JPS6017720A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPS6017720A
JPS6017720A JP58126742A JP12674283A JPS6017720A JP S6017720 A JPS6017720 A JP S6017720A JP 58126742 A JP58126742 A JP 58126742A JP 12674283 A JP12674283 A JP 12674283A JP S6017720 A JPS6017720 A JP S6017720A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
liquid crystal
organic insulating
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58126742A
Other languages
Japanese (ja)
Other versions
JPH0513287B2 (en
Inventor
Nobuko Kitahara
北原 信子
Osamu Takamatsu
修 高松
Tetsuya Kaneko
哲也 金子
Masao Sugata
菅田 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58126742A priority Critical patent/JPS6017720A/en
Priority to US06/628,276 priority patent/US4636038A/en
Publication of JPS6017720A publication Critical patent/JPS6017720A/en
Publication of JPH0513287B2 publication Critical patent/JPH0513287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Abstract

PURPOSE:To protect a TFT by an inorganic insulating layer, to stabilize characteristics, and also to prevent an adverse influence exerted on a device by an organic insulating layer, even if a crack is generated on the inorganic insulating layer, by forming additionally the organic insulating layer on the inorganic insulating layer. CONSTITUTION:An insulating layer for covering semiconductor layers 3 and 3' for constituting a thin film transistor TFT is formed by two layers, namely, an inorganic insulating layer 6a and an organic insulating layer 6b. A light shielding layer 9 and 9' are formed by forming a metal such as Al, etc. on the organic insulating layer 6b by a vapor depositing method, etc., and thereafter, leaving its metallic layer to a desired shape and size by means of photolithoetching, etc. An oriented layer 10 is formed so as to cover the organic insulating layer 6b and the light shielding layer 9.

Description

【発明の詳細な説明】 [技術分野] 本発明は液晶表示装置、特に各画素毎にスイッチングを
行うための 薄膜トランジスタ(TPT)アレイを有す
る液晶表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a liquid crystal display device, and particularly to a liquid crystal display device having a thin film transistor (TPT) array for switching each pixel.

[従来技術] 液晶表示装置は一般に2枚の基板により液晶をはさみ込
んだ構造を宥する。 この基板の液晶側には電極その他
の素子が形成されており、該素子により液晶の状態を制
御することにより表示が行なわれる。 2枚の基板のう
ちの一方にはその表面上に一様に電極が形成され、他方
にはその表面上に適宜の形状をもつ小ブロツクパターン
(画素)の電極が複数個形成される。 近年、画素電極
側の基板表面上に各画素毎のスイッチングのためのTF
Tアレイを付属せしめることが行なわれる。 第1図は
この様なTFTアレイを有する液晶表示装置の断面概略
図であり、ここでS及びS′はガラス等の透明基板であ
り、1及び1′はゲート電極であり、2及び2′は絶縁
層であり、3及び3′は半導体層であり、4及び4′は
ソース電極であり、5及び5′はドレイン電極であり、
6は絶縁及び配向層であり、7は液晶であり、8は透明
電極である。
[Prior Art] A liquid crystal display device generally has a structure in which a liquid crystal is sandwiched between two substrates. Electrodes and other elements are formed on the liquid crystal side of this substrate, and display is performed by controlling the state of the liquid crystal using the elements. Electrodes are uniformly formed on the surface of one of the two substrates, and a plurality of electrodes in a small block pattern (pixel) having an appropriate shape are formed on the surface of the other substrate. In recent years, TF for switching for each pixel has been installed on the substrate surface on the pixel electrode side.
Attachment of the T-array is performed. FIG. 1 is a schematic cross-sectional view of a liquid crystal display device having such a TFT array, where S and S' are transparent substrates such as glass, 1 and 1' are gate electrodes, and 2 and 2' are transparent substrates such as glass. is an insulating layer, 3 and 3' are semiconductor layers, 4 and 4' are source electrodes, 5 and 5' are drain electrodes,
6 is an insulating and alignment layer, 7 is a liquid crystal, and 8 is a transparent electrode.

半導体として光導電性を有するものが用いられる場合に
は、できるだけ光をあてない様にしてスイッチング特性
の安定化をはかるのが好ましい。
When a photoconductive semiconductor is used, it is preferable to avoid exposing it to light as much as possible in order to stabilize the switching characteristics.

このため、第2図に断面概略図で示される様な液晶表示
装置が用いられる。 即ち、ここでは、第1図に示され
る装置においてTFTアレイを覆っている絶縁及び配向
層6の上に更に半導体層に対応する位置に遮光層9及び
9′が形成されている。 遮光層には一般に金属が用い
られる。
For this purpose, a liquid crystal display device as shown in a schematic cross-sectional view in FIG. 2 is used. That is, here, in the device shown in FIG. 1, on the insulating and alignment layer 6 covering the TFT array, light shielding layers 9 and 9' are further formed at positions corresponding to the semiconductor layers. Metal is generally used for the light shielding layer.

以上の如き液晶表示装置において、絶縁層としては従来
無機材料たとえばアルミナ、酸化チタン等の金属酸化物
、窒化シリコン、二酸化シリコン等のシリコン化合物が
用いられていた。 しかしながら、TPTを覆うために
はある程度以上の膜厚が必要であり、これら無機材料の
薄膜は膜厚が厚くなると膜歪みが大きくなってクラック
等が入り易いという欠点があった。 この様なりラック
が生ずると、同時にTPTも破壊されてしまうためTP
Tの保護が行われず、特性の悪化をまねいてしまう。 
そこで無機材料の代わりにクラックの生じない有機材料
たとえばシリコン樹脂、アクリル樹脂、環化ポリイソプ
レン等を絶縁層として用いることが提案されている。 
ところが、これら有機材料の薄膜からなる絶縁層は保護
層とじての性能が十分ではなくTFT特性が不安定にな
るという欠点があった。
In the above liquid crystal display devices, inorganic materials such as alumina, metal oxides such as titanium oxide, and silicon compounds such as silicon nitride and silicon dioxide have conventionally been used as the insulating layer. However, in order to cover TPT, a certain thickness or more is required, and these thin films of inorganic materials have the drawback that as the film thickness increases, film distortion increases and cracks are likely to occur. If a rack occurs like this, the TPT will also be destroyed at the same time, so the TP
T is not protected, resulting in deterioration of characteristics.
Therefore, it has been proposed to use organic materials that do not cause cracks, such as silicone resin, acrylic resin, cyclized polyisoprene, etc., as the insulating layer instead of inorganic materials.
However, the insulating layer made of a thin film of these organic materials does not have sufficient performance as a protective layer and has the disadvantage that the TFT characteristics become unstable.

更に、以上の如き液晶表示装置においては絶縁層に配向
が施されて配向層をも兼ねているが、遮光層を形成する
場合には配向処理はその後に行わざるを得す、この配向
処理においては遮光層部分はその材料によっては配向が
施されないか又は絶縁層上とは極めて異なる配向状態と
なるため遮光層部分の近辺において液晶の配向が乱れ、
表示に悪影響を及ぼすことがある。
Furthermore, in the above-mentioned liquid crystal display device, the insulating layer is oriented and also serves as an alignment layer, but when forming a light-shielding layer, alignment treatment must be performed afterward. Depending on the material of the light-shielding layer, the liquid crystal may not be oriented or it may have an orientation that is extremely different from that on the insulating layer, so the alignment of liquid crystals may be disturbed near the light-shielding layer.
This may adversely affect the display.

[本発明の目的コ 本発明は、以上の如き従来技術に鑑み、TPTの絶縁層
が長期にわたって十分満足できる性能を発揮し得、且つ
遮光層部分の近辺においても液晶の配向が乱されること
のない、改良された液晶表示装置を提供することを目的
とする。
[Purpose of the present invention] In view of the above-mentioned prior art, the present invention provides a method that allows an insulating layer of TPT to exhibit sufficiently satisfactory performance over a long period of time, and that the alignment of liquid crystals is disturbed even in the vicinity of the light-shielding layer. An object of the present invention is to provide an improved liquid crystal display device that is free from the above problems.

[本発明の実施例コ 第3図は本発明液晶表示装置の好適な一実施例を示す断
面概略図である。
Embodiment of the Present Invention FIG. 3 is a schematic cross-sectional view showing a preferred embodiment of the liquid crystal display device of the present invention.

TPTを構成する半導体層3及び3′としてはたとえば
Si、CdS、CdSe、CdTe、Te”Jが用いら
れ、特に非晶質、多結晶又は微品質のSiが好適に用い
られる。 非晶質StはH原子又はハロゲン原子(特に
F原子)を含むことができる。 H原子又はハロゲン原
子はそれぞれQi独で含まれてもよいし双方が含まれて
もよい。
For example, Si, CdS, CdSe, CdTe, Te"J is used as the semiconductor layers 3 and 3' constituting the TPT, and amorphous, polycrystalline, or fine quality Si is particularly preferably used. Amorphous St may contain an H atom or a halogen atom (particularly an F atom). Each of the H atom and the halogen atom may be contained alone in Qi, or both may be contained.

その含有量は好ましくは全体で0601〜40原子%、
より好ましくは0.01〜30原子%である。
The content is preferably 0601 to 40 at% in total,
More preferably, it is 0.01 to 30 at%.

この実施例においては、TFTアレイを覆っている絶縁
層が2層(即ち6a及び6b)からなる。
In this embodiment, the insulating layer covering the TFT array consists of two layers (ie 6a and 6b).

6aは無機絶縁層であり、金属醇化物たとえば酸化チタ
ン、アルミナ、又はシリコン化合物たとえば二酸化シリ
コン、窒化シリコン等の無機材料を用いて層着法、スパ
ッタ法、CVD法等により形成することができる。 無
機絶縁層の層厚はすくなくともTPTのチャネル部分を
保護する程度であるのが良く、好ましくは500〜30
00A程庶である。
Reference numeral 6a is an inorganic insulating layer, which can be formed using an inorganic material such as a metal oxide, such as titanium oxide, alumina, or a silicon compound, such as silicon dioxide or silicon nitride, by a layer deposition method, a sputtering method, a CVD method, or the like. The thickness of the inorganic insulating layer should be at least enough to protect the channel portion of the TPT, and preferably 500 to 30 mm.
It is about 00A.

6bは有機絶縁層である。 有機絶縁層を形成する材料
としては熱硬化性樹脂、熱可塑性樹脂あるいは合成ヨム
系樹脂が好′適に用いられるが、実質的に完全硬化させ
ることが可能であり、その状態において実質的に可視光
に対して透明な材料で且つ配向処理が可能である材料で
あればよい。
6b is an organic insulating layer. Thermosetting resins, thermoplastic resins, or synthetic resins are preferably used as materials for forming the organic insulating layer, but they can be substantially completely cured, and in that state they are substantially invisible. Any material may be used as long as it is transparent to light and can be subjected to alignment treatment.

熱硬化性樹脂としてはたとえばフェノール樹脂、ポリエ
ステル樹脂、シリコン樹脂、アクリル樹脂、ウレタン樹
脂等をあげることができる。 これらの熱硬化性樹脂中
には必要に応じて架橋剤、重合剤、増感剤等を添加して
もよい。 熱可塑性樹脂としてはたとえばポリカーボネ
ート、ポリエチレン、ポリスチレン等をあげることがで
きる。
Examples of the thermosetting resin include phenol resin, polyester resin, silicone resin, acrylic resin, and urethane resin. A crosslinking agent, a polymerizing agent, a sensitizer, etc. may be added to these thermosetting resins as necessary. Examples of thermoplastic resins include polycarbonate, polyethylene, and polystyrene.

この場合も必要に応じて安定剤等を添加してもよい。 
合成ゴム系樹脂としてはたとえば環化ポリイソプレン、
環化ポリブタジェン等をあげることができる。 この場
合も必要に応じて架橋剤、増感剤等を添加してもよい。
Also in this case, a stabilizer or the like may be added if necessary.
Examples of synthetic rubber resins include cyclized polyisoprene,
Examples include cyclized polybutadiene. Also in this case, a crosslinking agent, sensitizer, etc. may be added as necessary.

有機絶縁層はたとえば熱硬化性樹脂あるいは合成ヨム系
樹脂を溶剤に溶解した後に前記の無機絶縁層トに塗布し
、加熱や紫外線、放射線等の電磁波の照射を単独で又は
これらを併用して樹脂を架橋、組合、硬化させることに
より形成される。
The organic insulating layer is made by dissolving a thermosetting resin or a synthetic resin in a solvent and then coating it on the inorganic insulating layer, and applying heat or irradiation with electromagnetic waves such as ultraviolet rays or radiation, either alone or in combination, to form the resin. It is formed by crosslinking, combining, and curing.

熱可塑性樹脂を用いた場合には、たとえば該樹脂に熱を
加えて溶融して前記無機絶縁層」二に塗布した後に冷却
、硬化させることにより有機絶縁層が形成される。 有
機絶縁層の層厚は、無機絶縁層の層厚とも関係するが、
好ましくは500〜3000Aとされる。 尚、無機絶
縁層と有機絶縁層の層厚の和はあまり大きな値であると
表示に悪影響を及ぼすこともあるので適当な層厚に決定
される。 加熱温度はTPTを゛構成する半導体層に非
晶質S+を用いた場合には300℃以下の温度とするこ
とが好ましい。 これは、300℃以−にの温度になる
と非晶質Si層が熱的な影響を受けてTPTの特性が変
化したり悪化したりする場合もあり得るからである。
When a thermoplastic resin is used, the organic insulating layer is formed by, for example, applying heat to the resin to melt it and applying it to the inorganic insulating layer, followed by cooling and hardening. The thickness of the organic insulating layer is also related to the thickness of the inorganic insulating layer,
Preferably it is 500-3000A. Note that if the sum of the layer thicknesses of the inorganic insulating layer and the organic insulating layer is too large, it may adversely affect the display, so the layer thickness is determined to be an appropriate layer thickness. The heating temperature is preferably 300° C. or lower when amorphous S+ is used for the semiconductor layer constituting the TPT. This is because when the temperature reaches 300° C. or higher, the amorphous Si layer may be thermally affected and the characteristics of the TPT may change or deteriorate.

遮光層9及び9′はAt等の金属を蒸着法等によって有
機絶縁層上に形成した後に、その金属層をフォトリソエ
ツチング等により所望の形状及び大きさに残すことによ
り形成される。
The light shielding layers 9 and 9' are formed by forming a metal such as At on the organic insulating layer by vapor deposition or the like, and then leaving the metal layer in a desired shape and size by photolithography or the like.

ioは配向層であり、有機絶縁層6b及び遮光層9を覆
う如くに形成される。 配向層10の材料は通常この種
の装置において使用されるものであれば全て使用するこ
とができる。 たとえば、ポリパラキシリレンをCVD
法により成膜させたり又はポリビニルアルコールをスピ
ンナー塗布したりして、しかる後に一定方向へ直接表面
研摩して配向せしめることにより有機配向層が形成され
る。 また、無機材料を斜方蒸着せしめることにより無
機配向層が形成される。
io is an alignment layer, which is formed to cover the organic insulating layer 6b and the light shielding layer 9. Any material for the alignment layer 10 that is normally used in this type of device can be used. For example, CVD of polyparaxylylene
An organic alignment layer is formed by forming a film by a method or applying polyvinyl alcohol using a spinner, and then directly polishing the surface in a certain direction for alignment. Further, an inorganic alignment layer is formed by obliquely depositing an inorganic material.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1: TFTアレイを形成した基板表面上に更にプラズマCV
D法を用いて窒化シリコン層(2000人厚)金形成し
た。 次に、この窒化シリコン層上にキシレンに溶解し
た環化ポリイソプレン系レジスト (東京応化社製 0
DUR−110WR:i、acp)を300Orpmで
スピンナー塗布し高圧水銀灯で2秒間硬化させ更に15
0℃で20分間ベーキングを行った。 その結果、約1
gm厚の無色透明な有機絶縁層が形成された。 更にそ
の上に金属アルミニウムを蒸着し所要部分以外をエンチ
ングにより除去して遮光層を形成した。
Example 1: Plasma CV was further applied on the surface of the substrate on which the TFT array was formed.
A silicon nitride layer (2000 mm thick) of gold was formed using the D method. Next, on this silicon nitride layer, a cyclized polyisoprene resist (manufactured by Tokyo Ohka Co., Ltd. 0
DUR-110WR: i, acp) was applied with a spinner at 300 rpm, cured for 2 seconds with a high-pressure mercury lamp, and further cured for 15 minutes.
Baking was performed at 0°C for 20 minutes. As a result, approximately 1
A colorless and transparent organic insulating layer having a thickness of gm was formed. Furthermore, metal aluminum was deposited on top of the film and removed by etching except for the required portions to form a light-shielding layer.

その上に減圧CVD法によりポリパラキシリレンを約2
00OA厚に堆積させてその表面に配向処理を行った。
On top of that, approximately 2
The film was deposited to a thickness of 0.00 OA, and its surface was subjected to orientation treatment.

 かくして得られた表示基板を用いて、通常の−[程を
経て液晶表示装置を作製した。
Using the thus obtained display substrate, a liquid crystal display device was fabricated through the usual -[process.

かくして?4)られた液晶表示装置を高温多湿雰囲気(
90’C190%RH)中で1ooo時間連続動作させ
たところ、動作中良好な表示特性を示した。
Thus? 4) Place the liquid crystal display device in a hot and humid atmosphere (
When the device was continuously operated for 100 hours at 90'C, 190% RH), it exhibited good display characteristics during operation.

実施例2: TFTアレイを形成した基板表面上に更にプラズマCV
D法を用いて窒化シリコン層(2000人厚)金形成し
た。 次に、この窒化シリコン層トにキシレンに溶解し
た環化ポリイソプレン系レジスト(東京応化社製 0D
UR−110WR:18 c p)を300Orpmで
スピンナー塗布し高圧水銀灯で2秒間硬化させ更に15
0’Cで20分間ベーキングを行った。 その結果、約
1pm厚の無色透明な有機絶縁層が形成された。 更に
その上に金属アルミニウムを蒸着し所要部分以外をエツ
チングにより除去して遮光層を形成した。
Example 2: Plasma CV was further applied on the substrate surface on which the TFT array was formed.
A silicon nitride layer (2000 mm thick) of gold was formed using the D method. Next, a cyclized polyisoprene resist (0D manufactured by Tokyo Ohka Co., Ltd.) dissolved in xylene was applied to this silicon nitride layer.
UR-110WR: 18 c p) was applied with a spinner at 300 rpm, cured for 2 seconds with a high-pressure mercury lamp, and further coated with 15 c p).
Baking was performed at 0'C for 20 minutes. As a result, a colorless and transparent organic insulating layer with a thickness of about 1 pm was formed. Furthermore, metallic aluminum was deposited on top of the layer and removed by etching other than the required portions to form a light-shielding layer.

その上にポリビニルアルコールの5%水溶液を3000
rpmでスピンナー塗布し乾燥させてその表面に配向処
理を行い、約2000’A厚の配向層を形成した。 か
くして得られた表示基板を用いて、通常の工程を経て液
晶表示装置を作製した。 かくして得られた液晶表示装
置を高温多湿雰囲気(90℃、90%RH)中で1oo
o時間岨続動作させたところ、動作中良好な表示特性を
称した。
On top of that, add 3000 ml of 5% aqueous solution of polyvinyl alcohol.
The coating was applied with a spinner at rpm and dried, and the surface thereof was subjected to orientation treatment to form an orientation layer with a thickness of about 2000'A. Using the thus obtained display substrate, a liquid crystal display device was manufactured through normal steps. The thus obtained liquid crystal display device was heated for 10 minutes in a high temperature and humid atmosphere (90°C, 90% RH).
When the device was operated for a continuous period of o hours, it was found that the display had good display characteristics during operation.

[本発明の効果] 以上の如き本発明によれば、無機絶縁層上に更に有機絶
縁層を形成することによって、無機絶縁層によりTPT
の保護及び特性の安定化が実現されるとともに、従来の
無機絶縁層が有していた欠点であるクラックの発生が生
じても、有機絶縁層があるために、装置に与えられる悪
影響が防止されピンホールの発生はほぼ完全に防止でき
、長期にわたって安定した性能を有する液晶表示装置が
提供される。 また、本発明によれば配向層は遮光層を
も覆って全面均一に形成され配向処理も遮光層上をも含
め全面均一に施されるので、遮光層部分の近辺において
も液晶配向の乱れを生ずることなく全面均一な良好な表
示特性が得られる。
[Effects of the present invention] According to the present invention as described above, by further forming an organic insulating layer on the inorganic insulating layer, TPT
In addition, even if cracks occur, which is a drawback of conventional inorganic insulating layers, the presence of the organic insulating layer prevents any negative effects on the device. The occurrence of pinholes can be almost completely prevented, and a liquid crystal display device with stable performance over a long period of time can be provided. Furthermore, according to the present invention, the alignment layer is formed uniformly over the entire surface, covering the light-shielding layer, and the alignment treatment is applied uniformly over the entire surface, including on the light-shielding layer. It is possible to obtain uniform and good display characteristics over the entire surface without causing any distortion.

更に、本発明によれば配向層は遮光層をも覆って表面が
平滑に形成されるので均一な配向処理が容易に達成でき
る。 また凹凸の多いTPT形成基板に全面に配向層を
形成するこ艷により基板の平滑化が促進され、凹凸によ
り液晶厚が変動して配向が乱れる現象を緩和する効果も
ある。
Further, according to the present invention, the alignment layer also covers the light-shielding layer and is formed with a smooth surface, so that uniform alignment treatment can be easily achieved. Furthermore, by forming an alignment layer over the entire surface of a TPT-formed substrate with many irregularities, the smoothing of the substrate is promoted, and there is also an effect of alleviating the phenomenon that the liquid crystal thickness changes due to irregularities and the alignment is disturbed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の液晶表示装置の断面図であり
、第3図は本発明による液晶表示装置の断面図である。 l:ゲート電極 2:絶縁層 3:半導体層 4:ソース電極 5ニドレイン電極 6:絶縁層 6a:無機絶縁層 6b:有機絶縁層 7:液晶 8:透明電極 9:遮光層 10:配向層 S二基板
1 and 2 are cross-sectional views of a conventional liquid crystal display device, and FIG. 3 is a cross-sectional view of a liquid crystal display device according to the present invention. 1: Gate electrode 2: Insulating layer 3: Semiconductor layer 4: Source electrode 5 Ni-drain electrode 6: Insulating layer 6a: Inorganic insulating layer 6b: Organic insulating layer 7: Liquid crystal 8: Transparent electrode 9: Light-shielding layer 10: Alignment layer S2 substrate

Claims (1)

【特許請求の範囲】[Claims] (1)基板表面上に薄膜トランジスタアレイをイー1す
る液晶表示装置において、薄膜トランジスタアレイが無
機絶縁層に覆われており、該無機絶縁層が有機絶縁層に
覆われており、該有機絶縁層上には薄膜トランジスタに
対応する位置に遮光層が形成されており、更に該有機絶
縁層と遮光層とを覆う如くに配向層が形成されているこ
とを特徴とする。液晶表示装置。
(1) In a liquid crystal display device in which a thin film transistor array is disposed on a substrate surface, the thin film transistor array is covered with an inorganic insulating layer, the inorganic insulating layer is covered with an organic insulating layer, and the thin film transistor array is covered with an organic insulating layer. is characterized in that a light shielding layer is formed at a position corresponding to the thin film transistor, and an alignment layer is further formed to cover the organic insulating layer and the light shielding layer. LCD display device.
JP58126742A 1983-07-09 1983-07-12 Liquid crystal display device Granted JPS6017720A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58126742A JPS6017720A (en) 1983-07-12 1983-07-12 Liquid crystal display device
US06/628,276 US4636038A (en) 1983-07-09 1984-07-06 Electric circuit member and liquid crystal display device using said member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126742A JPS6017720A (en) 1983-07-12 1983-07-12 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS6017720A true JPS6017720A (en) 1985-01-29
JPH0513287B2 JPH0513287B2 (en) 1993-02-22

Family

ID=14942778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126742A Granted JPS6017720A (en) 1983-07-09 1983-07-12 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS6017720A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0376648A2 (en) * 1988-12-26 1990-07-04 Sharp Kabushiki Kaisha A liquid crystal display apparatus
JPH03103830A (en) * 1989-09-19 1991-04-30 Toppan Printing Co Ltd Active matrix type liquid crystal display device
US5078475A (en) * 1985-12-18 1992-01-07 Canon Kabushiki Kaisha Flc device with color filter and insulating protection layer with pencil hardness of at least hb
US5124823A (en) * 1989-01-27 1992-06-23 Matsushita Electric Industrial Co., Ltd. Active matrix addressed liquid crystal image display and method for fabricating the same
CN104508548A (en) * 2012-07-20 2015-04-08 株式会社半导体能源研究所 Display device
JP2016122207A (en) * 2016-02-05 2016-07-07 株式会社半導体エネルギー研究所 Liquid crystal display device
US9640630B2 (en) 1999-08-12 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US10760628B2 (en) 2017-11-27 2020-09-01 Honda Motor Co., Ltd. Clutch control device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078475A (en) * 1985-12-18 1992-01-07 Canon Kabushiki Kaisha Flc device with color filter and insulating protection layer with pencil hardness of at least hb
EP0376648A2 (en) * 1988-12-26 1990-07-04 Sharp Kabushiki Kaisha A liquid crystal display apparatus
US5124823A (en) * 1989-01-27 1992-06-23 Matsushita Electric Industrial Co., Ltd. Active matrix addressed liquid crystal image display and method for fabricating the same
US5459092A (en) * 1989-01-27 1995-10-17 Matsushita Electric Industrial Co., Ltd. Method for fabricating an active matrix addressed liquid crystal image device
JPH03103830A (en) * 1989-09-19 1991-04-30 Toppan Printing Co Ltd Active matrix type liquid crystal display device
US9640630B2 (en) 1999-08-12 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US10018887B2 (en) 2012-07-20 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Display device
CN104508548A (en) * 2012-07-20 2015-04-08 株式会社半导体能源研究所 Display device
US10437091B2 (en) 2012-07-20 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Display device
US10852576B2 (en) 2012-07-20 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Display device
US10877338B2 (en) 2012-07-20 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Display device
US11137651B2 (en) 2012-07-20 2021-10-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US11327376B2 (en) 2012-07-20 2022-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device
US11543718B2 (en) 2012-07-20 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Display device
US11841595B2 (en) 2012-07-20 2023-12-12 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2016122207A (en) * 2016-02-05 2016-07-07 株式会社半導体エネルギー研究所 Liquid crystal display device
US10760628B2 (en) 2017-11-27 2020-09-01 Honda Motor Co., Ltd. Clutch control device

Also Published As

Publication number Publication date
JPH0513287B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
US4636038A (en) Electric circuit member and liquid crystal display device using said member
US7710530B2 (en) Color filter substrate and display apparatus using the same
US20020047966A1 (en) Liquid crystal display device
JP2001311963A (en) Liquid crystal display device and manufacturing method therefor
JPS60103676A (en) Manufacture of thin film transistor array
US6459463B2 (en) Reflective liquid crystal display having a bent shape and method of manufacturing thereof
JPS6017720A (en) Liquid crystal display device
JPS6017479A (en) Electric circuit substrate
JPH0743735A (en) Electrode substrate for display element and its production
US6580226B1 (en) Flat panel display device and method for manufacturing the same
US7179673B2 (en) Method of fabricating liquid crystal display device
US6724457B1 (en) Liquid crystal display device and method of manufacturing the same
JP2659039B2 (en) Electric circuit board
JP2622484B2 (en) Electric circuit board and liquid crystal device using the same
JP2001100247A (en) Active matrix type liquid crystal display device and method for manufacturing the same
JPH10161151A (en) Active matrix type liquid crystal display device and its production
JPS60117690A (en) Semiconductor device
JPH034214A (en) Liquid crystal display device
JPS6226858A (en) Thin film transistor assembly having light shielding layer
JP2001133790A (en) Liquid crystal display device
JPH0475025A (en) Lcd panel
JPS59172627A (en) Display panel
JP2003215603A (en) Liquid crystal display device
JPS62288883A (en) Manufacture of thin film transistor
US6927017B2 (en) Method for fabricating reflective-type LCD