JPS60175978A - Multiple effect absorption type refrigerator - Google Patents

Multiple effect absorption type refrigerator

Info

Publication number
JPS60175978A
JPS60175978A JP3023784A JP3023784A JPS60175978A JP S60175978 A JPS60175978 A JP S60175978A JP 3023784 A JP3023784 A JP 3023784A JP 3023784 A JP3023784 A JP 3023784A JP S60175978 A JPS60175978 A JP S60175978A
Authority
JP
Japan
Prior art keywords
solution
temperature regenerator
temperature
heat exchanger
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3023784A
Other languages
Japanese (ja)
Other versions
JPH0665941B2 (en
Inventor
章 西口
大内 富久
福田 民雄
臼井 三平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59030237A priority Critical patent/JPH0665941B2/en
Publication of JPS60175978A publication Critical patent/JPS60175978A/en
Publication of JPH0665941B2 publication Critical patent/JPH0665941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、多重効用吸収式冷凍装置に係り、特に高温再
生器の溶液循環量を適正に制御し省エネルギーと小形化
を図るのに好適な多重効用吸収式冷凍装置に関するもの
である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a multi-effect absorption refrigerating device, and in particular, a multi-effect absorption refrigerating device suitable for properly controlling the amount of solution circulating in a high-temperature regenerator to achieve energy saving and downsizing. This invention relates to an absorption type refrigeration device.

〔発明の背景〕[Background of the invention]

一般に、水を冷媒とし臭化リチウムを吸収剤とする吸収
式冷凍機では、再生器での加熱星と吸収器での冷却型を
接減して熱効率を向上するために、再生器から流出する
冷媒含有の少ない濃溶液の保有する熱を、吸収器から供
給される冷媒含有の多い希溶液に与える溶液熱交換器を
用いている。
In general, in absorption refrigerators that use water as a refrigerant and lithium bromide as an absorbent, in order to improve thermal efficiency by subtracting the heating star in the regenerator and the cooling type in the absorber, the amount of water flowing out from the regenerator is reduced. A solution heat exchanger is used that transfers heat held by a concentrated solution containing less refrigerant to a dilute solution containing more refrigerant supplied from an absorber.

この溶液熱交換器において、吸収器から再生器へ送られ
る希溶液は溶液循環ポンプにより駆動されているが、再
生器から吸収器に送られる濃溶液は両者の圧力差により
駆動されている。特に、三重効用機では高温再生器の圧
力が高いので、高温再生器を出入する溶液の熱交換を行
う高温熱交換器での圧力損失を大きくとって、熱伝達率
を増加し、熱交換器を小形化できる。
In this solution heat exchanger, the dilute solution sent from the absorber to the regenerator is driven by a solution circulation pump, while the concentrated solution sent from the regenerator to the absorber is driven by the pressure difference between the two. In particular, in a triple-effect machine, the pressure in the high-temperature regenerator is high, so the pressure loss in the high-temperature heat exchanger that exchanges heat between the solution entering and exiting the high-temperature regenerator is increased to increase the heat transfer coefficient, and the heat exchanger can be made smaller.

しかし、冷凍機の起動時には高温再生器の圧力は高くな
っていないので、高温熱交換器の流動抵抗が大きい場合
は溶液が流れなくなり、高温再生器の液面を維持できな
くなる。
However, since the pressure in the high-temperature regenerator is not high when the refrigerator is started, if the flow resistance of the high-temperature heat exchanger is large, the solution stops flowing and the liquid level in the high-temperature regenerator cannot be maintained.

このため、実際には、高温熱交換器の流動抵抗は小さく
し、高温再生器の液面に応じて開度を変える制御弁を溶
液流路の途中に設けることにより、高温再生器の圧力の
低い起動時には制御弁の開度を大きくして溶液が流れ易
いようにし、高温再生器の圧力が高い定常運転時には制
御弁の開度を小さくして溶液が過剰に流れるのを防止し
ている。
For this reason, in reality, the flow resistance of the high-temperature heat exchanger is made small, and a control valve that changes the opening depending on the liquid level in the high-temperature regenerator is installed in the middle of the solution flow path, thereby controlling the pressure of the high-temperature regenerator. During low startup, the opening of the control valve is increased to allow the solution to flow easily, and during steady operation when the pressure of the high-temperature regenerator is high, the opening of the control valve is decreased to prevent excessive flow of solution.

このために、高温再生器からの濃溶液側の圧力損失を大
きくできないので、熱伝達率を大きくできず、高温熱交
換器が大きくなるという欠点があった。
For this reason, the pressure loss on the concentrated solution side from the high-temperature regenerator cannot be increased, so the heat transfer coefficient cannot be increased, resulting in a disadvantage that the high-temperature heat exchanger becomes large.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の従来技術の問題点を解決するためにな
されたもので、高温再生器の溶液@環員を、圧力の低い
起動時にも、圧力の高い定常運転時にも適正に制御でき
るとともに、高温熱交換器の熱伝達率を向上し、高温熱
交換器を小形化できる多重効用吸収式冷凍装置の提供を
、その目的としている。
The present invention was made to solve the problems of the prior art described above, and it is possible to properly control the solution @ ring member of a high temperature regenerator both at low pressure startup and during high pressure steady operation. The purpose of the present invention is to provide a multi-effect absorption refrigeration system that can improve the heat transfer coefficient of a high-temperature heat exchanger and downsize the high-temperature heat exchanger.

〔発明の概要〕[Summary of the invention]

本発明に係る多重効用吸収式冷凍装置の構成は、外部熱
源を加熱源とする高温の高温再生器と、その高温再生器
で発生した冷媒蒸気を後段の低温の再生8:)の溶液の
加熱源として、ぞれぞれ冷媒蒸気を発生させる複数の再
生器と、凝縮器、蒸発器。
The configuration of the multi-effect absorption refrigeration apparatus according to the present invention includes a high-temperature regenerator that uses an external heat source as a heating source, and a refrigerant vapor generated in the high-temperature regenerator that is used for subsequent low-temperature regeneration (8). multiple regenerators each generating refrigerant vapor as sources, a condenser, and an evaporator.

吸収器、溶液熱交Vjl器などと、これら吸収ザイクル
の作動機器を連結する配管どからなる多重効用吸収式冷
凍装置において、前記高温再生器からの溶液流出流′j
@を分岐させて、一方を溶液熱交換器へ導通させ、他方
を前記高温再生器の後段の各再生器および吸収器を含む
低圧の溶液l路に接続するバイパス流路に導通させると
ともに、当該バイパス流路に溶液流星を制御する制御手
段を配設したものである。
In a multi-effect absorption refrigeration system consisting of an absorber, a solution heat exchanger, etc., and piping that connects the operating equipment of these absorption cycles, the solution outflow from the high temperature regenerator is
@ is branched, one side is connected to a solution heat exchanger, and the other side is connected to a bypass flow path that connects to a low-pressure solution path including each regenerator and absorber downstream of the high-temperature regenerator, and A control means for controlling the solution meteor is provided in the bypass channel.

なお、本発明を開発した考え方を付記すると、次のとお
りである。
Additionally, the idea behind developing the present invention is as follows.

一般に多重効用吸収式冷凍機では、熱効率向上のために
、高温再生器に流出入する溶液間で熱交換を行う高温熱
交換器を流れる溶液のうち、高温再生器からの溶液は、
高温再生器と吸収器、あるいは高温再生器と中温再生器
、あるいは高温再生器と低温再生器との圧力差によって
駆動することができる。例えば、二重効用機では、高温
再生器圧力は約0 、9 kg/am” 、吸収器圧力
は約0.01kg/am” 、低温再生器圧力は約0.
9kg/cI112テあり、圧力差としては0 、8〜
0 、9 kg/cm2程度の値となり、これを高温熱
交換器を流す溶液の駆動に利用できる。また三重効用器
では、例えば高温再生器の圧力は約3.8kg/cm2
とさらに大きくなり、吸収器圧力は約0 、01 kg
/cm2+低温再生器では約0 、06kg/cm” 
、中温再生器では約0.6kg/am”となり、3kg
/cm”以上の圧力差を利用できる。
In general, in a multi-effect absorption refrigerator, in order to improve thermal efficiency, heat is exchanged between the solutions flowing in and out of the high-temperature regenerator. Among the solutions flowing through the high-temperature heat exchanger, the solution from the high-temperature regenerator is
It can be driven by the pressure difference between a high temperature regenerator and an absorber, a high temperature regenerator and an intermediate temperature regenerator, or a high temperature regenerator and a low temperature regenerator. For example, in a dual-effect machine, the high temperature regenerator pressure is about 0.9 kg/am'', the absorber pressure is about 0.01 kg/am'', and the low temperature regenerator pressure is about 0.9 kg/am''.
9kg/cI112te, pressure difference is 0,8~
The value is approximately 0.9 kg/cm2, which can be used to drive the solution flowing through the high-temperature heat exchanger. In addition, in a triple effect device, for example, the pressure of the high temperature regenerator is approximately 3.8 kg/cm2.
becomes even larger, and the absorber pressure is approximately 0.01 kg.
/cm2+about 0.06kg/cm for low temperature regenerator”
, in the medium-temperature regenerator, it is approximately 0.6 kg/am", which is 3 kg
/cm" or more can be used.

一般的に、いろいろな形状の流路を流れる流体において
は、コルバーンのjファクタのアナロジからも明らかな
ように、圧力損失係数と熱伝達係数の間には相似関係が
成立している。すなわち、一般的な流れにおいて、圧力
損失が大きければ大きいほど熱伝達率を大きくできる。
Generally, in fluids flowing through channels of various shapes, a similar relationship is established between the pressure loss coefficient and the heat transfer coefficient, as is clear from the analogy of Colburn's j factor. That is, in a general flow, the larger the pressure loss, the larger the heat transfer coefficient can be.

このことから、前述したように高温熱交換器での圧力損
失を大きくとれる場合には、熱伝達率を大きくすること
ができ高温熱交換器を小形化することができる。
Therefore, as described above, if the pressure loss in the high-temperature heat exchanger can be increased, the heat transfer coefficient can be increased and the high-temperature heat exchanger can be downsized.

高温熱交換器の形式としては、シェルアンドチューブ式
、二重管式、プレート式、ノ1ンプソン式などの各形式
について前述のことがいえる。
The above-mentioned types of high-temperature heat exchangers include the shell and tube type, double tube type, plate type, and Nompson type.

また、熱交換器として、複数個のフラッシュ室と吸収室
とから構成され、冷媒のの飽和蒸気圧力差により、低温
で低濃度の希溶液に高温で高濃度の濃溶液から冷媒蒸気
を移動させて熱交換並びに溶液の濃縮を行うフラッシュ
吸収式熱交換器を利用する場合においても、高圧力差を
利用することにより、高温再生器の溶液@環員を適正に
制御できるとともに、前記フラッシュ室、吸収室をコン
パクトにできるという利点がある。
It also functions as a heat exchanger, consisting of multiple flash chambers and absorption chambers, and uses the difference in saturated vapor pressure of the refrigerant to transfer refrigerant vapor from a high temperature, high concentration concentrated solution to a low temperature, low concentration dilute solution. Even when using a flash absorption heat exchanger that exchanges heat and concentrates the solution, by using a high pressure difference, the solution @ring member of the high temperature regenerator can be properly controlled, and the flash chamber, This has the advantage that the absorption chamber can be made compact.

ところが実際には、冷凍機の起動時には高温再生器の圧
力は上っておらず、圧力差が小さし)ので、このときに
も溶液を循環できるように高温熱交換器の圧力損失は小
さく設計がなされており、熱伝達率を増大できず、熱交
換器が大きくなってしまう。
However, in reality, when the refrigerator starts up, the pressure in the high-temperature regenerator does not rise and the pressure difference is small), so the pressure loss in the high-temperature heat exchanger is designed to be small so that the solution can be circulated even at this time. However, the heat transfer coefficient cannot be increased and the heat exchanger becomes large.

また、高温再生器の圧力が高くなった定常運転時には、
圧力ヘッドを制御用の絞りなどで無駄に消費してしまっ
ている。
Also, during steady operation when the pressure of the high temperature regenerator is high,
The pressure head is wasted on control throttles, etc.

そこで本発明では、起動時には流動抵抗の小さいバイパ
ス流路を溶液が流れるようにし、高温再生器の圧力が高
くなった定常運転時には、バイパス回路を絞って流動抵
抗を大きくして高温熱交換器に溶液を流すようにするこ
とにより、高温熱交換器の熱伝達率を大きくして、高温
熱交換器の小形化を図るとともに、高温再生器の溶液量
および溶液循環量を適正に制御することを考えたもので
ある。
Therefore, in the present invention, the solution is made to flow through the bypass flow path with low flow resistance at startup, and during steady operation when the pressure of the high temperature regenerator is high, the bypass circuit is throttled to increase the flow resistance and the solution flows through the high temperature heat exchanger. By allowing the solution to flow, the heat transfer coefficient of the high-temperature heat exchanger can be increased and the high-temperature heat exchanger can be made smaller, and the amount of solution in the high-temperature regenerator and the amount of solution circulation can be appropriately controlled. I thought about it.

〔発明の実施例〕[Embodiments of the invention]

以下・本発明の各実施例を第1図な°゛し第6図 )を
参照して説明する。 1 まず、第1図は、本発明の一実施例に係る三重効用吸収
式冷凍機のサイクル借成図である。
Embodiments of the present invention will be described below with reference to FIG. 1 and FIG. 6. 1 First, FIG. 1 is a cycle diagram of a triple effect absorption refrigerator according to an embodiment of the present invention.

第1図において、1は蒸発器、2は吸収器、3は凝縮器
である。
In FIG. 1, 1 is an evaporator, 2 is an absorber, and 3 is a condenser.

6は、外部熱源により溶液を加熱して冷媒蒸気を発生し
溶液を濃縮する高温・高圧の高温再生器で、高温再生器
6は、外部熱源に係る燃焼器7゜貫流形熱交換器8.気
液分離器9から成っており、燃焼器7で発生した燃焼ガ
スにより貫流形熱交換器8で加熱されて沸Baした溶液
を、気液分離器9で冷媒蒸気と′a溶液に分離するもの
である。
6 is a high-temperature/high-pressure high-temperature regenerator that heats the solution with an external heat source to generate refrigerant vapor and concentrate the solution.The high-temperature regenerator 6 includes a combustor 7 and a once-through heat exchanger 8. It consists of a gas-liquid separator 9, in which the solution heated by the combustion gas generated in the combustor 7 in the once-through heat exchanger 8 and brought to boiling Ba is separated into refrigerant vapor and 'a solution in the gas-liquid separator 9. It is something.

5は、前記高温再生器6で発生した冷媒蒸気の凝縮潜熱
を主な加熱源として溶液を加熱し7〜媒蒸気を発生させ
る中温・中圧の中温再生器ひあり、4は、その中温再生
器5で発生した冷媒蒸気の凝縮潜熱を主な加熱源として
溶液を加熱し冷媒蒸気を発生させる低温再生器である。
5 is a medium-temperature and medium-pressure medium-temperature regenerator that heats the solution using the latent heat of condensation of the refrigerant vapor generated in the high-temperature regenerator 6 as a main heating source to generate 7 to medium-pressure vapor; 4 is the medium-temperature regenerator; This is a low-temperature regenerator that heats a solution and generates refrigerant vapor using the latent heat of condensation of the refrigerant vapor generated in the vessel 5 as the main heating source.

10は低温側の溶液熱交換器(以下低温熱交換器とい5
)、11は中温再生器側の溶液熱交換器(以下中温熱交
換器という)、12は高温側の溶液熱交換器(以下高温
熱交換器という)で、前記の吸収サイクルの作動機器と
、各機器を連結または通過する配管とで三重効用吸収式
冷凍機が構成されている。
10 is a solution heat exchanger on the low temperature side (hereinafter referred to as low temperature heat exchanger 5)
), 11 is a solution heat exchanger on the medium-temperature regenerator side (hereinafter referred to as medium-temperature heat exchanger), 12 is a solution heat exchanger on the high-temperature side (hereinafter referred to as high-temperature heat exchanger), which is the operating equipment of the absorption cycle, A triple-effect absorption chiller is configured with piping that connects or passes through each device.

18は、高温再生器6における気液分離器9と連通管2
0で連通した高温再生器溶液タンクである。28は、高
温再生器6からの溶液流出流路に係る高温再生器溶液排
出管、41は、前記溶液流出流路の一部をなす高温再生
器溶液タンク18から分岐し低圧の溶液回路の一部をな
す溶液タンク22に接続するバイパス流路であり、バイ
パス流路41にはフロートバルブ19が具備されている
18 is a connection between the gas-liquid separator 9 and the communication pipe 2 in the high-temperature regenerator 6
This is a high temperature regenerator solution tank connected at 0. 28 is a high-temperature regenerator solution discharge pipe related to a solution outflow channel from the high-temperature regenerator 6, and 41 is a part of a low-pressure solution circuit branched from the high-temperature regenerator solution tank 18 forming a part of the solution outflow channel. The bypass flow path 41 is connected to the solution tank 22 which forms a part of the main body, and the bypass flow path 41 is equipped with a float valve 19 .

蒸発器lにおいて冷媒#i環ポンプ13により冷媒液散
布装置37から散布された液冷媒は、冷水管29を流れ
る冷水から熱を奪って蒸発し、吸収器2に導びかれる。
The liquid refrigerant sprayed from the refrigerant liquid dispersion device 37 by the refrigerant #i ring pump 13 in the evaporator l takes heat from the cold water flowing through the cold water pipe 29, evaporates, and is guided to the absorber 2.

冷水管29上で蒸発しきらなかった液冷媒は、蒸発器1
の下部にある冷媒受は皿35にためられて、冷媒循環ポ
ンプ13により蒸発器1に循環される。
The liquid refrigerant that has not completely evaporated on the cold water pipe 29 is transferred to the evaporator 1.
The refrigerant receiver at the bottom of the evaporator 1 is stored in a tray 35 and circulated to the evaporator 1 by a refrigerant circulation pump 13.

前記吸収器2に導びかれた冷媒蒸気は、冷却水管30上
に散布された濃溶液に吸収される。このとき発生する吸
収熱は、冷却水管30を流れる冷却水に放出される。吸
収器2で冷媒蒸気を吸収して希釈された希溶液は、溶液
循環ポンプ14により低温熱交換器10に送られたのち
3つに分けられる。このうちの1つの高温再生器溶液循
環ポンプ15によりさらに加圧されて、逆止弁16.高
温熱交換器12.高温再生器溶液供給管25を経由して
貫流ボイラ形高温再生器6に供給される。
The refrigerant vapor introduced into the absorber 2 is absorbed by a concentrated solution sprayed onto the cooling water pipe 30. The absorbed heat generated at this time is released into the cooling water flowing through the cooling water pipe 30. The dilute solution that has been diluted by absorbing refrigerant vapor in the absorber 2 is sent to the low-temperature heat exchanger 10 by the solution circulation pump 14, and then divided into three parts. The high temperature regenerator solution circulation pump 15 further pressurizes the check valve 16 . High temperature heat exchanger 12. The solution is supplied to the once-through boiler type high-temperature regenerator 6 via the high-temperature regenerator solution supply pipe 25.

高温再生器6の貫流形態交換器8に流入した希溶液は、
燃焼器7で発生した燃焼ガスにより加熱されて沸騰し、
気液分離器9で冷媒蒸気と濃溶液に分離される。
The dilute solution flowing into the once-through exchanger 8 of the high temperature regenerator 6 is
It is heated by the combustion gas generated in the combustor 7 and boils.
The gas-liquid separator 9 separates the refrigerant into vapor and concentrated solution.

この濃溶液は、高温再生層溶液排出管28を通って、高
温再生盤溶液タンク18に送られる。高温再生盤溶液タ
ンク18の溶液は、タンク内の液面高さに応動して流量
を制御するフロートバルブ19を経てバイパス流路41
に導かれるが、高温熱交換器12を通って、高温再生盤
溶液タンク18の液面高さに応動して流量を制御するフ
ロートバルブ36を経て溶液タンク22に送られる。
This concentrated solution is sent to the hot regeneration layer solution tank 18 through the hot regeneration layer solution discharge pipe 28 . The solution in the high-temperature regeneration disk solution tank 18 passes through a float valve 19 that controls the flow rate in response to the liquid level in the tank, and then flows into the bypass channel 41.
It passes through the high-temperature heat exchanger 12 and is sent to the solution tank 22 via a float valve 36 that controls the flow rate in response to the liquid level in the high-temperature regeneration plate solution tank 18.

また、低温熱交換器10を出て3つに分けられた希溶液
の残り2つのうちの1′つは、中温熱交換器11.中温
再生盤溶液供給管24、この中温再生盤溶液供給管24
の途中に設けられた流量制御弁38を経由して中温再生
器5に導かれ、高温再生器6で発生した冷媒蒸気の凝縮
潜熱(中温再生器加熱管31)により加熱されて沸騰し
冷媒蒸気と濃溶液に分離される。この濃溶液は、中温再
生器溢流堰39.中温再生器溶液タンク40.中温再生
器溶液排出管27.中温熱交換器11を経由して溶液タ
ンク22に導かれる。
Further, one of the remaining two parts of the dilute solution that exits the low-temperature heat exchanger 10 and is divided into three parts is transferred to the medium-temperature heat exchanger 11. Medium-temperature regeneration disk solution supply pipe 24, this medium-temperature regeneration disk solution supply pipe 24
The refrigerant vapor is guided to the medium-temperature regenerator 5 via the flow control valve 38 provided in the middle of the refrigerant, and is heated by the latent heat of condensation (medium-temperature regenerator heating pipe 31) of the refrigerant vapor generated in the high-temperature regenerator 6 to boil. and a concentrated solution. This concentrated solution was added to the mesophilic regenerator overflow weir 39. Medium temperature regenerator solution tank 40. Medium temperature regenerator solution discharge pipe 27. It is led to the solution tank 22 via the medium temperature heat exchanger 11.

また、低温熱交換器10を出て3つに分けられた希溶液
の残りの1つは、低温再生器溶液供給管23を紅C低温
再生器4に供給されて、中温再生器5で発生した冷媒蒸
気の凝縮潜熱(低温再生器潜熱加熱管33)と高温再生
器6で発生し中温再生器5で凝縮潜熱を放出した冷媒液
の顕熱(低温再生盤顕熱加熱管32)によって加熱され
て沸騰し、冷媒蒸気と濃溶液に分離される。この濃溶液
は、低温再生器溶液排出管26を経て溶液タンク22に
導かれる。
In addition, the remaining one of the dilute solutions that exited the low-temperature heat exchanger 10 and was divided into three parts is supplied to the red C low-temperature regenerator 4 through the low-temperature regenerator solution supply pipe 23, and is generated in the medium-temperature regenerator 5. It is heated by the condensation latent heat of the refrigerant vapor (low-temperature regenerator latent heat heating tube 33) and the sensible heat of the refrigerant liquid generated in the high-temperature regenerator 6 and releasing the condensation latent heat in the medium-temperature regenerator 5 (low-temperature regenerator sensible heat heating tube 32). The liquid is boiled and separated into refrigerant vapor and a concentrated solution. This concentrated solution is led to the solution tank 22 via the low temperature regenerator solution discharge pipe 26.

次に、高温再生器6.中温再生器5.低温再生器4で冷
媒を発生し濃縮された溶液は、溶液タンク22に集めら
れ、溶液スプレーポンプ17により、このポンプのキャ
ビテーション防止のために設けられた前記溶液タンク2
2の液面に応動して流量を制御する流量制御弁21で制
御され、低温熱交換器10を経由して吸収器2内に散布
される。
Next, high temperature regenerator 6. Medium temperature regenerator5. A refrigerant is generated in the low-temperature regenerator 4, and the concentrated solution is collected in a solution tank 22, and is sprayed by a solution spray pump 17 into the solution tank 2, which is provided to prevent cavitation of this pump.
It is controlled by a flow rate control valve 21 that controls the flow rate in response to the liquid level of the absorber 2, and is dispersed into the absorber 2 via the low temperature heat exchanger 10.

一方、高温再生器6で発生した冷媒蒸気は、中温再生器
5に送られて、中温再生器加熱管31で溶液に凝縮潜熱
を放出して液化し、さらに低温再生器4へ送られる。低
温再生器4に送られた液冷媒は、低温再生盤顕熱加熱管
32で溶液に顕熱を放出して熱回収されたのち、低温熱
交換器10を通って熱回収され、凝縮器3に送られる。
On the other hand, the refrigerant vapor generated in the high-temperature regenerator 6 is sent to the medium-temperature regenerator 5, releases latent heat of condensation to the solution in the medium-temperature regenerator heating tube 31, liquefies it, and is further sent to the low-temperature regenerator 4. The liquid refrigerant sent to the low-temperature regenerator 4 releases sensible heat to the solution in the low-temperature regenerator sensible heat heating tube 32 and recovers the heat, then passes through the low-temperature heat exchanger 10 and is then transferred to the condenser 3. sent to.

また、中温再生器5で発生した冷媒蒸気は、低温再生器
4に送られて、低温再生器潜熱加熱管33で溶液に凝縮
潜熱を放出して液化したのち凝縮器2に送られて、冷却
水管30を流れる冷却水で冷却される。
In addition, the refrigerant vapor generated in the medium temperature regenerator 5 is sent to the low temperature regenerator 4, and after being liquefied by releasing latent heat of condensation to the solution in the low temperature regenerator latent heat heating tube 33, it is sent to the condenser 2 and cooled. It is cooled by cooling water flowing through the water pipe 30.

次に、低温再生器4で発生した冷媒蒸気は、凝縮器3に
送ら]して、゛凝縮潜熱を前記冷却水管30を流れる冷
却水に放出して凝縮液化し、高温再生1(秤6からの冷
媒および中温再生器5からの冷媒といっしょに蒸発器1
に送られる。
Next, the refrigerant vapor generated in the low-temperature regenerator 4 is sent to the condenser 3], and the latent heat of condensation is released into the cooling water flowing through the cooling water pipe 30, where it is condensed and liquefied. evaporator 1 together with refrigerant from the medium-temperature regenerator 5
sent to.

このような構成の三重効用吸収式冷凍機において、起動
時には高温再生器6の圧力が低いために、高温再生盤溶
液タンク18から溶液タンク22への溶液が流tLにく
くなっており、そのために高温再生盤溶液タンク18の
液面が上昇し、フロー1〜バルブ19およびフロー1〜
バルブ36の開度が大きくなる。このとき、高温熱交換
器12の流路抵抗が大きいために、バイパス流路4]を
流れる溶液量が増加し、溶液循環量を調整する。
In the triple-effect absorption chiller having such a configuration, at startup, the pressure in the high-temperature regenerator 6 is low, so the flow tL of the solution from the high-temperature regenerator solution tank 18 to the solution tank 22 is difficult. The liquid level of the recycle disk solution tank 18 rises, and the flow 1 to valve 19 and the flow 1 to
The opening degree of the valve 36 increases. At this time, since the flow path resistance of the high temperature heat exchanger 12 is large, the amount of solution flowing through the bypass flow path 4 increases, and the amount of solution circulation is adjusted.

定常運転時には、高温再生器6の圧力が上昇して、高温
熱交換器12を流れる溶液量が増え、そのために高温再
生盤溶液タンク18の液面が下降し、フロー1〜バルブ
19の開度が絞られて、バイパス流路41を流れる溶液
量はほとんどなくなる。
During steady operation, the pressure in the high-temperature regenerator 6 increases, the amount of solution flowing through the high-temperature heat exchanger 12 increases, and as a result, the liquid level in the high-temperature regenerator solution tank 18 decreases, causing the opening degrees of flow 1 to valve 19 to decrease. is constricted, and the amount of solution flowing through the bypass channel 41 is almost eliminated.

このとき、フロートバルブ36の開度はまだ太きくなっ
ており、大部分の溶液は高温熱交換器12を流れる。
At this time, the opening degree of the float valve 36 is still wide, and most of the solution flows through the high temperature heat exchanger 12.

これにより、高温熱交換器12における熱伝達率を向上
させることができ、この高温熱交換器12を小舟化する
ことができる。
Thereby, the heat transfer coefficient in the high-temperature heat exchanger 12 can be improved, and the high-temperature heat exchanger 12 can be made into a small boat.

また、本実施例では、高温熱交換器12の後流側にフロ
ートバルブ36を配設し、溶液が十勺冷却されてからフ
ロートバルブ36を通るようにしたので、減圧によるフ
ラッシングを防止できるという効果がある。
Furthermore, in this embodiment, the float valve 36 is disposed on the downstream side of the high-temperature heat exchanger 12, and the solution passes through the float valve 36 after it has been cooled down to 100 degrees, so that flushing due to reduced pressure can be prevented. effective.

さらに、定常運転時にもバイパス流路4−1 ti−溶
液が少しずつ流れるように、フローl−バルブ19が完
全に開基しないようにしておくことにより、バイパス流
路41内における溶液の結晶防止を図ることができると
いう付随的な効果もある。
Furthermore, by preventing the flow l-valve 19 from being completely opened so that the ti-solution flows little by little through the bypass flow path 4-1 even during steady operation, crystallization of the solution in the bypass flow path 41 is prevented. There is also the additional effect of being able to achieve more.

なお、本実施例では、高温再生盤溶液タンク18に2個
のフロートバルブ19.36を設けて流量を制御してい
るが、三方弁などの切換弁(図示せず)を用いて、高温
再生盤溶液タンク18からの溶液を、起動時の一定時間
はバイパス流路41を流すようにし、一定時間後は切換
弁を切換えて高温熱交換器12に送るようにしてもよい
In this embodiment, two float valves 19.36 are provided in the high-temperature regeneration solution tank 18 to control the flow rate, but a switching valve (not shown) such as a three-way valve is used to control the high-temperature regeneration solution. The solution from the panel solution tank 18 may be made to flow through the bypass channel 41 for a certain period of time at startup, and after the certain period of time, the switching valve may be switched to send the solution to the high temperature heat exchanger 12.

次に、本発明の他の実施例を第2図を参照して説明°す
る。
Next, another embodiment of the present invention will be described with reference to FIG.

第2図は、本発明の他の実施例に係る三重効用吸収式冷
凍機のサイクル構成図であり、図中、第1図と同一符号
のものは、先の実施例と同等部分であるから、その説明
を省略する。
FIG. 2 is a cycle configuration diagram of a triple-effect absorption refrigerator according to another embodiment of the present invention. In the figure, the same reference numerals as in FIG. 1 are the same parts as in the previous embodiment. , the explanation thereof will be omitted.

第2図において、42はバイパス流路で、高温再生盤溶
液タンク18と中温再生器5とを連結しており、フロー
トバルブ1.9を具備して、起動時にバイパス流路42
仕流れる溶液を中温再生器5を経由して溶液タンク22
に送るように構成されている。
In FIG. 2, reference numeral 42 denotes a bypass flow path, which connects the high temperature regenerator solution tank 18 and the medium temperature regenerator 5, and is equipped with a float valve 1.9.
The flowing solution is passed through the medium temperature regenerator 5 to the solution tank 22.
It is configured to send to.

また、フロー1ヘバルブ36は、高温熱交換器12の」
1流側に配設されている。
In addition, the valve 36 to flow 1 is connected to the high temperature heat exchanger 12.
It is placed on the first stream side.

その他の(構成と作用は、前述の第1図の実施例と同様
である。
The rest of the structure and operation are similar to the embodiment shown in FIG. 1 described above.

このように4育成した第2図の実施例によれば、第1図
の例で説明した主要な効果を達成するほかに、起動時に
は、バイパス流路42を通って高温の溶液が中温再生器
5に送られるので、この中温再生器5の起動時間を短く
できるという効果がある。
According to the embodiment shown in FIG. 2, which is grown four times in this way, in addition to achieving the main effects described in the example shown in FIG. 5, this has the effect of shortening the startup time of this medium temperature regenerator 5.

また、高温再生器溶液タンク18内に設置したフロート
バルブ36を高温熱交換器12の上流側に配置したので
、下流側に配置した場合のようにフロートバルブ36の
漏れのために、高温熱交換器12で冷却されて温度の低
くなった溶液に高温再生器液面タンク18内の高温の溶
液が混合することによる損失を防止できるという効果も
ある。
In addition, since the float valve 36 installed in the high-temperature regenerator solution tank 18 is placed upstream of the high-temperature heat exchanger 12, the high-temperature heat exchanger Another advantage is that it is possible to prevent loss due to mixing of the high-temperature solution in the high-temperature regenerator liquid level tank 18 with the solution that has been cooled in the vessel 12 and has a lower temperature.

次に、本発明のさらに他の実施例を第3図を参照して説
明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

第3図は、本発明のさらに他の実施例に係る二重効用吸
収式冷凍機のサイクル構成図であり、図中、第1図と同
一符号のものは、前述の実施例と同等部分であるから、
その説明を省略する。
FIG. 3 is a cycle configuration diagram of a dual-effect absorption refrigerator according to yet another embodiment of the present invention. In the figure, the same reference numerals as in FIG. because there is,
The explanation will be omitted.

第3図において、43はバイパス流路で、高温再生盤溶
液タンク18と低温再生器4とを連結しており、フロー
トバルブ19を具備して、起動時にバイパス流路43を
流れる溶液を低温再生器4を経由して溶液タンク22に
送るように構成されている。
In FIG. 3, reference numeral 43 denotes a bypass flow path, which connects the high temperature regeneration plate solution tank 18 and the low temperature regenerator 4, and is equipped with a float valve 19 to regenerate the solution flowing through the bypass flow path 43 at low temperature during startup. The solution is configured to be sent to the solution tank 22 via the container 4.

その他の構成と作用は、前述の第1図の実施例と同様で
ある。
The rest of the structure and operation are similar to the embodiment shown in FIG. 1 described above.

このように構成した第3図の実施例によれば、先の第1
図の実施例で説明した主要な効果が達成されるほかに、
起動時には、バイパス流路43を通って高温の溶液が低
温再生器4に送られるので、この低温1T1生器4の起
動時間を短くできるという効果がある。
According to the embodiment of FIG. 3 configured in this way, the first
In addition to achieving the main effects described in the illustrated embodiment,
At startup, the high-temperature solution is sent to the low-temperature regenerator 4 through the bypass channel 43, which has the effect of shortening the startup time of the low-temperature 1T1 generator 4.

また、バイパス流路43を分岐して、中温再生器5と低
温再生器4に連結すれば、中温再生器5゜低温再生器4
ともに起動時間を短くすることも可能である。
In addition, if the bypass flow path 43 is branched and connected to the medium temperature regenerator 5 and the low temperature regenerator 4, the medium temperature regenerator 5 and the low temperature regenerator 4 can be connected to each other.
In both cases, it is also possible to shorten the startup time.

次に、本発明のさらに他の実施例について第4図を参照
して説明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

第4図は、本発明のさらに他の実施例に係る三重効用吸
収式冷凍機のサイクル構成図であり、図中、第1図と同
一符号のものは、第1図の実施例と同一部分であるから
、その説明を省略する。
FIG. 4 is a cycle configuration diagram of a triple-effect absorption refrigerator according to still another embodiment of the present invention. In the figure, the same reference numerals as in FIG. Therefore, its explanation will be omitted.

第4図において、41′は、高温再生器溶液タンク18
と溶液タンク22とを連結しているバイパス流路、45
は、バイパス流路41′に設けた電磁弁、46は、高温
再生器溶液タンク18の液面高さに応動して電磁弁45
を作動させる液面スイッチである。
In FIG. 4, 41' is the high temperature regenerator solution tank 18.
and a bypass flow path connecting the solution tank 22 and the solution tank 22;
46 is a solenoid valve provided in the bypass passage 41', and 46 is a solenoid valve 45 provided in response to the liquid level height of the high temperature regenerator solution tank
This is a liquid level switch that activates the

第4図の実施例では、バイパス流wr41’の途中にフ
ロートバルブの替わりに電磁弁45を配設し、この電磁
弁45を高温再生器溶液タンク18に設置した液面スイ
ッチ46により開閉するようにしたもので、その他の構
成と作用は前述の第1図の実施例と同様である。
In the embodiment shown in FIG. 4, a solenoid valve 45 is provided in place of the float valve in the middle of the bypass flow wr41', and this solenoid valve 45 is opened and closed by a liquid level switch 46 installed in the high temperature regenerator solution tank 18. The other structure and operation are the same as the embodiment shown in FIG. 1 described above.

このように構成した第4図の実施例では、起動時に高温
再生器6の圧力が低いために高温再生器溶液タンク18
から溶液タンク22へ流れる溶液が流れにくいので、高
温再生器溶液タンク18の液面が上昇し、液面スイッチ
46が作動して電磁弁45を開くとともに、フロートバ
ルブ36の開度を大きくする。ところが、高温熱交換器
12を経由してフロートバルブ36を通る流路は流動抵
抗が大きいために溶液はあまり流れず、大部分の溶液は
バイパス流路41および電磁弁45を通って溶液タンク
22に送られる。
In the embodiment shown in FIG. 4 configured in this way, the pressure in the high temperature regenerator 6 is low at the time of startup, so the high temperature regenerator solution tank 18
Since it is difficult for the solution to flow from the solution tank 22 to the solution tank 22, the liquid level in the high temperature regenerator solution tank 18 rises, and the liquid level switch 46 is activated to open the solenoid valve 45 and increase the opening degree of the float valve 36. However, the flow path that passes through the float valve 36 via the high-temperature heat exchanger 12 has a large flow resistance, so the solution does not flow much, and most of the solution passes through the bypass flow path 41 and the solenoid valve 45 into the solution tank 22. sent to.

一方、定常運転時には、高温再生器6の圧力が高くなる
ので、流動抵抗の大きな高温熱交換器12へも溶液が流
れるようになり、高温再生器溶液タンク18の液面が低
下して、液面スイッチ46が作動してバイパス流路41
′の電磁弁45を閉じる。
On the other hand, during steady operation, the pressure in the high-temperature regenerator 6 increases, so the solution also flows to the high-temperature heat exchanger 12, which has a large flow resistance, and the liquid level in the high-temperature regenerator solution tank 18 decreases. The surface switch 46 is activated and the bypass flow path 41 is opened.
' Close the solenoid valve 45.

電磁弁45は閉じた状態でも溶液が少しずつ流れ、バイ
パス流路41′の結晶を防止する。高温再生器溶液タン
ク18の液面が下って、液面スイッチ4Gが作動し電磁
弁45を閉じたとき、フロートバルブ36の開度はまだ
十分大きく、高温再生器6の圧力も高くなっているので
、流動抵抗の大きな高温熱交換器12を経由して、溶液
タンク22ので溶液が送られる。そして、以後の溶液流
量は高温再生器溶液タンク18の液面高さに応動するフ
ロートバルブ36により調節される。これにより、高温
熱交換器12における熱伝達率を向上させることができ
、この高温熱交換器12を小形化できる。
Even when the electromagnetic valve 45 is closed, the solution flows little by little, thereby preventing crystallization in the bypass channel 41'. When the liquid level in the high temperature regenerator solution tank 18 falls and the liquid level switch 4G operates to close the solenoid valve 45, the opening degree of the float valve 36 is still sufficiently large and the pressure in the high temperature regenerator 6 is also high. Therefore, the solution is sent to the solution tank 22 via the high temperature heat exchanger 12 which has a large flow resistance. Then, the subsequent flow rate of the solution is regulated by a float valve 36 that responds to the liquid level height of the high temperature regenerator solution tank 18. Thereby, the heat transfer coefficient in the high-temperature heat exchanger 12 can be improved, and the high-temperature heat exchanger 12 can be downsized.

次に、本発明のさらに他の実施例を第5図を参照して説
明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

第5図は、本発明のさらに他の実施例に係る三重効用吸
収式冷凍機のサイクル構成図であり、図中、第1,4図
と同一符号のものは、第1,4図の実施例と同等部分で
あるから、その説明を省に3する。
FIG. 5 is a cycle configuration diagram of a triple-effect absorption refrigerator according to still another embodiment of the present invention, and in the figure, the same reference numerals as in FIGS. Since it is the same part as the example, I will briefly explain it.

第5図において、50は低圧力損失の高温熱交換器で、
高温再生器6における貫流形熱交1体器8へ流入する希
溶液と、高温再生器6における気液分離器9から流出す
る濃溶液とを熱交換し、気液分離器9と高温再生器溶液
タンク】8の・\ラド差だけで駆動する圧力損失の少な
い熱交換器であり、高温再生器6からの溶液流出流路に
係る高温再生器溶液排出管28に配設されているもので
ある。
In Fig. 5, 50 is a high temperature heat exchanger with low pressure loss;
The dilute solution flowing into the once-through type heat exchanger 1 in the high-temperature regenerator 6 and the concentrated solution flowing out from the gas-liquid separator 9 in the high-temperature regenerator 6 are heat exchanged, and the gas-liquid separator 9 and the high-temperature regenerator Solution tank] This is a heat exchanger with low pressure loss that is driven only by the rad difference of 8, and is installed in the high temperature regenerator solution discharge pipe 28 related to the solution outflow path from the high temperature regenerator 6. be.

その他の構成と作用は、先の第4図の実施例と同様であ
る。
The rest of the structure and operation are similar to the embodiment shown in FIG. 4 above.

このような構成の第5図の実施例では、先の第4図の実
施例で説明した主要な効果が達せられるほか、高温再生
器溶液タンク18へ送られる前の高温の溶液を熱交換す
るので熱損失が少なくなるという利点がある。また、高
温再生器溶液タンク18内の溶液温度は低下するので、
フロートバルブ36での減圧によるフラッシングを防止
できるとともに、高温再企器溶液タンク18内に設置し
たフロートバルブ36を高温熱交換器12の上流側に配
置したので、下流側に配置した場合のようにフロートバ
ルブ36の漏れのために、高温熱交換器12で冷却され
て温度の低くなった溶液に高温再生器溶液タンク18内
の高温の溶液が混合することによる損契を防止できると
いう効果もある。
The embodiment of FIG. 5 having such a configuration achieves the main effects described in the previous embodiment of FIG. This has the advantage of reducing heat loss. In addition, since the solution temperature in the high temperature regenerator solution tank 18 decreases,
Flushing due to pressure reduction at the float valve 36 can be prevented, and since the float valve 36 installed in the high temperature recycler solution tank 18 is placed on the upstream side of the high temperature heat exchanger 12, it is possible to prevent flushing due to pressure reduction at the float valve 36. This also has the effect of preventing damage caused by the high temperature solution in the high temperature regenerator solution tank 18 mixing with the solution that has been cooled down to a low temperature by the high temperature heat exchanger 12 due to leakage of the float valve 36. .

次に、本発明のさらに他の実施例を第6図を参照して説
明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

第6図は、本発明のさらに他の実施例に係る三重効用吸
収式冷凍機のサイクル構成図であり、図中、第1図と同
一符号のものは、第1図の実施例と同等部分であるから
、その説明を省略する。
FIG. 6 is a cycle configuration diagram of a triple-effect absorption refrigerator according to yet another embodiment of the present invention. In the figure, the same reference numerals as in FIG. Therefore, its explanation will be omitted.

第6図にJ′;いて、6Aは炉筒水管ボイラ形の高温再
生器、18Aは、高温再生器と溶液溢流堰47を介して
一体的に構成された高温再生温溶液タンクである。44
は、高温再生器6Aからの溶液流出流路に係るバイパス
流路で、高温再生温溶液タンク18と溶液タンク22と
を連結しており。
In FIG. 6, 6A is a high-temperature regenerator in the form of a tube boiler, and 18A is a high-temperature regenerated hot solution tank that is integrated with the high-temperature regenerator via a solution overflow weir 47. 44
is a bypass flow path related to the solution outflow flow path from the high temperature regenerator 6A, which connects the high temperature regeneration hot solution tank 18 and the solution tank 22.

フロートバルブ19を具備している。A float valve 19 is provided.

高温再生器6Aの濃溶液は、溶液溢流堰47からあふれ
て高温再生温溶液タンク18Aに連通し、起動時にはフ
ロー1〜バルブ19の作用でバイパス流路44に送られ
るように構成されている。
The concentrated solution of the high temperature regenerator 6A overflows from the solution overflow weir 47 and communicates with the high temperature regenerated hot solution tank 18A, and is configured to be sent to the bypass channel 44 by the action of the flow 1 to valve 19 at the time of startup. .

42は、前記バイパス流路44に配設した熱交換器で、
高温熱交換器12から高温再生器6Aへ高温再生器溶液
供給管25により送らiする希溶液と熱交換するもので
ある。
42 is a heat exchanger disposed in the bypass flow path 44,
It exchanges heat with the dilute solution sent from the high-temperature heat exchanger 12 to the high-temperature regenerator 6A via the high-temperature regenerator solution supply pipe 25.

28′は高温再生器溶液排出管で、高温再生温溶液タン
ク18Aの溶液を、フロートバルブ36で滴量を調整し
たのち高温熱交換器12に送るよう構成されている。
28' is a high temperature regenerator solution discharge pipe, which is configured to send the solution in the high temperature regeneration hot solution tank 18A to the high temperature heat exchanger 12 after adjusting the droplet amount with a float valve 36.

その他の構成と作用は、先の第1図の実施例と同様であ
る。
The rest of the structure and operation are the same as the embodiment shown in FIG. 1 above.

このような構成の第6図の実施例によれば、前述の各実
施例と同様、高温再生器6Aの溶液循環量を、圧力の低
い起動時にも、圧力の高い定常運転時にも適正に制御で
き、高温熱交換器12の熱伝達率を増大できるほか、熱
交換器51を設けてバイパス流路44からも熱回収する
ようにしたので、さらに省エネルギーを図ることができ
る。
According to the embodiment shown in FIG. 6 having such a configuration, as in each of the embodiments described above, the solution circulation amount of the high temperature regenerator 6A can be appropriately controlled both during startup at low pressure and during steady operation at high pressure. In addition to increasing the heat transfer coefficient of the high-temperature heat exchanger 12, since the heat exchanger 51 is provided to recover heat from the bypass passage 44, it is possible to further save energy.

なお、前記の各実施例では、三重効用吸収式冷凍機の例
を説明したが、本発明は、これにかぎるものでなく、同
等の効果が期待できる多重効用吸収式冷凍装置の範囲で
汎用的なものである。
In each of the above-mentioned embodiments, an example of a triple-effect absorption refrigerating machine has been described, but the present invention is not limited to this, and the present invention can be applied to general-purpose absorption refrigerating equipment within the range of multiple-effect absorption refrigerating equipment that can be expected to have the same effect. It is something.

また、前記の各実施例では、希溶液を高温、中温、低温
の3個の再生器へ並列に供給する構成になっているが、
これを直列に供給するような構成、たとえば高温、中温
の各再生器へ溶液を並列に供給し、低温再生器へは温再
生器から直列に供給するような構成においても、本発明
はその効果を発揮するものである。 。
Furthermore, in each of the above embodiments, the dilute solution is supplied in parallel to three regenerators, one for high temperature, one for medium temperature, and one for low temperature.
Even in a configuration in which the solution is supplied in series, for example, in a configuration in which the solution is supplied in parallel to each high-temperature and medium-temperature regenerator, and a low-temperature regenerator is supplied in series from the high-temperature regenerator, the present invention has the same effect. It is something that demonstrates the. .

さらに、前記の第1図ないし第5図の各実施例では、高
温再生器が貫流形ボイラーを用いた吸収式冷凍機の例を
説明したが、本発明は、こ肛にかぎるものではなく、炉
筒水管形や炉筒煙管形ボイラーなどを用いても同等の効
果が期待でさるものである。
Further, in each of the embodiments shown in FIGS. 1 to 5, an example of an absorption refrigerator in which the high-temperature regenerator uses a once-through boiler has been described, but the present invention is not limited to this. The same effect can be expected by using a water tube boiler or a smoke tube boiler.

〔発明の効果〕〔Effect of the invention〕

以」二述べたように、本発明によれば、高温再生器の溶
液循鹿量を、圧力の低い起動時にも、圧力の高い定常運
転時にも適正に制御できるとともに、高温熱交換器の熱
伝達率を向上し、高温熱交換器を小形化しうる多重効用
吸収式冷凍装置を提供することができる。
As described above, according to the present invention, the amount of solution circulated in the high-temperature regenerator can be appropriately controlled both at low-pressure start-up and during high-pressure steady operation, and at the same time, the amount of solution circulated in the high-temperature heat exchanger can be controlled appropriately. It is possible to provide a multi-effect absorption refrigerating device that can improve the transfer rate and downsize the high-temperature heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る三重効用吸収式冷凍
機のサイクル構成図、第2図は、本発明の他の実施例に
係る三重効用吸収式冷凍機のサイクル構成図、第3図は
、本発明のさらに他の実施例に係る三重効用吸収式冷凍
機のサイクル構成図、第4.5.6図は、いずれも本発
明のさらに他の実施ρすに係る三重効用吸収式冷凍機の
サイクル構成図である。
FIG. 1 is a cycle configuration diagram of a triple-effect absorption refrigerating machine according to an embodiment of the present invention, and FIG. 2 is a cycle configuration diagram of a triple-effect absorption refrigerating machine according to another embodiment of the present invention. 3 is a cycle configuration diagram of a triple-effect absorption refrigerator according to yet another embodiment of the present invention, and FIG. 4.5.6 is a cycle configuration diagram of a triple-effect absorption refrigerator according to still another embodiment of the present invention. It is a cycle block diagram of a type|formula refrigerator.

Claims (1)

【特許請求の範囲】 1、外部熱源を加熱源とする高温の高温再生器と、その
高温再生器で発生した冷媒蒸気を後段の低温の再生器の
溶液の加熱源として、それぞれ冷媒蒸気を発生させる複
数の再生器と、凝縮器、蒸発器、吸収器、溶液熱交換器
などと、これら吸収サイクルの作動機器を連結する配管
とからなる多重効用吸収式冷凍装置において、前記高温
再生器からの溶液流出流路を分岐させて、一方を溶液熱
交換器へ導通させ、他方を前記高温再生器の後段の各再
生器および吸収器を含む低圧の溶液回路に接続するバイ
パス流路に導通させるとともに、当該バイパス流路に溶
液流量を制御する制御手段を配設したことを特徴とする
多重効用吸収式冷凍装置。 2、特許請求の範囲第1項記載のものにおいて、バイパ
ス流路に配設した溶液流量を制御する制御手段を電磁弁
とし、その電磁弁を、高温再生器の液面高さに応じて開
閉しうるように、前記高温再生器の溶液タンクに配設し
た液面スイッチに連動せしめたものである多重効用吸収
式冷凍装置。 3、特許請求の範囲第1項記載のものにおいて、バイパ
ス流路に配設した溶液流量を制御する制御手段をフロー
ト弁とし、高温再生器の液面高さに応じて前記フロート
弁の開度を変化させるように構成したものである多重効
用吸収式冷凍装置。 4、特許請求の範囲第1項記載のものにおいて、高温再
生器からの溶液流出流路に、前記高温再生器へ流入する
冷媒含有の多い希溶液と前記高温再生器から流出する冷
媒含有の少ない濃溶液とを熱交換しうる低圧力損失の高
温熱交換器を配設し、前記高温再生器から流出する濃溶
液を前記低圧力損失の高温熱交換器を通過したのち分岐
せしめたものである多重効用吸収式冷凍装置。
[Claims] 1. A high-temperature regenerator that uses an external heat source as a heating source, and refrigerant vapor generated in the high-temperature regenerator as a heating source for a solution in a subsequent low-temperature regenerator, respectively, to generate refrigerant vapor. In a multi-effect absorption refrigeration system comprising a plurality of regenerators, a condenser, an evaporator, an absorber, a solution heat exchanger, etc., and piping connecting the operating equipment of these absorption cycles, The solution outflow flow path is branched, and one side is connected to a solution heat exchanger, and the other side is connected to a bypass flow path that connects to a low-pressure solution circuit including each regenerator and absorber downstream of the high-temperature regenerator. A multi-effect absorption refrigerating device, characterized in that a control means for controlling a solution flow rate is disposed in the bypass channel. 2. In the device described in claim 1, the control means for controlling the solution flow rate disposed in the bypass flow path is a solenoid valve, and the solenoid valve is opened and closed according to the liquid level height of the high temperature regenerator. A multi-effect absorption refrigerating device that is linked to a liquid level switch installed in the solution tank of the high temperature regenerator. 3. In the device described in claim 1, the control means for controlling the solution flow rate disposed in the bypass flow path is a float valve, and the opening degree of the float valve is adjusted according to the liquid level height of the high temperature regenerator. A multi-effect absorption refrigeration system that is configured to change the 4. In the solution according to claim 1, a dilute solution containing a large amount of refrigerant flowing into the high-temperature regenerator and a dilute solution containing a low refrigerant flowing out from the high-temperature regenerator are arranged in the solution outflow path from the high-temperature regenerator. A high-temperature heat exchanger with a low pressure loss capable of exchanging heat with a concentrated solution is installed, and the concentrated solution flowing out from the high-temperature regenerator is branched after passing through the high-temperature heat exchanger with a low pressure loss. Multi-effect absorption refrigeration equipment.
JP59030237A 1984-02-22 1984-02-22 Multi-effect absorption refrigeration system Expired - Fee Related JPH0665941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030237A JPH0665941B2 (en) 1984-02-22 1984-02-22 Multi-effect absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030237A JPH0665941B2 (en) 1984-02-22 1984-02-22 Multi-effect absorption refrigeration system

Publications (2)

Publication Number Publication Date
JPS60175978A true JPS60175978A (en) 1985-09-10
JPH0665941B2 JPH0665941B2 (en) 1994-08-24

Family

ID=12298105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030237A Expired - Fee Related JPH0665941B2 (en) 1984-02-22 1984-02-22 Multi-effect absorption refrigeration system

Country Status (1)

Country Link
JP (1) JPH0665941B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710065A (en) * 1980-06-19 1982-01-19 Ebara Mfg Absorption type heat pump
JPS57182061A (en) * 1981-04-30 1982-11-09 Sanyo Electric Co Absorbing cold and hot water device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710065A (en) * 1980-06-19 1982-01-19 Ebara Mfg Absorption type heat pump
JPS57182061A (en) * 1981-04-30 1982-11-09 Sanyo Electric Co Absorbing cold and hot water device

Also Published As

Publication number Publication date
JPH0665941B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
JP2782555B2 (en) Absorption heat pump
JP3241550B2 (en) Double effect absorption chiller / heater
JPS60175978A (en) Multiple effect absorption type refrigerator
JP3880852B2 (en) Refrigerant management device and method for storing and discharging refrigerant
JP2816012B2 (en) Control device for absorption refrigerator
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JP3281228B2 (en) Absorption type cold / hot water unit
JP4201418B2 (en) Control method of absorption chiller / heater
JP2892519B2 (en) Absorption heat pump equipment
JPS6148064B2 (en)
JPS6113884Y2 (en)
JP4175612B2 (en) Single-effect absorption chiller / heater
JP2787182B2 (en) Single / double absorption chiller / heater
JPH04313652A (en) Absorption refrigerating machine
JPS62778A (en) Single-double effect absorption refrigerator
JPS6266068A (en) Air-cooled double-effect absorption water heater and chiller
JP4115020B2 (en) Control method of absorption refrigerator
JPH0222311B2 (en)
JP2865305B2 (en) Absorption refrigerator
JPH0752039B2 (en) Air-cooled absorption chiller / heater
JP2858931B2 (en) Control device for absorption refrigerator
JPH0638009B2 (en) Air-cooled absorption cold / hot water unit
JPS60159570A (en) Multiple effect absorption type refrigerator
JPS6113550B2 (en)
JPH0680378B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees