JPS5899712A - Slant angle measuring device - Google Patents

Slant angle measuring device

Info

Publication number
JPS5899712A
JPS5899712A JP19880081A JP19880081A JPS5899712A JP S5899712 A JPS5899712 A JP S5899712A JP 19880081 A JP19880081 A JP 19880081A JP 19880081 A JP19880081 A JP 19880081A JP S5899712 A JPS5899712 A JP S5899712A
Authority
JP
Japan
Prior art keywords
liquid surface
light
reflected
liquid
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19880081A
Other languages
Japanese (ja)
Other versions
JPH0345322B2 (en
Inventor
Takashi Yokokura
横倉 隆
Tsuneo Sasaki
佐々木 恒夫
Masayuki Kondo
近藤 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP19880081A priority Critical patent/JPS5899712A/en
Publication of JPS5899712A publication Critical patent/JPS5899712A/en
Publication of JPH0345322B2 publication Critical patent/JPH0345322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/18Measuring inclination, e.g. by clinometers, by levels by using liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To enhance the measuring accuracy, by reflecting measuring luminous flux by a free liquid surface by a plurality of times. CONSTITUTION:The luminous flux from an index 34 is made to be the approximately parallel luminous flux by a collimate lens 40 through a reflecting mirror 38 and inputted into a transmitting surface 44 of a liquid surface reflecting member 42. The luminous flux, which is inputted into the transmitting surface 44 of the liquid surface reflecting member 42, passes the free liquid surface of silicon oil 50, reflected by a reflecting surface 46, reflected again by the free liquid surface of the silicon oil 50, and thereafter emitted from the transmitting surface 44. The luminous flux emitted from the transmitting surface 44 is converged by the collimate lens 40, and an index image is formed on a CCD detector 36. Therefore, the slant angle of the device can be obtained from the amount of the movement of said index image.

Description

【発明の詳細な説明】 方向を基準とした傾斜角測定装置に関する。[Detailed description of the invention] This invention relates to an inclination angle measuring device based on direction.

従来の重力方向を基準とする傾斜角測定装置の例として
、自由振子を用い、自由振子の傾斜角、変位量等を光学
的あるいは電気磁気的に測定する装置が知られている。
As an example of a conventional tilt angle measuring device based on the direction of gravity, there is a known device that uses a free pendulum and measures the tilt angle, displacement, etc. of the free pendulum optically or electromagnetically.

しかし、この装置1H振子の安定性、復元性に問題があ
り、これを改善するには機械的に複雑で大型にならざる
を得ない。従来の重力方向を基準とする傾斜角測定装置
の他の例として、水銀の自由液面を用い、水銀液面によ
る反射光のずれ角を測定する装置が知られている。
However, there are problems with the stability and restorability of this device 1H pendulum, and in order to improve this, the device must become mechanically complex and large. As another example of a conventional tilt angle measuring device based on the direction of gravity, there is a known device that uses the free liquid level of mercury to measure the deviation angle of light reflected by the mercury liquid level.

しかし、この装置は水銀の毒性や水銀が高価である問題
があり、また、水銀は表面張力が大きく平らな反射面を
得るためには大きな表面積を要し、さらに、粘性が低い
たや振動に敏感過ぎて安定性に欠ける。そのため傾斜角
測定装置として水銀よりも粘性の高い液体の自由液面を
用い、該液面による反射光のずれ角を光学的に測定する
装置が米国特許gダ,/3A 、9!ts号により提案
されている。この装置のさらに詳しい構成は、発光素子
からの光束を該液体の容器底部に取付けられたプリズム
の入射面に入射させ、該入射光束を上記液体の自由表面
で全反射させ、さらに、該反射光束を上記プリズムの入
射面と反対側に設けた射出面から射出させて受光位置検
出素子によって射出光のずれ量を測定するものである。
However, this device has problems with the toxicity of mercury and the high cost of mercury.In addition, mercury has a high surface tension and requires a large surface area to obtain a flat reflective surface. Too sensitive and lacks stability. Therefore, a device for optically measuring the deviation angle of light reflected by the liquid surface using the free liquid surface of a liquid with higher viscosity than mercury as an inclination angle measuring device is disclosed in US Pat. It has been proposed by No. ts. A more detailed configuration of this device is that the light beam from the light emitting element is made incident on the incident surface of a prism attached to the bottom of the liquid container, the incident light beam is totally reflected on the free surface of the liquid, and further, the reflected light beam is is emitted from an exit surface provided on the opposite side to the entrance surface of the prism, and the amount of deviation of the emitted light is measured by a light receiving position detection element.

この装置は、粘性の高い液体の自由表面の全反射を使用
しているため、外来振動に敏感で渣く、又復元性もよく
、極めて簡易な構造で比較的積度の高い測定が可能であ
−る利点がある反面、さ−らに測定精度を上げる、ため
には、数体の自由表面から受光位置検出素子までの距離
を長くする必要があり、装置全体が大型イーすることが
避けられない。特に、この装置の大型化の問題は、該傾
斜角測定装置を光電読取式経緯儀に組込み経緯儀本体の
傾斜角を測定する場合等に致命的欠点となる。
This device uses total reflection on the free surface of a highly viscous liquid, so it is sensitive to external vibrations, has good recovery properties, and can measure relatively large volumes with an extremely simple structure. Although this has certain advantages, in order to further improve measurement accuracy, it is necessary to increase the distance from the free surfaces of several bodies to the light receiving position detection element, which prevents the entire device from becoming large. I can't do it. In particular, the problem of increasing the size of this device becomes a fatal drawback when the inclination angle measuring device is incorporated into a photoelectric reading type theodolite to measure the inclination angle of the theodolite body.

本発明は上記従来の問題を解決した傾斜角測定装置を提
供することを目的とするものであって、その構成上の特
徴とするところは、発光部と、受光部と、液面反射系と
、上記発光部からの、光束を略平行光束として上記液面
反射系に入射させかつ該液面反射系による反射光束を上
記受光部に入射させるレンズ系とから構成され上記液面
反射系はその入射光及び反射光が透過する固定透過面と
The present invention aims to provide an inclination angle measuring device that solves the above-mentioned conventional problems, and its structural features include a light emitting section, a light receiving section, and a liquid surface reflection system. , a lens system that makes the light beam from the light emitting section enter the liquid surface reflection system as a substantially parallel light beam, and makes the light beam reflected by the liquid surface reflection system enter the light receiving section; A fixed transmission surface through which incident light and reflected light pass.

自由液面と、該自由液面からの反射光を反射して再び該
自由液面に向けて反射する固定反射面とからなることで
ある。本発明は、以上のように、固定反射面を設けるこ
とにより入射光及び反射光の透過面を共通にし、発光部
、受光部を液面反射等の一方に設けることができ、さら
に測定光束を自由液面で複数回反射させることにより、
小型で測定精度が高く、光電読取式経緯儀にも組込み可
能な傾斜角測定装置を得ることができる。さらに、本発
明では液面反射系の透過面に断面積の大きい光束を入射
・射出させるから、該透過面の汚れやちり、#ネこりの
影響を受けることが少ない。
It consists of a free liquid surface and a fixed reflective surface that reflects reflected light from the free liquid surface and reflects it back toward the free liquid surface. As described above, the present invention makes it possible to use a common transmitting surface for incident light and reflected light by providing a fixed reflective surface, and to provide a light emitting part and a light receiving part on one side of the liquid surface, etc. By reflecting multiple times on the free liquid surface,
It is possible to obtain an inclination angle measuring device that is small in size, has high measurement accuracy, and can be incorporated into a photoelectric reading type theodolite. Furthermore, in the present invention, since a light beam having a large cross-sectional area is incident on and exits from the transmission surface of the liquid surface reflection system, the transmission surface is less affected by dirt, dust, and dust.

以下本発明の原理及び実施例を図について説明する。本
発明の構成原理は、第1図に示すように発光部z1受光
素子4、液面反射系6、発光部2からの光束8を略平行
光束として液面反射系6に入射させかつ液面反射系6に
よる反射光束10を受光素子4に入射させるレンズ系1
2からなる。液面反射系6はプリズム部14と容積の一
部に液体16を満たした液体部18とからなる。液体1
6はプリズム部14の上に直接入れられており、プリズ
ム部14の側面には、光束8.10が通過する固定透過
面20及び液体部18からの光束8を反射して反射光束
10とする固定反射面2zが設けられている。以上の構
成において、装置が傾斜しても液体16の自由液面は水
平を維持するから、結果的に、装置が傾斜すると反射光
束10の受光素子4への入射位置が変化し、この変化量
を検出することにより装置の傾斜角を計算することがで
きる。本発明の第1実施例を第2図、第3図に示す。発
光部24Fi発光素子801コンデンサレンズ8B、指
標84より構成される。発光素子80からの光はコンデ
ンサレンズ82により集光され指標84を照明する。指
標84からの光束は、反射鏡38を介して、コリメート
レンズ40により略平行光束にされ液面反射部材42の
透過面44に入射される。反射部材42Fi、透過面4
4と反射面46とを有し、屈折率i、s:lのガラスで
作られたプリズム部48と、反射率/、llのシリコン
オイル50をプリズム48の上部に封じこんだ液体部5
2によって形成される。液面反射部材4zの透過面44
に入射した光束はシリコンオイル50の自由液面を通過
し、反射面46により反射され、再びシリコンオイル5
0の自由液面で反射さ五た後透過面44から射出される
。前記透過面44から射出された光束は前述のコリメー
トレンズ40により集光されCOD検知器(蓄積効果型
センサー)86上に指標像が形成される。指標84及び
CCO検知器86はコリメートレンズ40の焦点位置に
配置されテレセン) IJラック学系が成立している。
The principle and embodiments of the present invention will be explained below with reference to the drawings. As shown in FIG. 1, the principle of construction of the present invention is that the light beam 8 from the light emitting part z1, the light receiving element 4, the liquid surface reflection system 6, and the light emitting part 2 is made into a substantially parallel light beam and is incident on the liquid surface reflection system 6. Lens system 1 that makes the reflected light beam 10 from the reflection system 6 enter the light receiving element 4
Consists of 2. The liquid surface reflection system 6 includes a prism section 14 and a liquid section 18 whose volume is partially filled with a liquid 16. liquid 1
6 is placed directly on the prism part 14, and the side surface of the prism part 14 has a fixed transmitting surface 20 through which the light flux 8. A fixed reflective surface 2z is provided. In the above configuration, even if the device is tilted, the free surface of the liquid 16 remains horizontal, so as a result, when the device is tilted, the position of incidence of the reflected light beam 10 on the light receiving element 4 changes, and the amount of change By detecting , the tilt angle of the device can be calculated. A first embodiment of the present invention is shown in FIGS. 2 and 3. The light emitting section 24Fi is composed of a light emitting element 801, a condenser lens 8B, and an index 84. Light from the light emitting element 80 is condensed by a condenser lens 82 and illuminates an index 84. The light beam from the index 84 passes through the reflecting mirror 38 , is made into a substantially parallel light beam by the collimating lens 40 , and is incident on the transmission surface 44 of the liquid surface reflecting member 42 . Reflection member 42Fi, transmission surface 4
4 and a reflective surface 46, a prism part 48 made of glass with a refractive index of i, s:l, and a liquid part 5 in which silicone oil 50 with a reflectance of /, ll is sealed in the upper part of the prism 48.
Formed by 2. Transmissive surface 44 of liquid surface reflection member 4z
The incident light flux passes through the free liquid surface of the silicone oil 50, is reflected by the reflective surface 46, and returns to the silicone oil 50.
After being reflected at the free liquid level of 0, the light is emitted from the transmission surface 44. The light flux emitted from the transmission surface 44 is condensed by the collimating lens 40 described above, and an index image is formed on a COD detector (accumulation effect sensor) 86. The index 84 and the CCO detector 86 are arranged at the focal position of the collimating lens 40, and an IJ rack system is established.

テレセンドリンク光学系をとることにより、デフォーカ
ス誤差は測定精度に影響しないという利点がある。
The use of a telesend link optical system has the advantage that defocus errors do not affect measurement accuracy.

以上の構成において、装置の傾斜角θ、CCO検知器8
6上の指標像の移動量をP、コリメートレンズ群の焦点
距離ft/、傾斜係数をkとすると、θ= k −ta
n”’−’ (!−)の関係がある。−〇=/“、 e
=i 、 2μm、f=SOBのとき’ = ’/48
8となり、検出した移動量eから傾斜角θを求めること
ができる。なお、この場合、k(Itは、自由液面に入
射する角度を50ミゾリズムの屈折率を/ 、 52、
−シリコンオイルの屈折率を/、tとした場合の値であ
る。
In the above configuration, the tilt angle θ of the device, the CCO detector 8
If the amount of movement of the index image on 6 is P, the focal length of the collimating lens group is ft/, and the tilt coefficient is k, then θ= k - ta
There is a relationship n"'-'(!-).-〇=/", e
= i, 2μm, when f=SOB' = '/48
8, and the inclination angle θ can be determined from the detected movement amount e. In this case, k(It is the angle of incidence on the free liquid surface and the refractive index of 50 mizorism is /, 52,
- This is a value when the refractive index of silicone oil is /, t.

指標84と検知÷86の選択には種々の方式のものが考
えられ、第4図ないし第6図にもとづいて述べる。12
1Fi検知器86上に結像され次指標像である。第を図
は指標をスリットで構成し、検知器86f/次元のライ
ンセンサーで構成した場合を示す。y”F面は第2図に
おける入射・反射光軸を含む面であり、X平面はX平面
と直交する面を示す。X平面での傾斜により指標像12
1はy方向に移動する。ラインセンサーである検知器8
6上の指標像位置l、を検出し、傾斜角に換算し、測定
結果を得る。この場合X平面での傾斜ででは指標像はX
方向へ移動するだけでX平面での傾斜角測定結果に影響
を与えない。
Various methods can be considered for selecting the index 84 and the detection divided by 86, which will be described based on FIGS. 4 to 6. 12
The image formed on the 1Fi detector 86 is the next index image. The second figure shows a case where the index is composed of a slit and the detector is composed of a line sensor of 86f/dimension. The y”F plane is a plane containing the incident and reflected optical axes in FIG. 2, and the X plane is a plane perpendicular to the X plane.The index image 12 is
1 moves in the y direction. Detector 8 which is a line sensor
6 is detected and converted into an inclination angle to obtain a measurement result. In this case, the index image is tilted in the X plane.
It does not affect the inclination angle measurement result in the X plane simply by moving in the direction.

第S図は、指標像位置をさらに高精度に検出可能にする
構成を示す。この場合指標は基準スリットノやターンと
格子状/母ターンから構成される。
FIG. S shows a configuration that allows the position of the target image to be detected with even higher precision. In this case, the index consists of a reference slit or turn and a grid/mother turn.

122.128は前二者の/?ターン像である。検知器
86は7次元のラインセンサーである。格子状ノダター
ン像のlピッチはラインセンサのlピッチとわずかな差
をもたせ、互いにバーニア関係にする。このように構成
して基準スリット/’Pターンの結像位置e2  をラ
インセンサーのlピッチの精度で第一の測定結果を得、
さらに格子状パターン64;2Bとラインセンサーとの
バーニア関係によりさらにlピッチ内を内挿し第1の測
定結果と組合わせて最終結果を得るものである。指標@
 424はX方向傾斜角制限)母ターンの像であり、X
方向の傾斜角度が大きくなると、ノ(ターンにラインセ
ンサー上でX方向に移動し、パターンがラインセンサー
からはなれこれを検出することによりランプあるいは音
にて要調整の指定を出すようにすることが可能である。
122.128 is the former two/? It is a turn image. Detector 86 is a seven-dimensional line sensor. The l pitch of the lattice nodatan image has a slight difference from the l pitch of the line sensor, and they are in a vernier relationship with each other. With this configuration, the first measurement result is obtained for the imaging position e2 of the reference slit/'P turn with an accuracy of l pitch of the line sensor,
Furthermore, the vernier relationship between the lattice pattern 64; 2B and the line sensor is used to further interpolate within 1 pitch and combine it with the first measurement result to obtain the final result. index@
424 is an image of the mother turn (X direction inclination angle limit),
When the angle of inclination in the direction becomes large, the pattern moves in the X direction on the line sensor during a turn, and by detecting the deviation of the pattern from the line sensor, a lamp or sound can be used to indicate the need for adjustment. It is possible.

以上の実施例においては、X平面での傾斜角を測定して
いるが、指標、検出器の選択により二次元の傾斜角度を
測定することができる。以下第6図に従って述べる。指
標42は互いに直交する二つのスリットから構成される
。425.424は前二者の担持像であり、。86は/
次元のラインセンサーである受光器である。X平面での
傾斜により指標はX方向に移動しe4  が変化し、X
平面での傾斜によりe3  が変化する。このe、、e
4を検出し、傾斜角に変換することにより二方向での傾
斜角度を独立に検出することが可能である。また、それ
ぞれのスリットを第5図で述べたように格子状・リーン
とすることにより、さらに高精度を測定を得ることが可
能であることは云うまでもない。
In the above embodiments, the inclination angle in the X plane is measured, but it is possible to measure the two-dimensional inclination angle by selecting the index and detector. The following description will be made according to Fig. 6. The indicator 42 is composed of two slits that are perpendicular to each other. 425.424 are the statues of the former two. 86 is/
It is a light receiver that is a dimensional line sensor. Due to the tilt in the X plane, the index moves in the X direction, e4 changes, and
e3 changes depending on the inclination in the plane. This e,,e
4 and converting it into an inclination angle, it is possible to independently detect inclination angles in two directions. Furthermore, it goes without saying that by forming each slit in a grid-like or lean shape as described in FIG. 5, it is possible to obtain even more accurate measurement.

また、この場合ラインセンサーの傾斜角度の傾きを変え
ることによりそれぞれの傾斜角度の感度を任意に選択で
。きる。
Also, in this case, the sensitivity of each tilt angle can be selected arbitrarily by changing the slope of the line sensor's tilt angle. Wear.

以上の実施例は、発光素子80とCCO検知器86とを
コリメートレンズ群40光軸を中心に対称位置に配置し
たQFF−AXIS型であるが、)・−フミラー等によ
って入射光束と反射光束とを分離する0N−AX I 
S型であってもよい。特にQFF−AXIS型において
は、入射光束と反射光束とが光軸を共用しかつ発光面と
受光面は同一平面内にあるため、発光部と受光部とを1
体にしてピント調整をすれば結像倍率/Xを容易に得る
ことができ、装置の組立・調整が安易である。
The above embodiment is of the QFF-AXIS type in which the light emitting element 80 and the CCO detector 86 are arranged symmetrically with respect to the optical axis of the collimating lens group 40. 0N-AX I to separate
It may be S type. In particular, in the QFF-AXIS type, the incident light beam and the reflected light beam share the optical axis, and the light emitting surface and the light receiving surface are in the same plane.
By adjusting the focus using the camera body, the imaging magnification /X can be easily obtained, and the assembly and adjustment of the device is easy.

本発明の第2実施例は、第7図に示すように、液面反射
系5σを透過面5zと反射面54とを有する液体容器に
液体56を封入して構成するものである。
In the second embodiment of the present invention, as shown in FIG. 7, a liquid surface reflection system 5σ is constructed by enclosing a liquid 56 in a liquid container having a transmission surface 5z and a reflection surface 54.

本発明の第3実施例は、第3図に示すように、液面反射
系60.透過面62、一部民射面64を含むプリズム上
面66、反射側面68からなるプリズム部70と、液体
部7zとから構成され、光束?4は自由液面で合計を回
反射され、測定nvが高い特徴を有する。
A third embodiment of the present invention, as shown in FIG. 3, has a liquid surface reflection system 60. It is composed of a prism section 70 consisting of a transmitting surface 62, a prism upper surface 66 including a part of a private illumination surface 64, and a reflecting side surface 68, and a liquid section 7z. 4 is reflected twice at the free liquid surface and has a high measured nv.

本発明の第弘実施例は傾斜角の二次元検出を行なう場合
の一実施例である。第S図で述べたよりに、指mを選択
し二次元検出を行なうことがで漬るが、第2図における
入射・反射光軸を含む面内での傾斜角度に対し、それと
直交する平面での傾斜角度検出の感度は入射角度に比例
して落ちる。
The first embodiment of the present invention is an embodiment in which two-dimensional detection of an inclination angle is performed. As described in Figure S, it is difficult to select finger m and perform two-dimensional detection, but with respect to the inclination angle in the plane containing the incident and reflected optical axes in Figure 2, the plane perpendicular to it The sensitivity of detecting the angle of inclination decreases in proportion to the angle of incidence.

そのため二次元的な傾斜角度を測定するには、1つの液
面反射部材に対し二方向に二つの受発光系を設置し、各
々の受発光系により各々の傾斜角度を測定することが望
オしい場合もある。すなわち液面反射部材80に、第9
図に示すように、透過面8zと反射面84との組を2つ
設け、各組について傾斜角測定装置を構成する。
Therefore, in order to measure two-dimensional inclination angles, it is recommended to install two light emitting and receiving systems in two directions for one liquid surface reflecting member, and to measure each inclination angle with each light receiving and emitting system. There are cases where it is true. In other words, the ninth
As shown in the figure, two sets of a transmitting surface 8z and a reflecting surface 84 are provided, and an inclination angle measuring device is configured for each set.

以上説明したように、本発明は自由液面で複数回反射さ
れた光束によって傾斜角を測定するから測定精度が高く
かつ発光光束と受光光束とを共通な光路4用でることに
より小型で簡易な構成である特徴を有するものである。
As explained above, the present invention measures the inclination angle using the light beam reflected multiple times on the free liquid surface, so the measurement accuracy is high, and since the emitted light beam and the received light beam are output through the common optical path 4, the present invention is compact and simple. It has a certain feature of configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は第1実施例の光
学図、第3図は第2図の線トlに沿つぇ力学。、やや図
ヶ1ALs[IiKゆオえ、えよい。 指標、検出器の説明図、第7図は第ユ実施例の断面図、
第g図は第3実施例の断面図、第9図は第を実施例の説
明図である。 2・・・光源、4・・・受光素子、6・・・液面反射系
、14・・・プリズム部、16・・・液体、18・・・
液体部、20・・・固定透過面、22・・・固定反射面
、80・・・発光素子、82・・・コンデンサーレンズ
 、34°・・指標、86・・・CCD検知器。 第4図 〕         、 第6図
FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is an optical diagram of the first embodiment, and FIG. 3 is a diagram showing the mechanics along line 1 in FIG. , somewhat figure 1 ALs [IiK Yuoe, Eiyoi. An explanatory diagram of the index and the detector; FIG. 7 is a cross-sectional diagram of the U embodiment;
FIG. g is a sectional view of the third embodiment, and FIG. 9 is an explanatory diagram of the third embodiment. 2... Light source, 4... Light receiving element, 6... Liquid surface reflection system, 14... Prism part, 16... Liquid, 18...
Liquid part, 20... Fixed transmission surface, 22... Fixed reflection surface, 80... Light emitting element, 82... Condenser lens, 34°... Index, 86... CCD detector. Figure 4], Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)発光部と、受光部と、液面反射系と、上記発光部
からの光束を略平行光束として上記液面反射系に入射さ
せかつ該液面反射系による反射光束を上記受光部に入射
させるレンズ堺とから構成され、上記液面反射系はその
入射光及び反射光が透過する固定透過面と、自由液面と
、該自由液面から・の反射光を反射して再び該自由液面
に向けて反射する固定反射面とからなることを特徴とす
る傾斜角測定装置。
(1) A light emitting section, a light receiving section, a liquid surface reflection system, a light beam from the light emitting section is incident on the liquid surface reflection system as a substantially parallel light beam, and a light beam reflected by the liquid surface reflection system is transmitted to the light receiving section. The liquid surface reflection system is composed of a fixed transmission surface through which the incident light and reflected light are transmitted, a free liquid surface, and a free liquid surface that reflects the reflected light from the free liquid surface and returns to the free surface. An inclination angle measuring device comprising a fixed reflective surface that reflects toward a liquid surface.
JP19880081A 1981-12-09 1981-12-09 Slant angle measuring device Granted JPS5899712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19880081A JPS5899712A (en) 1981-12-09 1981-12-09 Slant angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19880081A JPS5899712A (en) 1981-12-09 1981-12-09 Slant angle measuring device

Publications (2)

Publication Number Publication Date
JPS5899712A true JPS5899712A (en) 1983-06-14
JPH0345322B2 JPH0345322B2 (en) 1991-07-10

Family

ID=16397116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19880081A Granted JPS5899712A (en) 1981-12-09 1981-12-09 Slant angle measuring device

Country Status (1)

Country Link
JP (1) JPS5899712A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205308A (en) * 1984-03-30 1985-10-16 Asahi Optical Co Ltd Angle sensor
EP0161207A2 (en) * 1984-05-04 1985-11-13 Kabushiki Kaisha TOPCON Liquid prism
JPS61108908A (en) * 1984-10-31 1986-05-27 Asahi Optical Co Ltd Fine inclined angle detector
JPS61204515A (en) * 1985-03-07 1986-09-10 Sotsukishiya:Kk Correcting device for error of inclination sensor
JPS6214314U (en) * 1985-07-12 1987-01-28
JPS62274211A (en) * 1986-05-23 1987-11-28 Sotsukishiya:Kk Tilt angle detecting sensor
JPH01148813U (en) * 1988-04-01 1989-10-16
JPH02150707A (en) * 1988-12-01 1990-06-11 Kyoto Pref Gov Level vial
US5513001A (en) * 1992-11-12 1996-04-30 Kabushiki Kaisha Topcon Tilt angle automatic compensator in all directions
EP1245926A2 (en) * 2001-03-28 2002-10-02 Kabushiki Kaisha TOPCON Laser sighting device comprising a tilt detecting device
JP2002286448A (en) * 2001-03-28 2002-10-03 Topcon Corp Tilt detecting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113358U (en) * 1974-07-17 1976-01-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113358U (en) * 1974-07-17 1976-01-30

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205308A (en) * 1984-03-30 1985-10-16 Asahi Optical Co Ltd Angle sensor
EP0161207A2 (en) * 1984-05-04 1985-11-13 Kabushiki Kaisha TOPCON Liquid prism
US4666299A (en) * 1984-05-04 1987-05-19 Tokyo Kogaku Kikai Kabushiki Kaisha Inclination measuring apparatus having a prism with associated liquid container
JPS61108908A (en) * 1984-10-31 1986-05-27 Asahi Optical Co Ltd Fine inclined angle detector
JPH0464408B2 (en) * 1984-10-31 1992-10-14 Asahi Optical Co Ltd
JPS61204515A (en) * 1985-03-07 1986-09-10 Sotsukishiya:Kk Correcting device for error of inclination sensor
JPH0479523B2 (en) * 1985-03-07 1992-12-16 Sokkisha
JPH0453532Y2 (en) * 1985-07-12 1992-12-16
JPS6214314U (en) * 1985-07-12 1987-01-28
JPS62274211A (en) * 1986-05-23 1987-11-28 Sotsukishiya:Kk Tilt angle detecting sensor
JPH01148813U (en) * 1988-04-01 1989-10-16
JPH02150707A (en) * 1988-12-01 1990-06-11 Kyoto Pref Gov Level vial
US5513001A (en) * 1992-11-12 1996-04-30 Kabushiki Kaisha Topcon Tilt angle automatic compensator in all directions
EP1245926A2 (en) * 2001-03-28 2002-10-02 Kabushiki Kaisha TOPCON Laser sighting device comprising a tilt detecting device
JP2002286448A (en) * 2001-03-28 2002-10-03 Topcon Corp Tilt detecting device
EP1245926A3 (en) * 2001-03-28 2002-11-20 Kabushiki Kaisha TOPCON Laser sighting device comprising a tilt detecting device
JP4653898B2 (en) * 2001-03-28 2011-03-16 株式会社トプコン Tilt detection device

Also Published As

Publication number Publication date
JPH0345322B2 (en) 1991-07-10

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
US4534637A (en) Camera with active optical range finder
JP3119715B2 (en) Two-axis tilt measuring device
US6088090A (en) Inclination measuring apparatus
JPH0652171B2 (en) Optical non-contact position measuring device
JP3673954B2 (en) Tilt sensor and surveying instrument using the same
JPS5899712A (en) Slant angle measuring device
JP2000065566A (en) Device for measuring distance or incident angle of beam
US4814810A (en) Active-type auto-focusing mechanism
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
US8102540B2 (en) Coriolis flow sensor with optically reflective motion sensor
JP4086129B2 (en) Optical clinometer
US5134526A (en) Focus detecting optical system including eccentrically disposed aperture stops
US4641961A (en) Apparatus for measuring the optical characteristics of an optical system to be examined
JP2000146574A (en) Multi-axis system inclinometer for measuring inclination and inclination change
RU2359224C2 (en) Laser unit for measurement of object surfaces separate areas deviations from referent direction
JP2004012203A (en) Optical inclination angle detecting device
JPH10176927A (en) Inclination sensor
RU2713991C1 (en) Angle-measuring device
SU1052864A1 (en) Device for gauging object slope
SU1776989A1 (en) Angle-of-twist sensor
JP2789414B2 (en) Small tilt angle detector
JPS589010A (en) Detector for micro-displacement angle
JPH10311725A (en) Angle-of-inclination measuring apparatus
JP2005181452A (en) Optical device