JP3519200B2 - Excitation controller for synchronous machine - Google Patents

Excitation controller for synchronous machine

Info

Publication number
JP3519200B2
JP3519200B2 JP02507296A JP2507296A JP3519200B2 JP 3519200 B2 JP3519200 B2 JP 3519200B2 JP 02507296 A JP02507296 A JP 02507296A JP 2507296 A JP2507296 A JP 2507296A JP 3519200 B2 JP3519200 B2 JP 3519200B2
Authority
JP
Japan
Prior art keywords
synchronous machine
current
harmonic
phase
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02507296A
Other languages
Japanese (ja)
Other versions
JPH08289589A (en
Inventor
▲よし▼亮 上田
冬人 高瀬
清司 奥
允幸 比良
厚 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Holdings Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP02507296A priority Critical patent/JP3519200B2/en
Publication of JPH08289589A publication Critical patent/JPH08289589A/en
Application granted granted Critical
Publication of JP3519200B2 publication Critical patent/JP3519200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、交流系統に連係
された同期機に対しこの交流系統の基本波に重畳された
特定次数高調波の吸収機能を与える励磁制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excitation control device for providing a synchronous machine linked to an AC system with a function of absorbing a specific order higher harmonic wave superposed on a fundamental wave of the AC system.

【0002】[0002]

【従来の技術】従来のこの種の励磁制御装置としては、
その制御対象である同期機の励磁巻線に対し、同期機出
力電圧における基本波成分がその所定値となる如く制御
された直流電流を通電させるものが知られている。
2. Description of the Related Art As a conventional excitation control device of this type,
There is known a method in which a DC current controlled so that a fundamental wave component in an output voltage of a synchronous machine has a predetermined value is applied to an exciting winding of a synchronous machine which is an object of control.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電力系
統に接続され且つ前記の如き従来の励磁制御装置により
制御された同期機においては、前記系統に発生した高調
波電流に対する吸収機能は無く、前記同期機の電機子巻
線には流入した高調波電流に対応した高調波電圧が発生
してその出力電圧を歪ませると共に、前記の同期機を含
め前記電力系統に接続された他の機器にも系統電圧の歪
みに起因する逆相電流を流入させ、これら各機器におい
て過熱,出力不足等の異常状態を発生させる恐れがあ
る。
However, in the synchronous machine connected to the power system and controlled by the conventional excitation control device as described above, there is no absorption function for the harmonic current generated in the system, and the synchronous In the armature winding of the machine, a harmonic voltage corresponding to the inflowing harmonic current is generated to distort the output voltage of the machine and also to the other equipment connected to the power system including the synchronous machine. There is a risk that an inversion current due to voltage distortion may flow in and an abnormal state such as overheating or insufficient output may occur in each of these devices.

【0004】上記に鑑みこの発明は、電力系統に接続さ
れた同期機に対して、この電力系統に発生した特定次数
高調波電流の吸収能力を与える如く機能する励磁制御装
置の提供を目的とするものである。
In view of the above, an object of the present invention is to provide an excitation control device that functions to give a synchronous machine connected to a power system a capability of absorbing a specific order harmonic current generated in the power system. It is a thing.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明の同期機の励磁制御装置において、 1)請求項1の発明は、電力系統における高調波の発生
源と並列状態にてこの電力系統に接続された三相回転界
磁形同期機に対し、これら両者の接続位置における系統
電流中の所定次数高調波電流の吸収を行わせる如く、そ
の基本波電圧及び高調波電流吸収に要する高調波電圧両
者の誘起に関する所要の励磁をなす前記同期機の励磁制
御装置であって、前記高調波電圧の生成に関して、前記
同期機の励磁極の位置に連動する同期機回転軸の回転位
相検出信号と前記の如き接続位置における系統電流の検
出信号とをその入力信号とし、前記所定次数高調波電流
と同一振幅を有し且つ逆相関係にある同期機電機子電流
を得るに要する同期機励磁電流の値を前記の回転軸回転
位相を基準として演算する如く回路構成するものとす
る。
In order to achieve the above object, in the excitation control device for a synchronous machine according to the present invention, 1) the invention of claim 1 is arranged in parallel with a harmonic source in a power system. The three-phase rotary field synchronous machine connected to the lever power system absorbs the fundamental voltage and harmonic current in order to absorb the harmonic current of a predetermined order in the system current at the connection position of the two. An excitation control device for the synchronous machine, which performs a required excitation relating to induction of both harmonic voltages required for the rotation of a synchronous machine rotating shaft that is interlocked with a position of an exciting magnetic pole of the synchronous machine with respect to generation of the harmonic voltage. The phase detection signal and the detection signal of the system current at the connection position as described above are used as its input signals, and the synchronization required to obtain a synchronous machine armature current having the same amplitude as the predetermined order harmonic current and having an antiphase relationship Machine It is assumed that the circuit is configured so that the value of the exciting current is calculated on the basis of the rotation axis rotation phase.

【0006】2)請求項2の発明は、請求項1の発明に
よる同期機の励磁制御装置において、前記の高調波電流
吸収に関する同期機励磁電流所要値の演算を、前記所定
次数高調波電流の3相分の検出信号を前記電力系統の基
本波角周波数で回転する回転座標上の直交2軸成分とし
て3相/2相変換し、この2軸上各成分の逆相成分のベ
クトル和の比例値を以てその振幅とし前記回転座標上を
前記所定次数高調波の角周波数と次数1の差を有する角
周波数で回転する高調波電流として、前記回転座標変換
部において行うものとする。
2) According to a second aspect of the present invention, in the excitation control device for a synchronous machine according to the first aspect of the present invention, the calculation of the required value of the synchronous machine excitation current relating to the above harmonic current absorption is performed for the predetermined order harmonic current. Three-phase / two-phase conversion is performed as a three-phase detection signal for three phases as orthogonal two-axis components on the rotational coordinates that rotate at the fundamental wave angular frequency of the power system, and the proportional vector sum of the anti-phase components of each component on these two axes The amplitude is defined by a value, and the rotation coordinate conversion unit performs a harmonic current that rotates on the rotation coordinate at an angular frequency having a difference between the angular frequency of the predetermined harmonic and the order 1.

【0007】3)請求項3の発明は、請求項2記載の同
期機の励磁制御装置において、前記回転座標変換部の出
力信号を受けその振幅と位相の両者を記憶すると共に、
この記憶値に対し、所定時間間隔で順次演算される前記
変換部出力信号の振幅と位相の両者をそれぞれ加算して
前記信号記憶値の修正をなす積分処理部と、この修正さ
れた前記変換部出力信号の1周期分の波形を記憶すると
共にその波形記憶内容が前記回転位相検出信号に同期し
て読み出される波形メモリ部と、この波形メモリ部の出
力信号を受けるD/A変換器と、を設け、この変換器の
出力信号を以て前記の高調波電流吸収に関する同期機励
磁電流所要値となすものとする。
3) According to a third aspect of the present invention, in the excitation control device for a synchronous machine according to the second aspect, the output signal of the rotary coordinate conversion section is received and both the amplitude and the phase thereof are stored, and
An integral processing unit that corrects the stored signal value by adding both the amplitude and the phase of the conversion unit output signal that are sequentially calculated at predetermined time intervals to the stored value, and the corrected conversion unit. A waveform memory unit for storing a waveform of one cycle of the output signal and reading the stored waveform contents in synchronization with the rotation phase detection signal; and a D / A converter for receiving the output signal of the waveform memory unit. It is assumed that the output signal of this converter is used as the required value of the synchronous machine exciting current for the above harmonic current absorption.

【0008】4)請求項4の発明は、請求項3記載の同
期機の励磁制御装置において、前記系統電流検出信号か
らの前記所定次数高調波電流の分離検出を、A/D変換
された前記の系統電流検出信号と回転位相検出信号とを
入力としこの回転位相信号を基準として所要の展開演算
をなすフーリエ変換部において行うものとする。 5)請求項5の発明は、請求項1記載の同期機の励磁制
御装置において、前記同期機の吸収対象となす所定次数
の高調波電流を前記電力系統の基本波に対する6n±1
次の高調波電流とし、前記の所要励磁電流を6n次の高
調波電流となすものとする。
4) According to a fourth aspect of the invention, in the excitation control device for a synchronous machine according to the third aspect, the separation detection of the predetermined order higher harmonic current from the system current detection signal is A / D converted. The system current detection signal and the rotation phase detection signal are input to the Fourier transform unit which performs a required expansion operation with the rotation phase signal as a reference. 5) The invention of claim 5 is the excitation control device for a synchronous machine according to claim 1, wherein a harmonic current of a predetermined order to be absorbed by the synchronous machine is 6n ± 1 with respect to a fundamental wave of the power system.
The next harmonic current is used, and the required excitation current is the 6nth harmonic current.

【0009】因みに、一般に、三相回転界磁形同期機の
界磁巻線を基本波角周波数に対する6n次の高調波回転
磁界で励磁すれば、前記同期機の電機子巻線には6n±
1次の高調波が発生する。また、電力系統に接続され平
衡状態にある前記同期機に対し、前記系統に発生した6
n+1次の高調波は前記同期機中に正方向の回転磁界を
形成し、6n−1次の高調波は前記同期機に負方向の回
転磁界を形成し、これらの回転磁界は前記同期機の固定
子(電機子)側から見ればそれぞれ6n+1次と6n−
1次の回転磁界であるが、回転子(回転界磁)側から眺
めればそれぞれ6n次の正方向或いは負方向の回転磁界
となり、前記回転子巻線に6n次の高調波を発生させ
る。
Incidentally, in general, when the field winding of a three-phase rotary field type synchronous machine is excited by a 6n-order harmonic rotating magnetic field with respect to the fundamental wave angular frequency, 6n ± in the armature winding of the synchronous machine.
A first harmonic is generated. In addition, for the synchronous machine that is connected to the power system and is in a balanced state,
The (n + 1) th harmonic forms a positive rotating magnetic field in the synchronous machine, and the 6n-1th harmonic forms a negative rotating magnetic field in the synchronous machine, and these rotating magnetic fields are generated in the synchronous machine. Seen from the stator (armature) side, 6n + 1 order and 6n−, respectively.
Although it is a primary rotating magnetic field, when viewed from the rotor (rotating field) side, it becomes a rotating magnetic field of 6nth order in the positive or negative direction, respectively, and generates 6nth order higher harmonics in the rotor winding.

【0010】従って、前記同期機の界磁巻線を6n次の
高調波電流で励磁して得た回転磁界により前記同期機の
電機子に発生させる6n+1次又は6n−1次の高調波
を、前記の系統側高調波と振幅が等しく且つ逆位相の状
態にある高調波となす如く、前記界磁巻線に加える6n
次高調波電流の振幅と通電位相とを制御すれば、前記の
系統側6n±1次の各高調波の消滅を図ることが出来
る。
Therefore, the 6n + 1 order or 6n-1 order higher harmonics generated in the armature of the synchronous machine by the rotating magnetic field obtained by exciting the field winding of the synchronous machine with the 6nth order harmonic current, 6n applied to the field winding so as to form a harmonic having the same amplitude and opposite phase as the harmonic on the system side
By controlling the amplitude of the second harmonic current and the conduction phase, it is possible to eliminate the 6n ± first harmonics on the system side.

【0011】上記に従い、この発明による励磁制御装置
は、電力系統に接続された三相回転界磁形同期機の界磁
巻線を6n次の高調波電流で励磁しその電機子巻線に発
生させた6n±1次の高調波電圧又は高調波電流が、前
記系統に発生した6n±1次の高調波電圧又は電流と振
幅が等しく逆位相の状態となる如く、前記の界磁巻線に
通電する高調波電流を制御するものである。
In accordance with the above, the excitation control apparatus according to the present invention excites the field winding of the three-phase rotary field synchronous machine connected to the power system with the harmonic current of the 6nth order and generates it in the armature winding. The 6n ± 1st-order harmonic voltage or current thus generated has the same amplitude as that of the 6n ± 1st-order harmonic voltage or current generated in the system and has a phase opposite to that of the field winding. It controls the energizing harmonic current.

【0012】なお、前述の基本波角周波数で回転する回
転座標上への6n±1次高調波電流の3相/2相座標変
換と、この変換結果に従う所要の高調波励磁電流の演算
とは下記の各演算式に従って行われるものである。今、
三相回転界磁形同期機による吸収対象をなす電力系統に
おける高調波電流成分を、前記の6n±1次高調波電流
中のn=1の場合の5次及び7次の高調波電流となし、
3相のa,b,c各相に対応する高調波電流をiah,i
bh,ichとすれば、それぞれ下記の式(1)により規定
される。
The three-phase / two-phase coordinate conversion of the 6n ± first-order harmonic current on the rotating coordinates rotating at the fundamental wave angular frequency and the calculation of the required harmonic exciting current according to the conversion result are performed. It is performed according to the following arithmetic expressions. now,
The harmonic current components in the power system to be absorbed by the three-phase rotating field synchronous machine are not the 5th and 7th harmonic currents in the case of n = 1 in the above 6n ± 1st harmonic current. ,
The harmonic currents corresponding to the three phases a, b, and c are i ah , i
If bh and i ch are respectively defined by the following equation (1).

【0013】[0013]

【数1】 [Equation 1]

【0014】ここに、I5 とI7 とはそれぞれ5次と7
次各高調波電流の波高値、∠I5 と∠I7 とはそれぞれ
前記電流I5 とI7 の対応する高調波電圧に対する位相
角、ωは基本波角周波数である。また、前記の各高調波
電流iah,ibh,ichは、基本波角周波数ωで回転する
回転座標系における直交するd,q両軸からなる座標上
に下記の行列式(2)の如く3相/2相変換される。
Here, I 5 and I 7 are the 5th and 7th orders, respectively.
Next, the peak value of each harmonic current, ∠I 5 and ∠I 7 , are the phase angles of the currents I 5 and I 7 with respect to the corresponding harmonic voltage, and ω is the fundamental wave angular frequency. Further, each of the above harmonic currents i ah , i bh , and i ch is expressed by the following determinant (2) on the coordinates composed of orthogonal d and q axes in the rotating coordinate system that rotates at the fundamental wave angular frequency ω. 3 phase / 2 phase conversion is performed.

【0015】[0015]

【数2】 [Equation 2]

【0016】ここに、idhとiqhとはそれぞれ前記回転
座標系に変換された電流ベクトルのd軸成分とq軸成分
とを示す。また、式(2)における時間tの原点を、前
記同期機の回転子(界磁)のd軸と固定子(電機子)a
相巻線軸とが一致した瞬間となすならば、式(2)に従
い式(3)の如く座標変換される。
Here, i dh and i qh represent the d-axis component and the q-axis component of the current vector converted into the rotating coordinate system, respectively. The origin of the time t in the equation (2) is defined by the d-axis of the rotor (field) of the synchronous machine and the stator (armature) a.
If it is the moment when the phase winding axes coincide with each other, the coordinates are converted according to equation (2) as shown in equation (3).

【0017】[0017]

【数3】 [Equation 3]

【0018】また、式(3)は式(4)の如く書き直す
ことが出来る。
The equation (3) can be rewritten as the equation (4).

【0019】[0019]

【数4】 [Equation 4]

【0020】ここに、id6(idh,h=6)とiq6(i
qh,h=6)とはそれぞれ前記回転座標系上の6次高調
波電流ベクトルのd軸成分とq軸成分とを示す。一方、
前記回転座標上において、そのd,q両軸成分をそれぞ
れifd,ifqとする界磁電流if により発生しそのd,
q両軸成分をそれぞれidg,iqgとする前記同期機の電
機子電流ig は、下記の式(5)の如くなる。
Where i d6 (i dh , h = 6) and i q6 (i
qh and h = 6) respectively indicate the d-axis component and the q-axis component of the sixth harmonic current vector on the rotating coordinate system. on the other hand,
Wherein on rotation coordinates, the d, respectively q both axial components i fd, generated by the field current i f to i fq its d,
The armature current i g of the synchronous machine, where the q-axis components are i dg and i qg , respectively, is given by the following equation (5).

【0021】[0021]

【数5】 [Equation 5]

【0022】ここに、Kは前記同期機における界磁巻線
と電機子巻線との巻数比である。また、前記同期機の電
機子電圧には波形歪みが生じないものとする。今、上記
の式(4)の如く集約された系統高調波電流を前記同期
機により吸収するためには、idg+idh=0及びiqg
qh=0の両関係式に従い、下記の式(6)が成り立て
ば良いことになる。
Here, K is the winding number ratio between the field winding and the armature winding in the synchronous machine. Further, it is assumed that waveform distortion does not occur in the armature voltage of the synchronous machine. Now, in order to absorb the system harmonic currents summarized by the above equation (4) by the synchronous machine, i dg + i dh = 0 and i qg +
According to both relational expressions of i qh = 0, the following expression (6) should be established.

【0023】[0023]

【数6】 [Equation 6]

【0024】即ち、式(6)に従う6次高調波電流を所
要電流として前記同期機の界磁巻線を励磁するならば、
式(1)〜(4)で示される如き前記電力系統における
5次と7次の両高調波電流の消滅、換言すれば前記同期
機による吸収,を図ることが出来る。
That is, if the field winding of the synchronous machine is excited with the sixth harmonic current according to equation (6) as the required current,
It is possible to eliminate the fifth-order and seventh-order harmonic currents in the electric power system as expressed by the equations (1) to (4), in other words, to absorb them by the synchronous machine.

【0025】[0025]

【発明の実施の形態】以下この発明の実施例を図1ない
し図7の各回路図に従って説明する。なお、前記各図に
おいては同一機能の構成要素に対しては同一の表示符号
を付している。ここに、図1は請求項の1と2と5の各
項に従うこの発明の第1の実施例を示し,図2は請求項
の1と3と4と5との各項に従うこの発明の第2の実施
例を示すものであって、何れも同期機の吸収対象電流を
6n±1次の系統高調波電流とした場合の6n次高調波
励磁電流の形成を行う励磁制御装置の回路図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the circuit diagrams of FIGS. In each of the drawings, the same reference numerals are given to constituent elements having the same function. Here, FIG. 1 shows a first embodiment of the present invention according to each of claims 1, 2 and 5, and FIG. 2 shows an embodiment of the present invention according to each of claims 1, 3, 4 and 5. FIG. 6 is a circuit diagram of an excitation control device for forming a 6n-th order harmonic exciting current when the current to be absorbed by the synchronous machine is a 6n ± 1st-order system harmonic current according to the second embodiment. Is.

【0026】また、図3は図1と図2とにおける回転座
標変換回路の回路図、図4は図3における移相器の回路
図、図5は基本波形成用励磁系の回路図、図6は図5に
示す基本波形成用の励磁系と図1又は図2に示す高調波
励磁系の両者を総合した三相回転界磁形高調波吸収用同
期機に対する総合の励磁系回路図、図7は前記両励磁系
出力による励磁合成系の回路図、をそれぞれ例示するも
のである。
FIG. 3 is a circuit diagram of the rotary coordinate conversion circuit in FIGS. 1 and 2, FIG. 4 is a circuit diagram of the phase shifter in FIG. 3, and FIG. 5 is a circuit diagram of a fundamental wave forming excitation system. 6 is a general excitation system circuit diagram for a three-phase rotating field type harmonic absorption synchronous machine in which both the fundamental wave excitation system shown in FIG. 5 and the harmonic excitation system shown in FIG. 1 or 2 are integrated, FIG. 7 exemplifies a circuit diagram of an excitation synthesis system by the outputs of both excitation systems.

【0027】先ず図1において、1は三相回転界磁形高
調波吸収用同期機、1aは同期機1の固定子部における
電機子巻線、1bは同期機1の回転子部における高調波
回転磁界形成用の界磁巻線である。また、2は電力系
統、3は電力系統2に接続された高調波発生源である。
なおig は同期機1の電機子電流、ih は高調波発生源
3の出力電流である。
First, in FIG. 1, 1 is a synchronous machine for absorbing three-phase rotating field type harmonics, 1a is an armature winding in a stator portion of the synchronous machine 1, and 1b is a harmonic wave in a rotor portion of the synchronous machine 1. A field winding for forming a rotating magnetic field. Further, 2 is a power system, and 3 is a harmonic generation source connected to the power system 2.
Note that i g is the armature current of the synchronous machine 1 and i h is the output current of the harmonic generation source 3.

【0028】次に、4は同期機1をその制御対象とする
6n次高調波励磁電流形成用の励磁制御装置であり、同
期機1の励磁極位置に連動する回転軸の回転位相センサ
6と高調波発生源3の出力電流を検出する変流器7両者
の検出信号をその入力とし、同期機1に対する所要の6
n次高調波励磁電流を供給するものであり、6n±1次
高調波検出器4aと、回転座標変換回路4bと、6n次
高調波フィルタ4cと、電力増幅器4dとから構成され
る。
Next, reference numeral 4 denotes an excitation control device for forming a 6nth-order harmonic excitation current, which controls the synchronous machine 1, and a rotation phase sensor 6 of a rotary shaft which is interlocked with an exciting magnetic pole position of the synchronous machine 1. The current transformer 7 for detecting the output current of the harmonic generation source 3 uses the detection signals of both sides as its input, and the required 6
It supplies an nth-order harmonic excitation current and is composed of a 6n ± first-order harmonic detector 4a, a rotary coordinate conversion circuit 4b, a 6nth-order harmonic filter 4c, and a power amplifier 4d.

【0029】ここに、高調波検出器4aは、変流器7の
検出する高調波発生源3の3相出力電流中の6n±1次
の両高調波電流を選択的に通過させる帯域濾波機能を有
するものであり、その出力状態はn=1とした場合、式
(1)の示す如くなる。また、回転座標変換回路4b
は、アナログ乗算器と加算器とで構成されるものであ
り、式(1)の如き高調波発生源3の3相出力電流中の
6n±1次の高調波電流を、前記電力系統の基本波角周
波数で回転する回転座標系の直交するd−q2軸上の成
分として3相/2相変換するものであり、前記の回転位
相センサ6による正弦波状の位相検出信号を受け式中の
時間tの原点を前記同期機の回転界磁のd軸と電機子の
a相巻線軸とが一致した瞬間となし、式(2)〜(5)
の如き演算を行い(n=1の場合)、所要の同期機励磁
電流に関し式(6)に示す如き結果を出力するものであ
る。
The harmonic detector 4a has a band-pass filtering function for selectively passing both 6n ± 1st harmonic currents in the three-phase output current of the harmonic generator 3 detected by the current transformer 7. When the output state is n = 1, the output state is as shown in Expression (1). In addition, the rotation coordinate conversion circuit 4b
Is composed of an analog multiplier and an adder. The 6n ± 1st order harmonic current in the three-phase output current of the harmonic generation source 3 as expressed by the equation (1) The three-phase / two-phase conversion is performed as a component on the dq2 axes orthogonal to the rotating coordinate system that rotates at the wave angular frequency, and the time in the formula for receiving the sinusoidal phase detection signal from the rotating phase sensor 6 is used. The origin of t is defined as the moment when the d axis of the rotating field of the synchronous machine and the a-phase winding axis of the armature coincide with each other, and equations (2) to (5) are used.
The above calculation is performed (when n = 1), and the result shown in the equation (6) is output with respect to the required synchronous machine exciting current.

【0030】また、6n次高調波フィルタ4cは、式
(6)に示す回転座標変換回路4bの出力における所要
の6n次高調波電流を選択的に通過させる帯域濾波機能
を有するものであり、この高調波フィルタ4cの出力は
電力増幅器4dにより増幅され、同期機1に対する所要
の6n次高調波励磁電流となり、前記の界磁巻線1bに
供給される。
The 6n-th order harmonic filter 4c has a band-pass filtering function for selectively passing the required 6n-th order harmonic current at the output of the rotary coordinate conversion circuit 4b shown in equation (6). The output of the harmonic filter 4c is amplified by the power amplifier 4d, becomes a required 6nth-order harmonic excitation current for the synchronous machine 1, and is supplied to the field winding 1b.

【0031】なお、式(5)或いは(6)における係数
Kは、前記変換回路4b或いは電力増幅器4dにおける
ゲイン調整により適値に選定される。上記の如く、図1
に示す回路構成において、同期機1による6n±1次系
統側高調波電流の吸収制御は、高調波検出器4aによる
6n±1次高調波電流の選択量を可変の設定値となす一
種のフィードホォワード制御をなすものであり、電力系
統における所要高調波吸収の未達成分の有無確認は行わ
れない。
The coefficient K in the equation (5) or (6) is selected as an appropriate value by the gain adjustment in the conversion circuit 4b or the power amplifier 4d. As mentioned above, FIG.
In the circuit configuration shown in (1), the absorption control of the 6n ± 1st-order harmonic current by the synchronous machine 1 is a kind of feed which makes the selection amount of the 6n ± 1st-order harmonic current by the harmonic detector 4a a variable set value. This is a forward control, and no confirmation is made as to whether or not the required harmonic absorption in the power system has not been achieved.

【0032】因みに、図3は回転座標変換回路4bの回
路図であり、図4は図3中に示される移相器の回路図で
ある。図3において、PS1 〜PS9 はその入出力信号
間に所定の位相差(図示時、30度)を形成させる移相
器、MP1 〜MP6 はその入出力2信号間の乗算を行う
アナログ式の乗算器、AD1 とAD2 とはその入出力信
号間の加算を行うアナログ式の加算器である。
Incidentally, FIG. 3 is a circuit diagram of the rotary coordinate conversion circuit 4b, and FIG. 4 is a circuit diagram of the phase shifter shown in FIG. In FIG. 3, PS 1 to PS 9 are phase shifters that form a predetermined phase difference (30 degrees in the figure) between the input and output signals, and MP 1 to MP 6 multiply the input and output 2 signals. The analog multipliers AD 1 and AD 2 are analog adders that add between the input and output signals.

【0033】回転座標変換回路4bは、前記の如き各要
素により図3の如く構成され、前記各式(2)〜(5)
に従う演算を行い所要の6次高調波電流ベクトルのd軸
成分id6とq軸成分iq6とを出力するものである。ま
た、図4において、A1 とA2 とは、その入力インピー
ダンスと増幅度が何れもが極めて大なる増幅器であり、
1 とR3 とは各々前記増幅器A1 とA2 とに対する入
力抵抗であり、抵抗R2 とコンデンサCの組合せ及び抵
抗R4 は各々前記増幅器A1 とA2 とに対する帰還イン
ピーダンス回路をなし、前記各増幅器と共に演算増幅回
路を形成するものである。ここに、前記各抵抗及びコン
デンサの定数選定により、入出力信号間に所定の位相差
(図3に対応し30度)を発生させるものである。
The rotary coordinate conversion circuit 4b is constituted by the above-mentioned elements as shown in FIG. 3, and the above-mentioned equations (2) to (5) are used.
According to the calculation, the d-axis component i d6 and the q-axis component i q6 of the required sixth harmonic current vector are output. Further, in FIG. 4, A 1 and A 2 are amplifiers whose input impedance and amplification degree are both extremely large,
An input resistor respectively against the said amplifier A 1 and A 2 are R 1 and R 3, the resistor R 2 and the combination and the resistor R 4 of the capacitor C each form a feedback impedance circuit for said amplifier A 1 and A 2 An operational amplifier circuit is formed with each of the amplifiers. A predetermined phase difference (30 degrees corresponding to FIG. 3) is generated between the input and output signals by selecting the constants of the resistors and capacitors.

【0034】次に図2は、この発明の第2の実施例を示
すものであり、高調波電流検出用の変流器の設置位置と
励磁制御装置の回路構成とにおいてこの発明の第1の実
施例を示す前述の図1と異なるものである。図2におい
て、変流器8は高調波発生源3の出力電流ih と同期機
1の電機子電流ig とを合成した負荷電流it の検出用
として設置される。
Next, FIG. 2 shows a second embodiment of the present invention, which is the first embodiment of the present invention in the installation position of the current transformer for detecting the harmonic current and the circuit configuration of the excitation controller. This is different from the above-mentioned FIG. 1 showing an embodiment. 2, current transformer 8 is disposed for the detection of the load current i t obtained by synthesizing the armature current i g in the output current i h and synchronous machine 1 of the harmonic source 3.

【0035】また、5は前記の同期機1をその制御対象
とする励磁制御装置であり、同期機1の励磁極位置に連
動する回転軸の回転位相センサ6と変流器8両者の検出
信号を入力として前記同期機に対する所要の励磁電流を
供給するものであり、前記の両入力信号に対するA/D
変換器5fと、高調波検出部5gと、回転座標変換部5
hと、積分処理部5iと、波形メモリ部5mと、PLL
回路5jと、アドレスカウンタ5kと、D/A変換器5
nと、電力増幅器5pとから構成されるものであり、特
に前記の各部5g,5h,5iはマイクロコンピュータ
内において処理される。
Reference numeral 5 denotes an excitation control device which controls the synchronous machine 1 as a control target thereof, and detection signals of both the rotational phase sensor 6 and the current transformer 8 of the rotary shaft which interlock with the exciting magnetic pole position of the synchronous machine 1. Is used as an input to supply a required exciting current to the synchronous machine, and the A / D for both the input signals is supplied.
Converter 5f, harmonics detection unit 5g, and rotating coordinate conversion unit 5
h, integration processing unit 5i, waveform memory unit 5m, PLL
Circuit 5j, address counter 5k, D / A converter 5
n and a power amplifier 5p, and in particular, the above-mentioned respective parts 5g, 5h, 5i are processed in a microcomputer.

【0036】ここに、高調波検出部5gはフーリエ変換
回路を構成するものであり、A/D変換器5fを経由し
て変換された変流器8の検出信号を回転位相センサ6に
よる位相信号を基準としてフーリエ変換し、前記負荷電
流it 中の6n±1次高調波電流信号を選択的に検出す
る帯域濾波器として機能するものである。また、回転座
標変換部5hは、図1に示す前述の回転座標変換回路4
bと同一機能を有し、同期機1の励磁に要する6n次高
調波if の振幅と位相両者の演算を行うものである。
The harmonic detecting section 5g constitutes a Fourier transform circuit, and the detection signal of the current transformer 8 converted via the A / D converter 5f is converted into a phase signal by the rotary phase sensor 6. the Fourier transform basis functions as a bandpass filter for selectively detecting 6n ± 1-order harmonic current signal in the load current i t. Further, the rotary coordinate conversion unit 5h includes the rotary coordinate conversion circuit 4 shown in FIG.
It has the same function as b and calculates both the amplitude and the phase of the 6n-th harmonic i f required for exciting the synchronous machine 1.

【0037】また、積分処理部5iは、回転座標変換部
5hが現在送出している前記6n次高調波の振幅と位相
両者のデータを記憶し、これらの記憶データに対して、
前記変換部5hが以後順次送出する前記の振幅と位相両
者のデータを加算してデータ修正を順次行うと共に、こ
れらの修正データにより前記の6n次高調波電流if
1周期分の波形を式(6)に従って合成するものであ
る。
Further, the integration processing section 5i stores the data of both the amplitude and the phase of the 6n-th order higher harmonic wave which the rotational coordinate conversion section 5h is currently sending out, and with respect to these stored data,
The data of both the amplitude and the phase, which are sequentially transmitted by the conversion unit 5h thereafter, are added to sequentially correct the data, and the waveform of one cycle of the 6nth harmonic current if is expressed by the corrected data. It is synthesized according to (6).

【0038】波形メモリ部5mには、積分処理部5iか
らの前記の合成された波形データが書き込まれる。以
後、前記波形メモリ部から、回転位相センサ6による回
転位相信号とPLL同期したアドレスカウンタ5kによ
り指定されたアドレスを読み出し、これをD/A変換器
5nに入力してアナログ波形信号に変換し、更に、電力
増幅器5pにより電力増幅する。
The synthesized waveform data from the integration processing unit 5i is written in the waveform memory unit 5m. After that, the address designated by the address counter 5k that is PLL-synchronized with the rotation phase signal from the rotation phase sensor 6 is read from the waveform memory unit and is input to the D / A converter 5n to be converted into an analog waveform signal. Further, the power is amplified by the power amplifier 5p.

【0039】ここに、電力増幅器5pの出力は所要の同
期機励磁電流となり、前記界磁巻線1bに供給されるこ
とになる。なお、式(5)或いは(6)における係数K
は、前記k変換部5h或いは電力増幅器5pにおけるゲ
イン調整により適値に選定される。上記の如く、図2に
示す回路構成において、同期機1による6n±1次系統
側高調波電流の吸収制御は、積分処理部5iの機能によ
り、高調波吸収の未達成分の積分量が零となる迄継続さ
れるフィードバック制御をなすものとなる。
Here, the output of the power amplifier 5p becomes a required synchronous machine exciting current and is supplied to the field winding 1b. The coefficient K in the equation (5) or (6)
Is selected as an appropriate value by gain adjustment in the k converter 5h or the power amplifier 5p. As described above, in the circuit configuration shown in FIG. 2, in the 6n ± primary system side harmonic current absorption control by the synchronous machine 1, the integration amount of the unachieved harmonic absorption is zero due to the function of the integration processing unit 5i. The feedback control is continued until.

【0040】次に図5は、前記の同期機1における基本
波電圧形成用の直流励磁電流を形成する励磁系の回路図
である。図5において、10は基本波励磁用の励磁制御
装置であり、11の電圧設定器による基本波電圧設定値
と計器用変圧器12により検出された同期機1の基本波
出力電圧との偏差をAVR(自動電圧調整器)に入力
し、このAVRの出力する制御指令信号により,例えば
混合ブリッジを形成するサイリスタのゲート制御を行っ
て励磁電圧VDCを出力し、この電圧VDCにより同期機1
の界磁巻線に所要の励磁電流を通電し、同期機1の基本
波出力電圧を電圧設定器11の指定する電圧に維持する
ものである。
Next, FIG. 5 is a circuit diagram of an exciting system for forming a DC exciting current for forming the fundamental wave voltage in the synchronous machine 1. In FIG. 5, reference numeral 10 denotes an excitation control device for fundamental wave excitation, which indicates the deviation between the fundamental wave voltage set value by the voltage setter 11 and the fundamental wave output voltage of the synchronous machine 1 detected by the transformer 12 for an instrument. Input to an AVR (automatic voltage regulator), a control command signal output from this AVR is used to perform gate control of, for example, a thyristor forming a mixing bridge to output an excitation voltage V DC , and this voltage V DC causes the synchronous machine 1 to operate.
A desired exciting current is supplied to the field winding of the above-mentioned No. 1 to maintain the fundamental wave output voltage of the synchronous machine 1 at the voltage specified by the voltage setting unit 11.

【0041】また図6は、前記三相回転界磁形高調波吸
収用の同期機1に対する前記基本波形成用励磁系と前記
高調波励磁系の両者を総合した励磁系の回路図であり、
前記の図1又は図2と図5とに示す両励磁系に対して、
励磁合成部20を加え、更に、同期機1の回転子上に設
けられた三相平衡巻線を以て界磁巻線1cとした状態を
示すものである。
FIG. 6 is a circuit diagram of an exciting system in which both the fundamental wave forming exciting system and the harmonic exciting system for the three-phase rotating field type harmonic absorbing synchronous machine 1 are integrated.
For both excitation systems shown in FIG. 1 or FIG. 2 and FIG.
It shows a state in which a field winding 1c is formed by adding a magnetic excitation synthesizing section 20 and further a three-phase balanced winding provided on the rotor of the synchronous machine 1.

【0042】ここに、励磁合成部20は、チョークコイ
ル21と、前記の励磁制御装置4或いは5の高調波出力
電圧VAC0 を受けてこれを電圧VAC1 とVAC2 とに分離
出力する出力変圧器22と、移相コンデンサ23と、共
振コンデンサ24とから構成され、前記界磁巻線1cの
一相分巻線には前記励磁制御装置10の出力励磁電圧V
DCをチョークコイル21を介して印加すると共にこの電
圧VDCに並列に,前記高調波出力電圧VAC2 を共振コン
デンサ24を介して同一界磁巻線に印加し、更に、前記
の界磁巻線1cの残りの二相分巻線には前記の高調波出
力電圧VAC1 を移相コンデンサ23を介して印加する如
く回路構成をなしたものである。
The excitation / synthesis unit 20 receives the choke coil 21 and the harmonic output voltage V AC0 of the excitation control device 4 or 5 and outputs the output voltage separately to the voltages V AC1 and V AC2. And a phase shift capacitor 23 and a resonance capacitor 24, and the output excitation voltage V of the excitation controller 10 is applied to the one-phase winding of the field winding 1c.
DC is applied through the choke coil 21 and the harmonic output voltage V AC2 is applied in parallel to the voltage V DC to the same field winding through the resonance capacitor 24. The circuit configuration is such that the above harmonic output voltage V AC1 is applied to the remaining two-phase winding of 1c through the phase shift capacitor 23.

【0043】また図7は、前記の基本波及び高調波両励
磁系出力による励磁合成状態を図6における励磁合成部
20に対応して示す励磁合成系の回路図であり、図示の
如く、例えば、前記の界磁巻線1cのU相巻線を同期機
1の基本波電圧形成用の直流励磁巻線として使用する。
また、同期機1の6n次高調波電圧形成のため、高調波
励磁電圧VAC2 を共振コンデンサ24を介して界磁巻線
1cのU相巻線に印加すると共に、高調波励磁電圧V
AC1 を移相コンデンサ23を介して界磁巻線1cのV相
巻線とW相巻線との直列巻線に印加している。
FIG. 7 is a circuit diagram of the excitation synthesis system showing the excitation synthesis state by the outputs of both the fundamental wave and the harmonic excitation system corresponding to the excitation synthesis unit 20 in FIG. 6. As shown in FIG. The U-phase winding of the field winding 1c is used as a DC excitation winding for forming the fundamental wave voltage of the synchronous machine 1.
Further, in order to form the 6nth-order harmonic voltage of the synchronous machine 1, the harmonic excitation voltage V AC2 is applied to the U-phase winding of the field winding 1c via the resonance capacitor 24, and the harmonic excitation voltage V AC2 is applied.
AC1 is applied to the series winding of the V-phase winding and the W-phase winding of the field winding 1c via the phase shift capacitor 23.

【0044】上記構成においてチョークコイル21は前
記高調波電圧VAC2 の直流励磁系へへの流入を阻止し、
共振コンデンサ24は界磁巻線1cのU相巻線リアクタ
ンスと共振して前記の電圧VAC2 に対する入力インピー
ダンスの最小化と位相遅れの回避とを図り、更に、移相
コンデンサ23は前記の電圧VAC1 を90度の位相進め
状態となすものである。
In the above structure, the choke coil 21 blocks the harmonic voltage V AC2 from flowing into the DC excitation system,
The resonance capacitor 24 resonates with the U-phase winding reactance of the field winding 1c to minimize the input impedance with respect to the voltage V AC2 and to avoid a phase delay. This is to set AC1 to the phase advanced state of 90 degrees.

【0045】ここに、界磁巻線1cのU相巻線と,V相
−W相の直列巻線とはその磁束形成状態において直交状
態をなし、この状態の両巻線にそれぞれ90度の位相差
を有する電圧VAC2 と移相された電圧VAC1 とを電圧比
1/31/2 の状態にて印加することにより、三相平衡巻
線をなす界磁巻線1cにより、その回転速度を6nfと
する回転磁界が発生し、この回転磁界を受けて前記の同
期機1の電機子巻線には所要の6n次高調波電圧が形成
される。
Here, the U-phase winding of the field winding 1c and the V-phase-W-phase series winding form an orthogonal state in the magnetic flux forming state, and both windings in this state have 90 degrees. By applying the voltage V AC2 having a phase difference and the phase-shifted voltage V AC1 in the state of the voltage ratio 1/3 1/2 , the field winding 1c forming the three-phase balanced winding rotates the rotation. A rotating magnetic field having a speed of 6 nf is generated, and in response to the rotating magnetic field, a required 6nth harmonic voltage is formed in the armature winding of the synchronous machine 1.

【0046】[0046]

【発明の効果】この発明によれば、電力系統における高
調波の発生源と並列状態にてこの電力系統に接続された
三相回転界磁形同期機に対し、前記電力系統電流中の所
定次数高調波電流の吸収を行わせる如く、その基本波電
圧及び高調波電流吸収に要する高調波電圧両者の誘起に
関する所要の励磁をなす前記同期機の励磁制御装置にお
ける前記高調波電圧の生成に関して、 1)請求項1の発明による如く、前記同期機の回転軸の
回転位相検出信号と、前記系統電流検出信号とをその入
力信号とし、前記の所定次数高調波電流と同一振幅を有
し且つ逆相関係にある同期機電機子電流を得るに要する
同期機励磁電流の値を前記の回転軸回転位相を基準とし
て演算し、この演算された高調波電流を以て前記の同期
機の励磁電流となす如く回路構成することにより、その
励磁制御を介し,同期機による系統電流中の所定次数高
調波電流の吸収が基本的に可能となり、また、 2)請求項2の発明による如く、前記の同期機励磁電流
所要値の演算を、回転座標変換部において、前記電力系
統の基本波の角周波数で回転する回転座標系の直交2軸
座標上の演算として行うことにより、所要演算が極めて
簡素化されることになり、また、 3)請求項3の発明による如く、前記同期機励磁電流所
要値の演算において、請求項2における回転座標変換部
の出力信号,即ち前記励磁電流所要値が、前記同期機に
よる所定次数の系統高調波電流の吸収が完了する迄、積
分処理部において順次修正処理されることにより、所要
の系統高調波電流吸収動作が極めて高度に行い得る様に
なり、また、 4)請求項4の発明による如く、前記同期機励磁電流所
要値の演算において、前記系統電流における所定次数高
調波電流の分離検出を、A/D変換された信号によるマ
イクロコンピュータ上のフーリエ変換操作により行うこ
とにより、検出精度の向上と、所要回路構成の小形化を
図ることが出来る。
According to the present invention, for a three-phase rotary field synchronous machine connected in parallel to a source of harmonics in a power system, the predetermined order in the current of the power system for a three-phase rotary field synchronous machine. Regarding the generation of the harmonic voltage in the excitation control device of the synchronous machine, which performs required excitation for inducing both the fundamental wave voltage and the harmonic voltage required for absorbing the harmonic current so as to absorb the harmonic current: According to the first aspect of the present invention, the rotational phase detection signal of the rotary shaft of the synchronous machine and the system current detection signal are used as its input signals and have the same amplitude as the predetermined order harmonic current and a reverse phase. A circuit for calculating the value of the synchronous machine exciting current required to obtain the related synchronous machine armature current with reference to the rotating shaft rotation phase, and using the calculated harmonic current as the exciting current of the synchronous machine. Make up By so doing, it becomes possible basically to absorb a predetermined order harmonic current in the system current by the synchronous machine through the excitation control, and 2) the synchronous machine exciting current is required as in the invention of claim 2. By performing the calculation of the value as the calculation on the orthogonal two-axis coordinates of the rotation coordinate system that rotates at the angular frequency of the fundamental wave of the power system in the rotation coordinate conversion unit, the required calculation is extremely simplified. 3) According to the invention of claim 3, in the calculation of the required value of the exciting current of the synchronous machine, the output signal of the rotary coordinate conversion unit in claim 2, that is, the required value of the exciting current is a predetermined order by the synchronous machine. The required system harmonic current absorption operation can be performed to an extremely high level by performing the correction processing in the integration processing section until the absorption of the system harmonic current is completed. According to the invention, in the calculation of the required value of the synchronous machine excitation current, the detection of the harmonic current of the predetermined order in the system current is performed by the Fourier transform operation on the microcomputer by the A / D converted signal. It is possible to improve accuracy and downsize the required circuit configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す同期機高調波励
磁用の励磁制御装置回路図
FIG. 1 is a circuit diagram of an excitation controller for synchronous machine harmonic excitation showing a first embodiment of the present invention.

【図2】この発明の第2の実施例を示す同期機高調波励
磁用の励磁制御装置回路図
FIG. 2 is a circuit diagram of an excitation controller for exciting a harmonic of a synchronous machine according to a second embodiment of the present invention.

【図3】図1と図2両図における回転座標変換回路の回
路図
FIG. 3 is a circuit diagram of a rotary coordinate conversion circuit in both FIGS. 1 and 2.

【図4】図3における移相器の回路図FIG. 4 is a circuit diagram of the phase shifter in FIG.

【図5】同期機基本波励磁用の励磁制御装置回路図FIG. 5 is a circuit diagram of an excitation control device for exciting a fundamental wave of a synchronous machine.

【図6】同期機に対する総合励磁系回路図FIG. 6 is a circuit diagram of an integrated excitation system for a synchronous machine.

【図7】同期機に対する励磁合成系回路図FIG. 7 is an excitation / synthesis system circuit diagram for a synchronous machine.

【符号の説明】[Explanation of symbols]

1 高調波吸収同期機(三相回転界磁形) 1a 同上同期機の電機子巻線(固定子部) 1b、1c 同上同期機の界磁巻線(回転子部) 2 電力系統 3 高調波発生源 4 励磁制御装置(高調波励磁用) 4a 6n±1次高調波検出器 4b 回転座標変換部 4c 6n次高調波フィルタ 4d 電力増幅器 5 励磁制御装置(高調波励磁用) 5f A/D変換部 5g 6n±1次高調波検出器(フーリエ変換部) 5h 回転座標変換部 5i 積分処理部 5j PLL回路 5k アドレスカウンタ 5m 波形メモリ部 5n D/A変換部 5p 電力増幅器 6 回転位相センサ 7 変流器 8 変流器 10 励磁制御装置(基本波励磁用) 11 電圧設定器 12 (計器用)変圧器 13 (励磁電源用)変圧器 20 励磁合成部 21 チョークコイル 22 出力変圧器 23 移相コンデンサ 24 共振コンデンサ A 増幅器(A1 ,A2 ) AD 加算器(AD1 ,AD2 ) AVR 自動電圧調整器 PS 移相器(PS1 〜PS9 ) MP 乗算器(MP1 〜PS6 1 Harmonic absorption synchronous machine (three-phase rotary field type) 1a Same as above Armature winding (stator section) of synchronous machine 1b, 1c Same as above Field winding of synchronous machine (rotor section) 2 Power system 3 Harmonics Source 4 Excitation control device (for harmonic excitation) 4a 6n ± 1st-order harmonic detector 4b Rotation coordinate conversion unit 4c 6n-order harmonic filter 4d Power amplifier 5 Excitation control device (for harmonic excitation) 5f A / D conversion Part 5g 6n ± first harmonic detector (Fourier transform unit) 5h Rotation coordinate conversion unit 5i Integration processing unit 5j PLL circuit 5k Address counter 5m Waveform memory unit 5n D / A conversion unit 5p Power amplifier 6 Rotational phase sensor 7 Current transformation Transformer 8 Current transformer 10 Excitation control device (for fundamental wave excitation) 11 Voltage setting device 12 (for instrument) Transformer 13 (for excitation power supply) Transformer 20 Excitation combiner 21 Choke coil 22 Output transformer 23 Phase shift capacitor 2 Resonant capacitor A amplifier (A 1, A 2) AD adder (AD 1, AD 2) AVR automatic voltage regulator PS phase shifter (PS 1 ~PS 9) MP multiplier (MP 1 ~PS 6)

フロントページの続き (72)発明者 比良 允幸 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 芦沢 厚 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 平5−336665(JP,A) 特開 平5−49172(JP,A) 特開 平5−299972(JP,A) 特開 平5−137400(JP,A) 特開 平5−292718(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02P 7/63 G05F 1/70 H02J 3/01 H02P 21/00 Front page continued (72) Inventor Hira Yoshiyuki, Tanabe Shinden 1-1 Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Inventor Atsushi Ashizawa 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (56) Reference JP-A-5-336665 (JP, A) JP-A-5-49172 (JP, A) JP-A-5-299972 (JP, A) JP-A-5-137400 ( JP, A) JP-A-5-292718 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H02P 7/63 G05F 1/70 H02J 3/01 H02P 21/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力系統における高調波発生源と並列状態
にてこの電力系統に接続された三相回転界磁形同期機に
対して、これら両者の接続位置における系統電流中の所
定次数高調波電流の吸収を行わせる如く、その基本波電
圧及び高調波電流吸収に要する高調波電圧両者の誘起に
関する所要の励磁をなす前記同期機の励磁制御装置であ
って、基本波電圧生成用の直流励磁電流を形成する基本
波形成用励磁系と高調波電圧生成用の高調波電流を形成
する高調波形成用励磁系との両者を統合する励磁合成部
を有し、前記高調波電圧の生成に関して、前記同期機の
励磁極の位置に連動する同期機回転軸の回転位相検出信
号と前記の如き接続位置における系統電流の検出信号と
をその入力信号となし、前記の所定次数高調波電流と同
一振幅を有し且つ逆相関係にある同期機電機子電流を得
るに要する同期機励磁電流の値を前記の回転軸回転位相
を基準として演算する如く回路構成したことを特徴とす
る同期機の励磁制御装置。
1. A three-phase rotary field synchronous machine connected in parallel with a harmonic generation source in a power system to a three-phase rotary field synchronous machine, and a predetermined order harmonic in the system current at the connection position of these two. An excitation control device for the synchronous machine, which performs required excitation for inducing both a fundamental voltage and a harmonic voltage required for absorbing a harmonic current so as to absorb a current, and a direct current excitation for generating a fundamental voltage. The basics of forming an electric current
Excitation system for wave formation and harmonic current generation for harmonic voltage generation
Exciting synthesizer that integrates both of
And, regarding the generation of the harmonic voltage, a rotation phase detection signal of the synchronous machine rotating shaft that is interlocked with the position of the excitation magnetic pole of the synchronous machine, and a detection signal of the system current at the connection position as described above, as its input signal. None, a circuit for calculating the value of the synchronous machine exciting current required to obtain the synchronous machine armature current having the same amplitude as the above-mentioned predetermined order harmonic current and having an antiphase relationship with reference to the rotary shaft rotation phase. An excitation control device for a synchronous machine characterized by being configured.
【請求項2】請求項1記載の同期機の励磁制御装置にお
いて、前記の高調波電流吸収に関する同期機励磁電流所
要値の演算を、前記所定次数高調波電流の3相分検出信
号を前記電力系統の基本波角周波数で回転する回転座標
上の直交2軸成分として3相/2相変換し、この2軸上
各成分の逆相成分のベクトル和の比例値を以てその振幅
とし前記回転座標上を前記所定次数高調波の角周波数と
次数1の差を有する角周波数で回転する高調波電流とし
て、前記回転座標変換部において行うことを特徴とする
同期機の励磁制御装置。
2. The excitation control device for a synchronous machine according to claim 1, wherein the required value of the synchronous machine excitation current relating to the harmonic current absorption is calculated by detecting the three-phase detection signal of the predetermined order harmonic current as the electric power. Three-phase / two-phase conversion is performed as orthogonal two-axis components on the rotational coordinates that rotate at the fundamental wave angular frequency of the system, and the amplitude is taken as the amplitude of the proportional value of the vector sum of the anti-phase components of each component on these two axes. Is performed in the rotating coordinate conversion unit as a harmonic current rotating at an angular frequency having a difference between the angular frequency of the predetermined order harmonic and the first order in the excitation control device of the synchronous machine.
【請求項3】請求項2記載の同期機の励磁制御装置にお
いて、前記回転座標変換部の出力信号を受けその振幅と
位相の両者を記憶すると共に、この記憶値に対し、所定
の時間間隔で順次演算される前記変換部出力信号の振幅
と位相の両者をそれぞれ加算して前記信号記憶値の修正
をなす積分処理部と、この修正された前記変換部出力信
号の1周期分の波形を記憶すると共にその波形記憶内容
が前記回転位相検出信号に同期して読み出される波形メ
モリ部と、この波形メモリ部の出力信号を受けるD/A
変換器と、を設け、この変換器の出力信号を以て前記の
高調波電流吸収に関する同期機励磁電流所要値となすこ
とを特徴とする同期機の励磁制御装置。
3. The excitation control device for a synchronous machine according to claim 2, wherein the output signal of said rotary coordinate conversion unit is received and both its amplitude and phase are stored, and this stored value is stored at predetermined time intervals. An integration processing unit that corrects the signal storage value by adding both the amplitude and the phase of the conversion unit output signal that are sequentially calculated, and the waveform of one cycle of the corrected conversion unit output signal is stored. And a D / A for receiving the output signal of the waveform memory unit whose waveform storage content is read out in synchronization with the rotation phase detection signal.
A converter is provided, and the excitation signal control device for a synchronous machine is characterized in that the output signal of the converter is used as a required value of the synchronous machine excitation current for the above harmonic current absorption.
【請求項4】請求項3記載の同期機の励磁制御装置にお
いて、前記系統電流検出信号からの前記所定次数高調波
電流の分離検出を、A/D変換された前記の系統電流検
出信号と回転位相検出信号とを入力としこの回転位相信
号を基準として所要の展開演算をなすフーリエ変換部に
おいて行う、ことを特徴とする同期機の励磁制御装置。
4. The excitation control device for a synchronous machine according to claim 3, wherein the separation detection of the predetermined order higher harmonic current from the system current detection signal is rotated with the A / D converted system current detection signal. An excitation control device for a synchronous machine, characterized in that a phase detection signal is input to a Fourier transform unit which performs a required expansion operation with reference to the rotational phase signal.
【請求項5】請求項1記載の同期機の励磁制御装置にお
いて、前記同期機の吸収対象となす所定次数高調波電流
を前記電力系統の基本波に対する6n±1次の高調波電
流とし、前記の所要励磁電流を6n次の高調波電流とす
ることを特徴とする同期機の励磁制御装置。
5. The excitation control device for a synchronous machine according to claim 1, wherein the predetermined-order harmonic current to be absorbed by the synchronous machine is a 6n ± 1st-order harmonic current with respect to the fundamental wave of the power system, The excitation control device for a synchronous machine is characterized in that the required excitation current of is a 6n-order harmonic current.
JP02507296A 1995-02-16 1996-02-13 Excitation controller for synchronous machine Expired - Fee Related JP3519200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02507296A JP3519200B2 (en) 1995-02-16 1996-02-13 Excitation controller for synchronous machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2788495 1995-02-16
JP7-27884 1995-02-16
JP02507296A JP3519200B2 (en) 1995-02-16 1996-02-13 Excitation controller for synchronous machine

Publications (2)

Publication Number Publication Date
JPH08289589A JPH08289589A (en) 1996-11-01
JP3519200B2 true JP3519200B2 (en) 2004-04-12

Family

ID=26362667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02507296A Expired - Fee Related JP3519200B2 (en) 1995-02-16 1996-02-13 Excitation controller for synchronous machine

Country Status (1)

Country Link
JP (1) JP3519200B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650022B2 (en) * 2005-02-22 2011-03-16 株式会社デンソー Rotation speed detector
CN110121837B (en) * 2016-12-27 2022-10-21 日本电产株式会社 Motor control device, motor system, motor control method, and integrated circuit device

Also Published As

Publication number Publication date
JPH08289589A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
JPS58123394A (en) Controller for ac motor
JP2004007988A (en) Induction motor and method of correcting it
US8878471B2 (en) Control apparatus for electric rotary machine
JPH07118956B2 (en) Vector controller
WO1999063654A1 (en) Motor control device
EP0535280B1 (en) Flux feedback system
JP3064671B2 (en) Control circuit of power converter
JP4088734B2 (en) Control device for permanent magnet type synchronous motor
US5886493A (en) Synchronous machine excitation control device for absorbing harmonics superposed onto fundamental current
JP3519200B2 (en) Excitation controller for synchronous machine
JPH07250500A (en) Variable speed controller for induction motor
JP3656944B2 (en) Control method of synchronous motor
JP7218700B2 (en) motor controller
JP2008199868A (en) Drive control device of permanent magnet synchronous motor
JPH0773438B2 (en) Variable speed controller for induction motor
CN107517030A (en) Electric machine control system and its motor vibration restraint method and apparatus and air conditioner
JP2005003530A (en) Phase detector
JPH0632581B2 (en) Induction motor controller
JP2971762B2 (en) Simple vector controller for three-phase induction motor
JP7431346B2 (en) Motor control devices, mechanical and electrical integrated units, hybrid systems, and electric power steering systems
JP3252634B2 (en) Inverter circuit output voltage control method
JP2897373B2 (en) DC brushless motor controller
JP3007989B2 (en) Driving device for stepping motor
JPS6070987A (en) Vector controller of induction motor
JPH0793839B2 (en) Induction motor controller

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees