240514A (en) Luminance meter for road surface
JPS60114704A (en) Method for measuring diameter of wire and the like
JPS6333642B2 (en)
JPS58174808A (en) Distance measuring device