JPS60176489A - Control system of synchronous motor - Google Patents

Control system of synchronous motor

Info

Publication number
JPS60176489A
JPS60176489A JP59031840A JP3184084A JPS60176489A JP S60176489 A JPS60176489 A JP S60176489A JP 59031840 A JP59031840 A JP 59031840A JP 3184084 A JP3184084 A JP 3184084A JP S60176489 A JPS60176489 A JP S60176489A
Authority
JP
Japan
Prior art keywords
torque command
current
synchronous motor
phase
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59031840A
Other languages
Japanese (ja)
Other versions
JPH0570397B2 (en
Inventor
Masayuki Nashiki
政行 梨木
Satoshi Eguchi
悟司 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Tekkosho KK
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Tekkosho KK, Okuma Machinery Works Ltd filed Critical Okuma Tekkosho KK
Priority to JP59031840A priority Critical patent/JPS60176489A/en
Publication of JPS60176489A publication Critical patent/JPS60176489A/en
Publication of JPH0570397B2 publication Critical patent/JPH0570397B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To remedy to an ultrafine torque command by forming the product of a current amplitude, a magnetic flux density of a rotor and a cosine value of the phase difference of a current flowed to a stator winding proportional to the torque command so that the torque generated in a synchronous motor coincides with the torque command. CONSTITUTION:A current amplitude IA is calculated by a calculator 20 on the basis of a torque command T and the prescribed value TL, and the magnetic flux density of a rotor and the cosine cosalpha of the phase difference alpha of the current flowed to a stator winding are calculated by a calculator 21. A 3-phase sinusoidal wave generator 2A generates sinusoidal wave signals s1-s3 in which the phases are displaced at 120 deg. for deciding the phase of the current flowed to the stator winding and the frequency corresponding to the rotating position of the rotor. The current of the stator winding is controlled so that the product of the torque T, the current amplitude IA and the cosine value cosalpha are proportional.

Description

【発明の詳細な説明】 この発明は、制御装置の不感帯の影響を減少させ、微小
なトルクも精密に制御できる同期電動機の制御方式に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a synchronous motor that can reduce the influence of a dead zone of a control device and precisely control even minute torques.

−第1図は同期電動機の概略構造をめすもの° で、固
定子30には固定子巻線ZljZ2及びZ3が三相巻き
にされ、制御装置からは三相交流電流が供給゛されるよ
うになっている。この電流は磁化された回転子31の位
置に同期して流され、回転子31の発生する磁束との間
の相互作用により同第2図はこのような同期電動機の制
御装置の従来例を示すものであり、トルク指令Tが増幅
機lで増幅されて、固定子巻線21〜Z3に流れる巻線
電流の振幅の指令IAとなって乗算器3〜5に入力され
る。一方、同期電動fileに連結された位置検出器1
8によって検出される回転子31の位置DPが3相正弦
波発生装置2に入力され、固定子@1!lZl、 Z2
及びZ3に流れる電流の周波数を決める120°ずつ位
相のずれた正弦波信号Sl。
- Figure 1 shows the schematic structure of a synchronous motor, in which the stator windings Z2 and Z3 are wound in three phases on the stator 30, and three-phase alternating current is supplied from the control device. It has become. This current is caused to flow in synchronization with the position of the magnetized rotor 31, and due to the interaction with the magnetic flux generated by the rotor 31, Figure 2 shows a conventional example of such a control device for a synchronous motor. The torque command T is amplified by an amplifier 1, becomes a command IA for the amplitude of the winding current flowing through the stator windings 21 to Z3, and is input to the multipliers 3 to 5. On the other hand, a position detector 1 connected to a synchronous electric file
The position DP of the rotor 31 detected by 8 is input to the three-phase sine wave generator 2, and the position DP of the rotor 31 detected by the stator @1! lZl, Z2
and a sine wave signal Sl whose phase is shifted by 120°, which determines the frequency of the current flowing through Z3.

S2及びS3が発生され、それぞれ乗算器3.4及び5
に入力される。第1相については、増幅器1からの電流
振幅IA及び3相正弦波発生回路からの正弦波信号Sl
が乗算器3で乗算されて電流指令Rilとなる。この電
流指令Rilが加算器6に入力されると共に、電流検出
器15によって検出される固定子巻線の第1相Z1の電
流11が加算器6に人力され、電流指令Rilから固定
子電流i1が減算された電流偏差EilがPIロコ9ン
トローラ9に入力される。そして、 PIDコントロー
ラ9で補償演算がなされ、その結果が電力増幅器12に
伝送され、電力増幅器12から第1相の固定イ巻線Zl
の一端に所要の電圧v1が印加されるようになっている
。また、第2相、第3相についても上述と全く同様であ
る。
S2 and S3 are generated and multipliers 3.4 and 5, respectively.
is input. For the first phase, the current amplitude IA from the amplifier 1 and the sine wave signal Sl from the three-phase sine wave generation circuit
is multiplied by the multiplier 3 and becomes the current command Ril. This current command Ril is input to the adder 6, and the current 11 of the first phase Z1 of the stator winding detected by the current detector 15 is inputted to the adder 6, and the stator current i1 is inputted from the current command Ril. The current deviation Eil from which is subtracted is input to the PI loco controller 9. Then, the PID controller 9 performs a compensation calculation, and the result is transmitted to the power amplifier 12.
A required voltage v1 is applied to one end of the . Further, the second phase and the third phase are also exactly the same as described above.

そして、電力増幅器12.’ 13及び14と、固定子
巻線の第1相Zl、第2相Z2及び第3相Z3とは第3
図に示すようにそれぞれY形結線されて々二いに接続さ
れており1例えば第1相の固定子巻線Z1には、電力増
幅器12の電圧Vlと固定子巻線21〜Z3の中性点N
の電位vOとの電位差に応じて固定子電流i1が流れる
。固定子電流12及びi3についても同様であり、この
固定子電流11〜13と回転子31の発生する磁束との
相互作用により回転子31には回転トルクが発生するこ
とになる。
and a power amplifier 12. ' 13 and 14, the first phase Zl, the second phase Z2 and the third phase Z3 of the stator winding are
As shown in the figure, the wires are connected in a Y-shape and are connected in parallel.1 For example, the stator winding Z1 of the first phase has the voltage Vl of the power amplifier 12 and the neutral voltage of the stator windings 21 to Z3. Point N
A stator current i1 flows according to the potential difference between the voltage and the voltage vO. The same applies to the stator currents 12 and i3, and rotational torque is generated in the rotor 31 due to the interaction between the stator currents 11 to 13 and the magnetic flux generated by the rotor 31.

このような構成において、制御装置に与えられるトルク
指令Tに基づいて電流振幅IAが発生される。また、回
転子位置口Pに対応した周波数の正弦波信号Sl、 S
2及びS3が発生され、それぞれ乗9器3,4及び5で
電流振幅IAと乗算されて電流指令Ril、 Ri2及
びRi3となる。電流指令Rilに基づいて、加算器6
.PIDコントローラ9、電力増幅器12及び電流検出
器15から成る電流フィードバック系を介して第1相の
固定子巻線Zlには固定子電流i1が流れて、同様に固
定子巻線の第2相及び第3相にはそれぞれ固定子電流1
2及びi3が流れている。
In such a configuration, the current amplitude IA is generated based on the torque command T given to the control device. In addition, sine wave signals Sl, S with frequencies corresponding to the rotor position port P
2 and S3 are generated and multiplied by the current amplitude IA by multipliers 3, 4 and 5, respectively, to become current commands Ril, Ri2 and Ri3. Based on the current command Ril, the adder 6
.. A stator current i1 flows through the first phase stator winding Zl through a current feedback system consisting of a PID controller 9, a power amplifier 12, and a current detector 15. The stator current is 1 for each third phase.
2 and i3 are flowing.

3相正弦波発生回路2の周波数がω/2πであり、固定
子巻線21−23のインピーダンスが同一であって、電
流フィードバーツク系により正常な電流制御がなされて
いるとすると、一般にが成り立つ。そして、これら固定
子電流i1〜13によって回転子31が角速度ωで回転
されている。時点0において、回転子31の発生するw
f隙密度Bの方向と固定子巻線21に平行になっている
とすると、時点しにおいて固定子巻線Zl、 22及び
Z3と直交する磁束密度81.82及びB3はそれぞれ (ただしBAは磁束密度Bの大きさ) となる。
Assuming that the frequency of the three-phase sine wave generating circuit 2 is ω/2π, the impedances of the stator windings 21-23 are the same, and normal current control is performed by the current feedbar system, generally, It works. The rotor 31 is rotated at an angular velocity ω by these stator currents i1 to i13. At time 0, the generated w of the rotor 31
Assuming that the direction of the f-gap density B is parallel to the stator winding 21, the magnetic flux densities 81.82 and B3 perpendicular to the stator windings Zl, 22 and Z3 are respectively (however, BA is the magnetic flux The size of density B) becomes.

ここで、固定子巻線Zl−23の平均半径及び有効長さ
すべて同一でそれぞれR及びLであるとすると、回転子
31にかかる回転トルクTMは。
Here, assuming that the average radius and effective length of the stator winding Zl-23 are all the same and R and L, respectively, the rotational torque TM applied to the rotor 31 is.

(IA) 〜(Ic)及び(2A) −(2C)式より
T阿 −L ・ R・ (Bl −目 +B2 ・ i
2 + B3 ・ 13)= 是 L @ R−BA*
 IA 拳 cascx=Ka IA・cosa −、
、叫ぺ3)(ただしに=jL−R−BA) となる。
From formulas (IA) ~ (Ic) and (2A) - (2C), Ta -L ・R・ (Bl −th +B2 ・i
2 + B3 ・ 13) = Yes L @ R-BA*
IA fist cascx=Ka IA・cosa −,
, shout 3) (However, = jL-R-BA).

3相IF弦波発生回路2は回転f31の回転、つまり磁
束密度Bの回転と固定イ・′1L流11との間に位相差
がないように11−弦波信号Slを発生するから、第4
12に示すようにα−0であり、り3ン式%式%(4) となる。従って、トルク指令Tに一致するように回転ト
ルクTNを発生させるには、第5図に示すように電流振
幅IAを IA=i ・T 、 ・・・・旧・・(5) とすればよい。(5)式から分るように微小トルクを発
生する必要がある場合には電流振幅IAも微小なものさ
なり、(IA)〜(IC)から分るようにこのときには
固定子巻線Zl、Z2及びZ3に流れる電流i1. i
2及びi3の振幅は微小なものとなる。
The three-phase IF sinusoidal wave generation circuit 2 generates the 11-single wave signal Sl so that there is no phase difference between the rotation of the rotation f31, that is, the rotation of the magnetic flux density B, and the fixed I'1L flow 11. 4
As shown in Figure 12, it is α-0, and the formula % is expressed as follows. Therefore, in order to generate the rotational torque TN to match the torque command T, the current amplitude IA should be set as IA=i ・T, . . . old . . . (5) as shown in Fig. 5. . As can be seen from equation (5), when it is necessary to generate a minute torque, the current amplitude IA is also minute, and as seen from (IA) to (IC), in this case, the stator winding Zl, Current i1. flowing through Z2 and Z3. i
The amplitudes of 2 and i3 are minute.

ところが、例えば゛重力増幅器12・〜14には第6図
にその人出力特性を示すように、入力v1が微小な場合
には出力Voが変化しない不感帯が存在し、微小な′上
流制j#■はできない。従って、従来のFlj制御装置
では微小なトルク指令Tに対応できない欠点かあった。
However, as shown in FIG. 6, which shows the human output characteristics of the gravity amplifiers 12 to 14, for example, there is a dead zone in which the output Vo does not change when the input v1 is small, and the small upstream control j# ■Cannot be done. Therefore, the conventional Flj control device has the disadvantage that it cannot respond to the minute torque command T.

よって、この発すjの目的は上述のような欠点かなく、
微小なトルク指令Tにも対処1.得る四〇I+ ’*l
i:動機の制御方式を提供することにある。
Therefore, the purpose of this emitting j is without the drawbacks mentioned above,
Coping with minute torque commands T1. Get 40I+ '*l
i: To provide a motivation control method.

以下にこの発明を説明する。This invention will be explained below.

この発明は、固定子と、この固定子に三和巻に巻回され
た固定子−45線と、磁化された回転子とで成る同期電
動機に対して、トルク指令Tがら固定巻線に流れる電流
の振幅TAを決定し、回転子の回転子位置から固定子巻
線の電流の位相及び周波数を決定するようになっている
同期電動の制iIU方式に関するもので、同期電動機の
発生トルクTMかトルク指令Tに一致するように、電流
振幅IAと、回転子の磁束密度及び画定子巻線に流れる
電流の位相履αの余弦値cosαとの積iA會cosα
を前記トルク指令Tに比例させるようにしたものである
This invention applies a torque command T to a fixed winding of a synchronous motor consisting of a stator, a stator-45 wire wound around the stator in a Sanwa winding, and a magnetized rotor. This relates to the iIU method for controlling synchronous motors, which determines the amplitude TA of the current, and determines the phase and frequency of the stator winding current from the rotor position of the rotor. In order to match the torque command T, the product iA cosα of the current amplitude IA and the cosine value cosα of the magnetic flux density of the rotor and the phase coefficient α of the current flowing in the delimiter winding is
is made proportional to the torque command T.

第71Δはこの発明の方式を実現するための一実施例の
概略構成を第2図に対応させて示すものであり、)・ル
ク指令丁は増幅器1で増幅された後演算器20に人力さ
れると共に、1iif ’i’L器2jに人力されてい
る。さらに1.没足′器等からの カー(Featも演
η器20に人力されると共に、1iitq器21に入力
されている。演算器20は、第8図に示すように1ルク
指令Tの絶対値か一定値Tし以上の場合には、トルク指
令Tに比例させてia流振幅IAを(5)式を満たすよ
うに発生し、トルク指令Tの絶対値が一定値TL以下の
場合には、トルク指令Tか止のとき電流振幅IAを一定
値ILとし、トルク指令Tが負のとき電流振幅IAを一
定仙−IL として乗算器3〜5に入力する。
No. 71Δ shows a schematic configuration of an embodiment for realizing the method of the present invention, corresponding to FIG. At the same time, 1iif 'i'L equipment 2j is manually operated. Furthermore 1. The signal (Feat) from the 1-lux unit, etc. is also input manually to the operator 20, and is also input to the 1IITQ unit 21. If the absolute value of the torque command T is less than or equal to the constant value TL, the ia flow amplitude IA is generated in proportion to the torque command T to satisfy equation (5), and if the absolute value of the torque command T is less than or equal to the constant value TL, the torque When the command T stops or stops, the current amplitude IA is set to a constant value IL, and when the torque command T is negative, the current amplitude IA is set to a constant value -IL and is input to the multipliers 3-5.

−力、演鍵器21は第9図に示すようにトルク指令Tの
絶対値が一定41〜TL以りの場合には、後述する位相
差αの余弦値CO5αを1とし、トルク指令Tの絶対値
か〜・定値TL以下の場合には、トルク指令Tが零又は
正のとき cosa; h ・旧・・・・・(6)とし、トルク指
令Tか負のとき Cogα=十 ・・・・・・・・(7)として3相1に
弦波発生−1路2に人力する。従って、電流振幅IAと
余弦値cosαの稙IA・ cosaとトルク指令Tと
の間には、j?JlO図に示すように宮に T = K #IA−casa −−−−(8)という
関係が成立している。だだし、Kは(5)式と同じもの
である。
- As shown in FIG. 9, when the absolute value of the torque command T is greater than a constant value of 41 to TL, the cosine value CO5α of the phase difference α, which will be described later, is set to 1, and the torque command T is set to 1. If the absolute value is less than or equal to the fixed value TL, then when the torque command T is zero or positive, cosa; ...As (7), a string wave is generated on the 3-phase 1 - 1 path 2 is manually powered. Therefore, between the current amplitude IA, the cosine value cosα of the current amplitude IA・cosa, and the torque command T, there is j? As shown in the JlO diagram, the following relationship holds true: T = K #IA-casa --- (8). However, K is the same as in equation (5).

次に、3根止弦波発生回路2Aは回転位置DPに。Next, the 3-root string wave generation circuit 2A is at the rotational position DP.

対応して、固定子巻線Zl−23に流れる電流の位相及
び周波数を決定する120°ずつ位相のずれた正弦波信
号5l−53を発生するか、第4図に示した従来の3根
止弦波発生回路2のように回転子31の磁束密度Bと、
正弦波信号Slとの位相を一致させることなく、第11
図に示すように演算器21から入力される余弦値cos
αを与える位相差αだけ1F弦波信号S1を進ませるよ
うにする。
Correspondingly, a sinusoidal signal 5l-53 with a phase shift of 120° is generated which determines the phase and frequency of the current flowing in the stator winding Zl-23, or the conventional three-root signal shown in FIG. As in the string wave generation circuit 2, the magnetic flux density B of the rotor 31,
11th without matching the phase with the sine wave signal Sl.
As shown in the figure, the cosine value cos input from the calculator 21
The 1F sinusoidal signal S1 is advanced by a phase difference α that gives α.

そして、このようにして発生された正弦波信号5l−8
3はそれぞれ乗τγ器3〜5に入力される。
Then, the sine wave signal 5l-8 generated in this way
3 are input to multipliers 3 to 5, respectively.

そして、來賀器3〜5以降は従来と同様となっている。And, from Kagaki 3 to 5 onwards, it is the same as before.

このような構成において、I・ルク指令T及び定値TL
に基づいて演算器2oによって’l!: m振幅IAが
11算され、トルク指令T及び ・定1(iTLに基づ
いて演算器21によって余弦値cosαが計算される。
In such a configuration, the I-lux command T and the constant value TL
'l! by the arithmetic unit 2o based on 'l! : The m amplitude IA is multiplied by 11, and the cosine value cosα is calculated by the computing unit 21 based on the torque command T and the constant 1 (iTL).

そして、3相iIE弦波発生回路2Aでは、この余弦値
cosαと、回転値位置に基づいて回転子31の磁束密
度Bよりαだけ位相の進んだrE弦波信号Slをはじめ
として、3相の正弦波信号s1〜S3が発生され、以下
従来例と同様に電流振幅がIA、位相がそれぞれs1〜
s3と一致するように1υ定子巻線Zl〜Z3の電流1
1〜13が制御される。
Then, in the three-phase iIE sinusoidal wave generation circuit 2A, based on this cosine value cosα and the rotation value position, the three-phase Sine wave signals s1 to S3 are generated, and the current amplitude is IA and the phase is s1 to s1, respectively, as in the conventional example.
Current 1 of 1υ constant winding Zl~Z3 to match s3
1 to 13 are controlled.

このとき、同期電動機の発生トルクTMは上述したよう
に(3)式で与えられ、しがも電流振幅IA及び余弦値
cosαは(8)式を満たすように予め演算器20及び
21によって設定されるがら、発ノドトルクTMは所望
のトルク指令Tと一致することになる。しかも、微小な
トルク指令Tに対′しては第8図及び第91Δがら分る
ように、電流振幅IAを 定値If、又は−■しに保ち
余弦値cosαを変化ごせて対処しているので、第6図
に示した・L力増幅器12〜14の不感帯領域をはとん
と使うことなく上流フィートパンク系による電流制御を
行なうことができる。
At this time, the generated torque TM of the synchronous motor is given by the equation (3) as described above, and the current amplitude IA and the cosine value cosα are set in advance by the calculators 20 and 21 so as to satisfy the equation (8). However, the generated throat torque TM coincides with the desired torque command T. Moreover, as shown in Fig. 8 and Fig. 91Δ, the small torque command T is dealt with by keeping the current amplitude IA at a constant value If or -■ and varying the cosine value cosα. Therefore, current control can be performed by the upstream foot puncture system without making extensive use of the dead zone regions of the L force amplifiers 12 to 14 shown in FIG.

なお、上述の演算器2o及び21ではそれぞれトルク指
令Tと電流振幅■^との関係、トルク指令Tと余弦値α
との関係を第8図及び第9図に示すように設定したが、
必ずしもこれに限定されるものではない。つまり、トル
ク指令Tと、電流振幅IAと余弦値CO8αとの積IA
φ CO8αが(8)式を満たすようにすれはよく、例
えばI・ルク指4Tと電流振幅IAとの関係を第12図
に、i・ルク指令Tと余弦値CO3αとの関係を第13
図になるようにそれぞれ設定するようにしてもよい。ま
た、 cosαとC05(−α)とは等しいから、1F
弦岐イ^号S1を回転1′31の磁束密度日よりも位相
−αだけ進める。一つまり(q(相αだけ遅らせても]
二d\と同様の効果かあるか、固定子−af(iIZ1
〜Z3のインククタンス分を考慮すると、11弦波帖壮
S1を磁束密度日よりも位相αた(づ進ませた力が制御
しやすい。
In addition, the above-mentioned computing units 2o and 21 calculate the relationship between the torque command T and the current amplitude ■^, and the relationship between the torque command T and the cosine value α, respectively.
The relationship with is set as shown in Figures 8 and 9, but
It is not necessarily limited to this. In other words, the product IA of the torque command T, the current amplitude IA, and the cosine value CO8α
For example, the relationship between the I-Luke finger 4T and the current amplitude IA is shown in Figure 12, and the relationship between the I-Luke command T and the cosine value CO3α is shown in Figure 13.
The settings may be made as shown in the figure. Also, since cosα and C05(-α) are equal, 1F
The rotation number S1 is advanced by phase -α from the magnetic flux density of rotation 1'31. In other words, (q (even if the phase α is delayed)
Is there an effect similar to that of 2d\? Stator -af (iIZ1
Considering the inktance of ~Z3, it is easier to control the force that advances the 11th string wave S1 by the phase α than the magnetic flux density.

以[−のようにこの発明の制御力式によれは。According to the control force formula of this invention, as shown below.

微小なI・ルクを発生させなければならない場合に、従
来のように固定子巻線にがLれる電流振幅を微小なもの
とせずに、一定値に保った状態で所9!のトルクを発生
させることかできるので、制御装置内の電力増幅器等に
存在する不移帯領域をほとんど使わずに良好な電流制御
を行なうことか可能となる利点がある。
When it is necessary to generate a minute I-lux, the current amplitude applied to the stator winding is kept at a constant value instead of being made minute as in the conventional case. This has the advantage that it is possible to perform good current control without using much of the non-transferable band region present in the power amplifier or the like in the control device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は同期電動機の概略構造図、第2図は従来の同期
電動機の制御装置の一例を示す図、第31Δは電力増幅
器と固定子巻線の接続の様子を説明するための図、第4
181は従来装置における回転子の磁束′!?−:度と
固定子a線の電流の位相関係を示す図、第5図は従来の
トルク指令TとtW流振幅IAの関係を示す1図、第6
図は電力増幅器の不感・j1?を説明するための図、第
7図はこの発明方式を実現するための一実施例のブロッ
ク構成図、第81Nはこの発明の方式によるトルク指令
Tと−に波振幅IAとの関係を示す+1 第9図はこの
発明の方式によるトルク指令Tと余弦(IIjcosα
との関係を示す図、第10図はトルク指令Tと、1E流
振幅IA及び余弦m c o sαの積との関係をツバ
すIy5、第11図はこの発明方式による回転子の磁束
密度と固定子巻線の電流の位相関係を示す図、第12図
はこの発明方式による別のトルク指令Tと電流振幅IA
との関係を示す図、第13図はこの発明方式による別の
トルク指令Tと余弦値cosαとの関係を示す図である
。 l・・・増幅器、2,2A・・・3根止弦波発生回路、
3〜5・・・乗算器、6〜8・・・加算器、9〜11・
・・PIDコントローラ、12〜14・・・電力増幅器
、15〜17・・・電流検出器、18・・・同期電動機
、19・・・位置検出器、20.21・・・演算器、3
0・・・固定子、31・・・回転子。 出願人代理人 安 形 刈ト ニ。 奈 l 図 藝 3 図 f( 第 5 ΩI A 某 6 図 O L 6 図 IA 蔓9 図 1 革 !θ 図 第 11 口 蔓 /2 図 IA ・礼 /3 副 CO8ば ↑
Fig. 1 is a schematic structural diagram of a synchronous motor, Fig. 2 is a diagram showing an example of a conventional synchronous motor control device, Fig. 31Δ is a diagram for explaining how the power amplifier and stator winding are connected, Fig. 4
181 is the magnetic flux of the rotor in the conventional device! ? -: Diagram showing the phase relationship between degree and stator a-line current, Figure 5 is a diagram showing the relationship between conventional torque command T and tW flow amplitude IA, and Figure 6 is
The figure shows the power amplifier's insensitivity/j1? FIG. 7 is a block diagram of an embodiment for realizing the method of the present invention, and No. 81N shows the relationship between the torque command T and the wave amplitude IA according to the method of the present invention. FIG. 9 shows the torque command T and cosine (IIjcosα) according to the method of this invention.
Figure 10 shows the relationship between the torque command T and the product of the 1E flow amplitude IA and the cosine m cos α, Iy5, and Figure 11 shows the relationship between the rotor magnetic flux density and A diagram showing the phase relationship of the current in the stator winding, FIG. 12 shows another torque command T and current amplitude IA according to the method of this invention.
FIG. 13 is a diagram showing the relationship between another torque command T and cosine value cosα according to the method of the present invention. l...Amplifier, 2,2A...3 root string wave generation circuit,
3-5... Multiplier, 6-8... Adder, 9-11.
... PID controller, 12-14... Power amplifier, 15-17... Current detector, 18... Synchronous motor, 19... Position detector, 20.21... Arithmetic unit, 3
0... Stator, 31... Rotor. Applicant's agent: Karito Ni Yasugata. Na l Illustration 3 Figure f (No. 5 ΩI A Certain 6 Figure O L 6 Figure IA Vines 9 Figure 1 Leather !θ Figure 11 Mouth vines /2 Figure IA ・Courtesy /3 Deputy CO8ba↑

Claims (4)

【特許請求の範囲】[Claims] (1)固定子と、この固定子に二相巻に巻回された置市
子巻線と、磁化された回転子とで成る同期電動機に対し
て、トルク指令Tから前記固定子巻線に流れる電流の振
幅IAを快足し、前記回転子の回転イ位趙から前記固定
子8線の電流の位相及び周波数を決定する同期電動機の
制御力式において、前記同期電動機の発生トルクTMが
トルク指令Tに 致するように、 +3ij記電流振幅
IAと、前記回転子の磁束音度及び前記固定子巻線に流
れる電流の位相差αの余弦値cosαとの積IA・ c
osαをF311記トルク指令Tに比例させるようにし
たことを特徴とする同期電動機の制御方式。
(1) For a synchronous motor consisting of a stator, a two-phase winding wound around the stator, and a magnetized rotor, a torque command T is applied to the stator winding. In a control force equation for a synchronous motor that determines the phase and frequency of the current in the 8 wires of the stator based on the rotational position of the rotor based on the amplitude IA of the flowing current, the generated torque TM of the synchronous motor is the torque command In order to match T, the product IA・c of the current amplitude IA +3ij and the cosine value cosα of the magnetic flux sonicity of the rotor and the phase difference α of the current flowing through the stator winding.
A control method for a synchronous motor, characterized in that osα is made proportional to torque command T described in F311.
(2)前記トルク指令Tの絶対(M+が一定値Tし以ヒ
のときは、前記余弦値cosαの絶対値を一定 3゜と
し電流振幅IAの絶対値を前記トルク指令Tの絶対値に
比例させることによって前記績TA・ cosαを前記
トルク指令に比例させ、前記トルク指令Tの絶対値か一
定値TL以下のときは、前記電流振幅IAの絶対値を一
定とし前記余弦値cosαの絶対値を前記トルク指令T
の絶対値に比例させることによって前記aIA・cos
αを前記トルク指令Tに比例させるようにした特許請求
の範囲第1項に記載の同期電動機の制御方式。
(2) Absolute of the torque command T (when M+ is greater than a constant value T, the absolute value of the cosine value cosα is constant 3°, and the absolute value of the current amplitude IA is proportional to the absolute value of the torque command T) When the absolute value of the torque command T is less than a constant value TL, the absolute value of the current amplitude IA is made constant and the absolute value of the cosine value cosα is made proportional to the torque command. The torque command T
By making it proportional to the absolute value of aIA・cos
A control method for a synchronous motor according to claim 1, wherein α is made proportional to the torque command T.
(3)前記電流振幅IAと前記トルク指令Tとの符号を
一致させ、前記余弦値cosαを非負とした特許請求の
範囲第2項に記載の同期電動機の制御力式。
(3) The control force formula for a synchronous motor according to claim 2, wherein the current amplitude IA and the torque command T have the same sign, and the cosine value cosα is non-negative.
(4)前記余弦値cosαと前記トルク指令Tとの符号
を一致させ、前記電流振幅IAを非負とした特許請求の
範囲第2項に記載の同期電動機の制御方式。
(4) A control method for a synchronous motor according to claim 2, wherein the cosine value cosα and the torque command T have the same sign, and the current amplitude IA is non-negative.
JP59031840A 1984-02-22 1984-02-22 Control system of synchronous motor Granted JPS60176489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031840A JPS60176489A (en) 1984-02-22 1984-02-22 Control system of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031840A JPS60176489A (en) 1984-02-22 1984-02-22 Control system of synchronous motor

Publications (2)

Publication Number Publication Date
JPS60176489A true JPS60176489A (en) 1985-09-10
JPH0570397B2 JPH0570397B2 (en) 1993-10-05

Family

ID=12342248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031840A Granted JPS60176489A (en) 1984-02-22 1984-02-22 Control system of synchronous motor

Country Status (1)

Country Link
JP (1) JPS60176489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371082A (en) * 1989-07-27 1991-03-26 Smithkline Beckman Corp Apparatus and method for determining inclusion of phase
JPH0371081A (en) * 1989-07-27 1991-03-26 Smithkline Beckman Corp Method and apparatus for determining presence of color in specimen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371082A (en) * 1989-07-27 1991-03-26 Smithkline Beckman Corp Apparatus and method for determining inclusion of phase
JPH0371081A (en) * 1989-07-27 1991-03-26 Smithkline Beckman Corp Method and apparatus for determining presence of color in specimen

Also Published As

Publication number Publication date
JPH0570397B2 (en) 1993-10-05

Similar Documents

Publication Publication Date Title
CN104981973A (en) Motor drive device
JPH0348749B2 (en)
JPS60176489A (en) Control system of synchronous motor
JP2003079185A (en) Permanent magnet type synchronous motor control equipment
JPS6277081A (en) Controlling device for 3-phase induction motor
JPS5937894A (en) Variable speed driving system for synchronous machine
JP3519200B2 (en) Excitation controller for synchronous machine
JP2000050677A (en) Position sensorless control equipment for permanent magnet type synchronous motor
SU1111234A1 (en) Rotor position transducer for drive with double feed electric machine
JPS6042709B2 (en) induction motor control device
JPS61288798A (en) Drive device of synchronous motor
JPS6162391A (en) Controller of brushless motor
JPS6369491A (en) Variable speed controller for induction motor
JPS63174586A (en) Control system for phase of current of synchronous motor
JPS5914385A (en) Drive system for ac motor
JPS5944880B2 (en) Synchronous ignition control device for motor drive inverter
JPH07123360B2 (en) Induction motor vector controller
JPH0785680B2 (en) Synchronous motor speed controller
JPS5886889A (en) Control ling system of synchronous motor
JPS5921294A (en) Drive device for synchronous motor
JPS6042711B2 (en) Transmission motor rotation control device
JPS6070944A (en) Controller of combined guide magnetic bearing
JPS60194791A (en) Variable speed control system of induction motor
JPS6166583A (en) Controller of brushless motor
JPS5910185A (en) Control device for ac motor