JPS60175412A - Growing method of gallium nitride - Google Patents

Growing method of gallium nitride

Info

Publication number
JPS60175412A
JPS60175412A JP59030805A JP3080584A JPS60175412A JP S60175412 A JPS60175412 A JP S60175412A JP 59030805 A JP59030805 A JP 59030805A JP 3080584 A JP3080584 A JP 3080584A JP S60175412 A JPS60175412 A JP S60175412A
Authority
JP
Japan
Prior art keywords
gan
crystal
gallium nitride
reaction
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59030805A
Other languages
Japanese (ja)
Other versions
JPH0572742B2 (en
Inventor
Toshiharu Kawabata
川端 敏治
Susumu Furuike
進 古池
Toshio Matsuda
俊夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59030805A priority Critical patent/JPS60175412A/en
Publication of JPS60175412A publication Critical patent/JPS60175412A/en
Publication of JPH0572742B2 publication Critical patent/JPH0572742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a grown layer which has good surface flatness and crystallinity by performing the step of forming GaN on a crystalline substrate by the first step of executing in an inert atmosphere and the second step of performing in a hydrogen atmosphere. CONSTITUTION:The step of forming GaN on a crystalline substrate 4 is performed by the reaction of organic gallium compound with ammonia. In this case, the step is performed by the first step of executing in an inert atmosphere and the second step of performing in a hydrogen atmosphere. Organic gallium compound is selected from trimethyl gallium or triethyl gallium. Thus, a colorless, transparent, smooth-surface GaN crystalline layer is obtained on the substrate 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機ガリウム化合物とアンモニアとの反応に
より結晶基板上に窒化ガリウム(以下、G a N と
記す)を生成する窒化ガリウムの成長方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for growing gallium nitride (hereinafter referred to as GaN) on a crystal substrate by a reaction between an organic gallium compound and ammonia. It is.

従来例の構成とその問題点 GaN は、青色発光素子の半導体材料として有望視さ
れているが、大きな単結晶がなかなか実現できず、通常
、サファイア基板上に有機ガリウム化合物とアンモニア
との熱分解法(′以下、MOCvD法と略す)で気相成
長させたものが用いられている。このMOCVD法は、
トリメチルガリウム(以下、TMGと略す)あるいはト
リエチルガリウム(以下、TEGと略す)とアンモニア
(以下、NH3と記す)とを気相反応させ、その反応生
成物を、所定温度に保ったサファイア基板上に結晶育成
するものである。この結晶育成過程では、まず、サファ
イア基板上に無数のGaN 核が生成され、この核の周
りに結晶が次第に成長して大きくなり、ついで、隣接す
る結晶成長物が互いに結合して層状の結晶体に成長する
ことが知られている。
Conventional configurations and problems GaN is seen as a promising semiconductor material for blue light-emitting devices, but large single crystals are difficult to produce, and it is usually prepared using a thermal decomposition method using an organic gallium compound and ammonia on a sapphire substrate. (hereinafter abbreviated as MOCvD method) is used. This MOCVD method is
Trimethyl gallium (hereinafter abbreviated as TMG) or triethyl gallium (hereinafter abbreviated as TEG) and ammonia (hereinafter abbreviated as NH3) are reacted in a gas phase, and the reaction product is placed on a sapphire substrate kept at a predetermined temperature. It grows crystals. In this crystal growth process, first, countless GaN nuclei are generated on the sapphire substrate, crystals gradually grow around these nuclei and become larger, and then adjacent crystal growths combine with each other to form a layered crystal body. is known to grow.

このとき、反応雰囲気に水素(H2)を用いると、初期
段階で生成されるGaN 核が大型で、低密度になり、
これを核として成長する結晶成長′吻も犬きな塊となっ
て、層状の結晶成長面が層状の大きな粗面になる。また
、この結晶は、キャリア濃度が3×10cm という高
濃度であシ、結晶性もなかなか良くならない。一方、反
応雰囲気を窒素(N2)、アルゴン(Ar)、あるいは
ヘリウム(He)等の不活性気体にすると、初期生成物
のC2aN 核は微細で高密度になるが、反応過程で生
成される中間生成物が分解されず、成長結晶中にメチル
基(−CH3)を含む不完全結晶が生成され、結晶性が
著しく悪い。
At this time, if hydrogen (H2) is used in the reaction atmosphere, the GaN nuclei generated in the initial stage will be large and have a low density.
The crystal growth proboscis that grows with this as a nucleus also becomes a large lump, and the layered crystal growth surface becomes a layered large rough surface. Further, this crystal has a high carrier concentration of 3×10 cm 2 and crystallinity does not improve easily. On the other hand, when the reaction atmosphere is an inert gas such as nitrogen (N2), argon (Ar), or helium (He), the initial product C2aN nuclei become fine and dense, but intermediates generated during the reaction process become The product is not decomposed and incomplete crystals containing methyl groups (-CH3) are formed in the grown crystals, resulting in extremely poor crystallinity.

発明の目的 本発明は、MOCVD法により、結晶基板上に良質のG
 a N 結晶層を育成することの可能なGaNの成長
方法を提供するものである〇 発明の構成 本発明は、要約すると、有機ガリウム化合物とアンモニ
アとの反応による結晶基板上へのGaN生成過程を、不
活性雰囲気中で行なう第1工程と、水素雰囲気中で行な
う第2工程と婁≠挨≠喘で行なうGaN の成長方法で
あり、これによ91表面平坦性ならびに結晶性のよい成
長層が得られる。
Purpose of the Invention The present invention provides high-quality G on a crystal substrate by MOCVD method.
To provide a method for growing GaN that is capable of growing an aN crystal layer 〇Structure of the Invention To summarize, the present invention involves the process of producing GaN on a crystal substrate by the reaction between an organic gallium compound and ammonia. This is a GaN growth method in which the first step is carried out in an inert atmosphere, the second step is carried out in a hydrogen atmosphere, and a grown layer with good surface flatness and crystallinity is obtained. can get.

1、実施例の説明 図面は、本発明の実施過程で使用したGaN 結晶成長
装置の概略断面図であり、以下、この図面を参照して、
本発明を実施例により詳しくのべる。
1. Explanation of Examples The drawing is a schematic cross-sectional view of the GaN crystal growth apparatus used in the implementation process of the present invention, and hereinafter, with reference to this drawing,
The present invention will be described in detail with reference to Examples.

この装置は、冷却水を通して管壁を冷却した石英反応管
1の外周部に・高周波誘導加熱源2を設け、同石英反応
管1の内部にはカーボンサセグタ3を設置し、この上に
サファイア単結晶基板4を載置して、この基板4を95
0’Cに加熱保持して、上方の配管5からTMG、同6
カ・らN またはN2、同7からNH3をそれぞれ供給
して、気相反応ができるようにしたものである。なお、
8,9は各フランジ部であり、10はシャフト部である
In this device, a high-frequency induction heating source 2 is installed on the outer periphery of a quartz reaction tube 1 whose tube wall is cooled through cooling water, a carbon sussegrator 3 is installed inside the quartz reaction tube 1, and a sapphire single crystal is placed on top of the high-frequency induction heating source 2. Place the board 4 on the board 95
Heat and maintain at 0'C, connect upper pipe 5 to TMG and 6
Gas-phase reactions can be carried out by supplying N2 or N2 and NH3 from the same. In addition,
8 and 9 are respective flange parts, and 10 is a shaft part.

まず、第1工程として、反応の雰囲気にN2を約72/
分で供給しながら、反応ガスのNH3およびTMGを、
それぞれ、3β/分および0.2cc/分の割合で導入
する。なお、TMGの0.2cc/分は、1β/分のN
2に混合して供給する。この条件下で10分間の反応処
理を行なう。
First, as the first step, approximately 72% of N2 is added to the reaction atmosphere.
Reactant gases NH3 and TMG are supplied at
They are introduced at a rate of 3β/min and 0.2 cc/min, respectively. In addition, 0.2cc/min of TMG is 1β/min N
2. Mix and supply. A reaction treatment is carried out for 10 minutes under these conditions.

引き続いて、第2工程として、雰囲気を15&’分のN
2に切り換えるとともに、反応ガスのTMGも、2 c
c/分を、1a/分のN2と混合したもので導入して、
NH3の31!、7分のガス条件下で120分114ノ
の反応処理を行なう、以上の反応処理によって、サファ
イア結晶基板4上には、無色透明で、表面の滑らかなG
aN結晶層が得られ、このGaN 結晶は、キャリア濃
度が6×100 であり、良質のものであった。
Subsequently, as a second step, the atmosphere was reduced to 15&' N.
At the same time, the reaction gas TMG was also changed to 2 c
c/min mixed with 1 a/min of N2,
31 of NH3! , 7 minutes under gas conditions, 120 minutes and 114 hours. Through the above reaction treatment, a colorless and transparent G with a smooth surface is formed on the sapphire crystal substrate 4.
An aN crystal layer was obtained, and this GaN crystal had a carrier concentration of 6×100 and was of good quality.

なお、このG a N 結晶層は、表面観察によっても
、六角錐が密集した結晶ではあるが、従来例にみられた
剣状突起部がなく、滑らかであることか確認 4された
Furthermore, surface observation of this GaN crystal layer confirmed that although it was a crystal with densely packed hexagonal pyramids, it did not have the sword-like protrusions seen in the conventional example and was smooth.

本実施例では、結晶基板にサファイアを用いたが、同じ
結晶系の炭化ケイ素(SiC)結晶基板を用いても同様
の結果が得られる。
In this example, sapphire was used as the crystal substrate, but similar results can be obtained even if a silicon carbide (SiC) crystal substrate of the same crystal system is used.

さらに、本実施例のうち、第1工程の雰囲気N2を、A
rあるいはHeに代えても、はとんど同じ結果が得られ
る。
Furthermore, in this example, the atmosphere N2 in the first step was changed to A
Even if r or He is substituted, almost the same result can be obtained.

本実施例のうち、反応主体のTMGも、TEGに代えて
、これをNH3と反応させても、TMGの場合と同様な
結果が得られる。
In this example, even if TMG, which is the main reaction agent, is reacted with NH3 instead of TEG, the same results as in the case of TMG can be obtained.

発明の効果 本発明によれば、MOCVD法でのC1aN結晶の育成
が、第1段階でのGaN核の生成と、次の結晶生成の第
2段階とで雰囲気条件を不活性雰囲気から水素雰囲気に
変えることにより、安定で、しかも、良質の結晶層に実
現される。そして、この方法で得られだGaN結晶は、
青色発光素子用材料として、実用性の高いものであり、
工業化に有望である。
Effects of the Invention According to the present invention, the growth of a C1aN crystal using the MOCVD method changes the atmospheric condition from an inert atmosphere to a hydrogen atmosphere in the first stage of GaN nucleus generation and the second stage of crystal formation. By changing the crystal layer, a stable and high quality crystal layer can be realized. The GaN crystal obtained by this method is
It is highly practical as a material for blue light emitting elements,
It is promising for industrialization.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例で用いたG a N結晶成長装置
の概略断面図である。 1・・・・・・石英反応管、2・・・・・・高周波誘導
加熱源、3・・・・・・カーボンザセプタ、4・・・・
・ザ7アイア単結晶基板、5,6,7・・・・・・ガス
用配管、8,9・・・・・フランジ部、10・旧・・シ
ャフト部。
The drawing is a schematic cross-sectional view of a GaN crystal growth apparatus used in an example of the present invention. 1...Quartz reaction tube, 2...High frequency induction heating source, 3...Carbon the receptor, 4...
・The 7 Aia single crystal substrate, 5, 6, 7... Gas piping, 8, 9... Flange part, 10. Old... Shaft part.

Claims (3)

【特許請求の範囲】[Claims] (1)有機ガリウム化合物とアンモニアとの反応による
結晶基板上への窒化ガリウム生成過程を、不活性雰囲気
中で行なう第1工程と、水素雰囲気中で行なう第2工程
との漣寺ト目4で行なう窒化ガリウムの成長方法、)
(1) The process of producing gallium nitride on a crystal substrate by the reaction between an organic gallium compound and ammonia is performed in the first step in an inert atmosphere and the second step in a hydrogen atmosphere. How to grow gallium nitride,)
(2)有機ガリウム化合物が、トリメチルガリウムもし
くはトリエチルガリウムから選ばれる特許請求の範囲第
1項に記載の窒化ガリウムの成長方法。
(2) The method for growing gallium nitride according to claim 1, wherein the organic gallium compound is selected from trimethylgallium or triethylgallium.
(3)不活性雰囲気が、窒素、アルゴンもしくはヘリウ
ムから選ばれる特許請求の範囲第1項に記載の窒化ガリ
ウムの成長方法。
(3) The method for growing gallium nitride according to claim 1, wherein the inert atmosphere is selected from nitrogen, argon, or helium.
JP59030805A 1984-02-21 1984-02-21 Growing method of gallium nitride Granted JPS60175412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030805A JPS60175412A (en) 1984-02-21 1984-02-21 Growing method of gallium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030805A JPS60175412A (en) 1984-02-21 1984-02-21 Growing method of gallium nitride

Publications (2)

Publication Number Publication Date
JPS60175412A true JPS60175412A (en) 1985-09-09
JPH0572742B2 JPH0572742B2 (en) 1993-10-12

Family

ID=12313894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030805A Granted JPS60175412A (en) 1984-02-21 1984-02-21 Growing method of gallium nitride

Country Status (1)

Country Link
JP (1) JPS60175412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297023A (en) 1991-01-31 1992-10-21 Nichia Chem Ind Ltd Crystal growth method of gallium nitride compound semiconductor
EP0687749A1 (en) * 1994-06-14 1995-12-20 Thomas Swan And Co., Ltd. Apparatus for chemical vapour deposition
JPH11135885A (en) * 1997-10-30 1999-05-21 Matsushita Electric Ind Co Ltd Production of semiconductor and semiconductor laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297023A (en) 1991-01-31 1992-10-21 Nichia Chem Ind Ltd Crystal growth method of gallium nitride compound semiconductor
EP0687749A1 (en) * 1994-06-14 1995-12-20 Thomas Swan And Co., Ltd. Apparatus for chemical vapour deposition
US5871586A (en) * 1994-06-14 1999-02-16 T. Swan & Co. Limited Chemical vapor deposition
JPH11135885A (en) * 1997-10-30 1999-05-21 Matsushita Electric Ind Co Ltd Production of semiconductor and semiconductor laser
US6611005B2 (en) 1997-10-30 2003-08-26 Matsushita Electric Industrial Co., Ltd. Method for producing semiconductor and semiconductor laser device

Also Published As

Publication number Publication date
JPH0572742B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
JPH02211620A (en) Method of growing single crystal thin film of compound semiconductor
JPS60175412A (en) Growing method of gallium nitride
JPH08316151A (en) Manufacture of semiconductor
JP3946805B2 (en) Crystal growth method of gallium nitride compound semiconductor
JPH0321516B2 (en)
JPS60207332A (en) Growth of gallium nitride
JPH0380198A (en) Method for growing single crystal film of nitrogen compound semiconductor
JP4075385B2 (en) Seed crystal of gallium nitride single crystal and growth method thereof
JPS6115150B2 (en)
JPH0547668A (en) Crystal growth method for compound semiconductor
JP2952831B2 (en) Method for manufacturing semiconductor device
JPS63188933A (en) Method for vapor growth of gallium nitride compound semiconductor
JPH03119721A (en) Crystal growth
JPS63227007A (en) Vapor growth method
JPH01103996A (en) Vapor growth method for compound semiconductor
JPS6373617A (en) Method for vapor growth of compound semiconductor
Bourret-Courchesne et al. MOVPE of GaN on sapphire using the alternate precursor 1, 1-dimethylhydrazine
JP2020200223A (en) Production method and production apparatus of group iii element nitride crystal
JPH0214513A (en) Formation of compound semiconductor layer
JPS61155291A (en) Vapor growth process
JPS59164697A (en) Vapor growth method
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPS62238618A (en) Semiconductor wafer
JPS63119521A (en) Apparatus for vapor phase growth of organic metal
JP2736417B2 (en) Semiconductor element manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term