JPS60173859A - Semiconductor ic device - Google Patents

Semiconductor ic device

Info

Publication number
JPS60173859A
JPS60173859A JP2971684A JP2971684A JPS60173859A JP S60173859 A JPS60173859 A JP S60173859A JP 2971684 A JP2971684 A JP 2971684A JP 2971684 A JP2971684 A JP 2971684A JP S60173859 A JPS60173859 A JP S60173859A
Authority
JP
Japan
Prior art keywords
layer
region
wiring
polycrystalline
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2971684A
Other languages
Japanese (ja)
Inventor
Haruji Futami
二見 治司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2971684A priority Critical patent/JPS60173859A/en
Publication of JPS60173859A publication Critical patent/JPS60173859A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the capacitance coupling due to parasitic capacitance by a method wherein, in the structure of intersection of wiring conductor layers, an impurity layer and a polycrystalline semiconductor layer are constructed as part of another wiring conductor layer; whereas, in the structure of intersection of the circuit element and the wiring conductor layer, one region in the circuit element is made up of the impurity layer, thus forming the polycrystalline semiconductor layer into the electrode. CONSTITUTION:After an N type epitaxial layer 1 is formed on a P type semiconductor substrate 9, a high concentration P type semiconductor region 10 is formed and isolated into a plurality of island regions. Successively, a high concentration N type semiconductor region 11 is formed in the isolated N type epitaxial region 1. Next, an Si oxide film 2 is formed by selective oxidation. After removal of the nitride film on an aperture 12, a polycrystalline Si layer is grown, and further the polycrystalline Si layer other than in the neighborhood of the aperture 12 is changed into an Si oxide film 4; then, a high concentration N type semiconductor region 13 is formed on the remaining polycrystalline Si layer 3. A Pt silicide layer 5 is formed on the Si layer 3. This silicide layer 5 is exposed by forming an oxide film 6, and wiring regions 7 and 7' are formed at the same time. This manner enables the prevention of the coupling of intersecting wirings or wirings with each other due to parasitic capacitance.

Description

【発明の詳細な説明】 (技術分野) 本発明は集積回路装置にかがシ、特に、所謂PSA技術
を用いた半導体集積回路装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to integrated circuit devices, and particularly to semiconductor integrated circuit devices using so-called PSA technology.

(従来技術) PSA(Polysillicon Self−Ali
gned) 技術(IEEE 5olid−8tate
 C4rcuits 5C−I30ct。
(Prior art) PSA (Polysilicon Self-Ali
gned) Technology (IEEE 5solid-8tate)
C4rcuits 5C-I30ct.

1978 PP693−698参照)技術を利用した半
導体集積回路装置(以下、ICと呼ぶ)においてはポリ
シリコン層の表面に白金シリサイドを形成してこのポリ
シリコン層の層抵抗値を5Ω/口程度まで下げることが
可能であシ、またポリシリコン層と半導体基板との寄生
容量が小さい。かかる利点を用いて、二つの金属配線を
交差させなければならない箇所では、一方の配線をポリ
シリコン層に接続し、他方の配線を、そのポリシリコン
配線上に通すような構造が可能である。
In semiconductor integrated circuit devices (hereinafter referred to as ICs) using technology (see 1978 PP693-698), platinum silicide is formed on the surface of a polysilicon layer to lower the layer resistance of this polysilicon layer to about 5 Ω/gate. In addition, the parasitic capacitance between the polysilicon layer and the semiconductor substrate is small. Taking advantage of this advantage, at a location where two metal wires must cross, it is possible to create a structure in which one wire is connected to a polysilicon layer and the other wire is passed over the polysilicon layer.

第1図は、PSA技術を適用した配線交差部の従来構造
を示す断面図である。図において、1は半導体シリコン
基板、2は熱酸化膜、3はポリシリコン層、4はポリシ
リコン層3を選択的に酸化して形成した第2の熱酸化膜
、5はポリシリコン1藝3上に抵抗をさげるために形成
された白金シリサイド層、6はCVD等にょシ形成され
た第3のシリコン酸化膜であシ、そして7および7′は
交差させなければならない二つの低抵抗配線層(例えは
、アルミニウムのような金属でなる)である。
FIG. 1 is a sectional view showing a conventional structure of a wiring intersection to which the PSA technology is applied. In the figure, 1 is a semiconductor silicon substrate, 2 is a thermal oxide film, 3 is a polysilicon layer, 4 is a second thermal oxide film formed by selectively oxidizing the polysilicon layer 3, and 5 is a polysilicon layer 3. A platinum silicide layer is formed on top to lower the resistance, 6 is a third silicon oxide film formed by CVD, etc., and 7 and 7' are two low resistance wiring layers that must be crossed. (For example, it is made of metal such as aluminum).

ポリシリコン層3は二つの配線N7.7’の交差のため
に形成されている。すなわち、配線層7は二つに分割し
、それらを第3の酸化膜6に形成された開孔部8を介し
て白金シリサイドN5に接続することによシミ気的導通
を実現し、一方、他の配線層7を白金シリサイド層5上
の酸化膜6の上に形成して配線層7と7′とを交差させ
ることを可能としている。
Polysilicon layer 3 is formed for the intersection of two interconnections N7 and 7'. That is, the wiring layer 7 is divided into two parts and connected to the platinum silicide N5 through the openings 8 formed in the third oxide film 6 to realize spot gas conduction. Another wiring layer 7 is formed on the oxide film 6 on the platinum silicide layer 5, making it possible for the wiring layers 7 and 7' to intersect.

このように、PSA技術を適用したICにおいては配線
同士の交差が容易に行なえる。
In this way, in an IC to which the PSA technology is applied, wiring lines can easily cross each other.

最近、PSA技術を利用したトランジスタは高いfTを
有するため、高周波で動作するICが設計されるように
なってきた。このため、従来のICではほとんど問題に
はならなかった、配線同士の交差部での配線層7′と白
金シリサイド層5との間の容量による結合が無視できな
くなった。特K、高利得の増幅回路の入力回路と、比較
的大きな信号が流れる出力回路との間などでは信号干渉
の影響が顕著である。
Recently, ICs that operate at high frequencies have been designed because transistors using PSA technology have high fT. Therefore, the coupling due to capacitance between the wiring layer 7' and the platinum silicide layer 5 at the intersections of the wirings, which was hardly a problem in conventional ICs, can no longer be ignored. Especially, the influence of signal interference is noticeable between the input circuit of a high-gain amplifier circuit and the output circuit through which a relatively large signal flows.

この信号の干渉は、配線と回路素子との間にも生じ得る
。すなわち、ICにおいては、トランジスタのコレクタ
領域上に他の配線全交差させる手法は良く使用される。
This signal interference can also occur between wiring and circuit elements. That is, in ICs, a technique is often used in which all other wiring lines cross over the collector region of a transistor.

第2図はかがる交差を行なった従来例を示す断面図であ
る。9はP型シリコン基板・ lはN型エピタキシャル
層、10はP型アイソレーション領域、14はNPN 
)ランジスタのコレクタ直列抵抗を減少させるために設
けられた高濃度N型埋込み領域、15はボロン等のP型
不純物全イオン注入にょシ形成した深さ0.8μ。
FIG. 2 is a sectional view showing a conventional example in which a darning crossing is performed. 9 is a P-type silicon substrate, l is an N-type epitaxial layer, 10 is a P-type isolation region, and 14 is an NPN
) A heavily doped N-type buried region 15 provided to reduce the collector series resistance of the transistor is formed by fully ion-implanting P-type impurities such as boron to a depth of 0.8 μm.

層抵抗IKΩ/口のベース領域、16は上部の多結晶シ
リコン層3−1から拡散された深さ0.6μ、層抵抗1
00Ω/口の高濃度P型ベースコンタクト領域、である
。13−1はエミッタ領域である。
Layer resistance IKΩ/base region 16 is diffused from the upper polycrystalline silicon layer 3-1 to a depth of 0.6μ, layer resistance 1
00Ω/hole heavily doped P-type base contact region. 13-1 is an emitter region.

また、11は埋込領域に接続されたN型コレクタ引出し
領域、13−2はコレクタコンタクト領域である。さら
にまた、3−1.3−2Uエミツタ。
Further, 11 is an N-type collector lead-out region connected to the buried region, and 13-2 is a collector contact region. Furthermore, 3-1.3-2U Emitsuta.

コレクタ用のポリシリコンe、7−1 、7−2 、7
−3は夫々ベース、エミッタ、コレクタ電極配線である
。2,4.6は第1図で示したように、第1゜第2.第
3の酸化膜である。そして、配線7′はコレクタ用のポ
リシリコン層3−3上に形成された白金シリサイド5′
と酸化膜6を介しで交差している。この構造においては
、配線7′と白金シリサイド層5との間には5000A
の酸化膜6があるのみで、容量結合が無視できない。
Polysilicon e for collector, 7-1, 7-2, 7
-3 are base, emitter, and collector electrode wirings, respectively. 2, 4.6, as shown in FIG. This is the third oxide film. The wiring 7' is a platinum silicide 5' formed on the collector polysilicon layer 3-3.
and intersect with each other through the oxide film 6. In this structure, the distance between the wiring 7' and the platinum silicide layer 5 is 5000A.
Since there is only the oxide film 6, capacitive coupling cannot be ignored.

このような信号の干渉をさけるために、あらかじめ交差
不可とする配線同士や配線と回路素子とを指定して、一
方の配線を迂回させる等の対策を行なっていたが、配線
及び回路素子のレイアウトの自由度の低下や集積度の低
下を招くなどの欠点があった。
In order to avoid such signal interference, countermeasures were taken such as specifying in advance the wiring that cannot cross each other or the wiring and circuit elements, and detouring one of the wirings, but the layout of the wiring and circuit elements There were disadvantages such as a decrease in the degree of freedom and a decrease in the degree of integration.

(発明の目的) 本発明の目的は、寄生容量による容量結合を防止した半
導体集積回路装置を提供することにある。
(Object of the Invention) An object of the present invention is to provide a semiconductor integrated circuit device that prevents capacitive coupling due to parasitic capacitance.

(発明の構成) 即ち、本発明は、不純物層に一部が埋設された第」の絶
縁膜と、この不純物層の一部と接する多結晶半導体層と
、第1の絶縁膜上に設けられ多結晶半導体の酸化によシ
形成された第2の絶縁膜と、この第2の絶縁膜上にさら
に形成された第3の絶縁膜とを有し、この第3の絶縁膜
上に導体層を形成したことを特徴とする。
(Structure of the Invention) That is, the present invention provides a first insulating film that is partially buried in an impurity layer, a polycrystalline semiconductor layer that is in contact with a part of this impurity layer, and a polycrystalline semiconductor layer that is provided on a first insulating film. It has a second insulating film formed by oxidizing a polycrystalline semiconductor, a third insulating film further formed on the second insulating film, and a conductor layer on the third insulating film. It is characterized by the formation of

二つの配線導体層の交差構造においては、一方の配線導
体層は第3の絶縁膜上に形成された導体層として構成さ
れ、不純物層および多結晶半導体層が他方の配線導体層
の一部として構成される。
In the cross structure of two wiring conductor layers, one wiring conductor layer is formed as a conductor layer formed on a third insulating film, and an impurity layer and a polycrystalline semiconductor layer are formed as part of the other wiring conductor layer. configured.

回路素子と配線導体層との交差構造においては、第3の
絶縁膜上に形成された導体層が配線導体層となシ、不純
物層が回路素子内の一領域を構成して多結晶半導体層を
電極として有する。
In the cross structure of a circuit element and a wiring conductor layer, the conductor layer formed on the third insulating film serves as a wiring conductor layer, and the impurity layer constitutes a region within the circuit element and serves as a polycrystalline semiconductor layer. has as an electrode.

このように、3層の絶縁膜が介在するので、容量結合は
充分に防止される。
In this way, since three layers of insulating films are interposed, capacitive coupling is sufficiently prevented.

(実施例) 以下、図面を参照して本発明の実施例?詳細に説明する
(Examples) Hereinafter, examples of the present invention will be described with reference to the drawings. Explain in detail.

第3図は、本発明の第1の実施例を示す断面図である。FIG. 3 is a sectional view showing the first embodiment of the present invention.

これをその製造工程と共に説明すると、まず比抵抗1〜
3Ω儂程度のP型半導体基板9上に、比抵抗1Ω・α程
度のN型エピタキシャル層1を厚さ5μm程度形成する
。次に、エピタキシャル層lの表面よシボロンなどのP
型不純物を拡散してP型半導体基板9に達するような高
濃度P型半導体領域10を形成し、N型エピタキシャル
層1を複数の島領域に分離する。ついで、分離された一
つのN型エピタキシャル領域1内に、リンなどのN型不
純物を表面よ逆拡散して、深さ3μm2表面濃度1×1
0 CTL 程度の高濃度Nm#=導体領域11を形成
する。
To explain this along with the manufacturing process, first, the specific resistance is 1~
An N-type epitaxial layer 1 having a resistivity of about 1 Ω·α and a thickness of about 5 μm is formed on a P-type semiconductor substrate 9 having a resistivity of about 3 Ω. Next, the surface of the epitaxial layer l is covered with P such as cibron.
A heavily doped P-type semiconductor region 10 is formed by diffusing type impurities to reach the P-type semiconductor substrate 9, and the N-type epitaxial layer 1 is separated into a plurality of island regions. Next, in one separated N-type epitaxial region 1, N-type impurities such as phosphorus are back-diffused from the surface to a depth of 3 μm2 with a surface concentration of 1×1.
A high concentration Nm#=conductor region 11 of approximately 0 CTL is formed.

次に、上部に形成する配線領域に接続するだめの開口部
12を除くように、1000°C数時間の選択酸化によ
シ半導体内に一部が埋設された厚さ約1μmのシリコン
酸化膜2を形成する。選択酸化するために用いられ開口
部12上に形成され窒化Mを除去した後、全面にわた多
条結晶シリコン層を厚さ5800A程度まで成長させ、
さらに選択酸化技術によシ開孔部12近傍以外の多結晶
シリコン層を厚さ13μm程度のシリコン酸化膜4に変
える。その後、開孔部12に残った多結晶シリコン層3
に、N型不純物を拡散させ、熱処理を行なうと、多結晶
シリコン層3直下の半導体表面よシN型不純物が拡散し
、高濃度N型半導体領域11内に、それと同程度の濃度
を有する第2の高濃度N型半導体領域13が形成される
。次に、多結晶シリコン層3上に白金シリサイド層5が
2000A程度の厚さで形成して接触抵抗を減少させる
Next, a silicon oxide film with a thickness of approximately 1 μm is partially buried in the semiconductor by selective oxidation at 1000° C. for several hours so as to exclude the opening 12 connecting to the wiring region to be formed in the upper part. form 2. After removing the nitride M used for selective oxidation and formed on the opening 12, a polycrystalline silicon layer is grown over the entire surface to a thickness of about 5800A.
Further, by selective oxidation technology, the polycrystalline silicon layer except the vicinity of the opening 12 is changed to a silicon oxide film 4 having a thickness of about 13 μm. After that, the polycrystalline silicon layer 3 remaining in the opening 12
Then, when an N-type impurity is diffused and a heat treatment is performed, the N-type impurity is diffused from the semiconductor surface directly under the polycrystalline silicon layer 3, and a second layer having a concentration similar to that of the N-type impurity is diffused into the high concentration N-type semiconductor region 11. Two high concentration N-type semiconductor regions 13 are formed. Next, a platinum silicide layer 5 with a thickness of about 2000 Å is formed on the polycrystalline silicon layer 3 to reduce contact resistance.

次に、CVD法によυ約5000Aの酸化膜6を形成し
、これに白金シリサイド層5を露出きれるような開孔部
を部分的に除去する。最後に、配線材料としてアルミニ
ウムを12μm程度の膜厚にて全面に蒸着させ、これを
選択的に除去することにより高濃度N型半導体領域11
に接続される配線領域7及びこの配線と交差させる他の
配線領域7′などが同時に形成される。
Next, an oxide film 6 having a thickness of about 5000 Å is formed by the CVD method, and an opening that allows the platinum silicide layer 5 to be completely exposed is partially removed. Finally, aluminum is deposited on the entire surface as a wiring material to a thickness of about 12 μm, and this is selectively removed to form a highly doped N-type semiconductor region 11.
A wiring region 7 connected to this wiring and another wiring region 7' crossing this wiring are formed at the same time.

この様にして得られた配線の交差部分においては、一方
のアルミ配線7′と、もう一方の配線側である高濃度N
型領域11との間には、3Nの酸化膜2,4および6が
存在し、その合計の厚さは、従来構造os、oooXに
対して2a000Xと56倍になる。この結果、配線7
′と領域11間の容量は、(56)’すなわち約0.1
8倍と大巾に減少され、容量結合を防止出来る。従って
、配線間相互の干渉を気にすることなく自由に交差部を
設けることが出来、高集積化がはかれ、′設計の自由度
も低下させることはない。
At the intersection of the wirings obtained in this way, one side of the aluminum wiring 7' and the other wiring side of the high concentration N
There are 3N oxide films 2, 4, and 6 between the mold region 11, and the total thickness thereof is 2a000X, which is 56 times that of the conventional structure os and oooX. As a result, wiring 7
The capacitance between ' and region 11 is (56)', or about 0.1
It is greatly reduced by 8 times and can prevent capacitive coupling. Therefore, intersections can be freely provided without worrying about mutual interference between wires, achieving high integration and without reducing the degree of freedom in design.

第4図は、本発明の第2の実施例による半導体集積回路
装置の断面図であり、NPN )シンジスタのコレクタ
上に導電配線を交差した場合に木兄riAを実施した半
導体集積回路の断面図である。第4図において、第2図
と同じ構成部は同じ番号で示してそれらの説明は省略す
る。第2図と太きく異なるところは、埋込み領域14と
接するN型領域工1が幅広く形成され、その一部を除い
た表面に酸化膜2が形成され、さらにその上に第2およ
び第3の酸化膜4,6が形成されてその上に配線7′が
形成されている。したがって、トランジスタと導電配線
7′との間には、酸化膜2,4および6が介入しておシ
、導電配線7からNPN )ランジスタのコレクタへの
寄生容量による結合は生じにくくなシ、配線間の交差部
における実施例(第3図)と同様の効果が得られる。
FIG. 4 is a cross-sectional view of a semiconductor integrated circuit device according to a second embodiment of the present invention, and is a cross-sectional view of a semiconductor integrated circuit in which a conductive wiring is crossed on the collector of an NPN synristor, and in which RIA is performed. It is. In FIG. 4, the same components as in FIG. 2 are indicated by the same numbers, and their explanation will be omitted. The main difference from FIG. 2 is that the N-type region 1 in contact with the buried region 14 is formed widely, an oxide film 2 is formed on the surface except for a part of it, and second and third layers are formed on top of it. Oxide films 4 and 6 are formed, and wiring 7' is formed thereon. Therefore, the oxide films 2, 4, and 6 are interposed between the transistor and the conductive wiring 7', and coupling from the conductive wiring 7 to the collector of the NPN transistor due to parasitic capacitance is less likely to occur. The same effect as the embodiment (FIG. 3) can be obtained at the intersection between the two.

以上の如く本発明によれば回路素子と回路素子上を交差
する導電配線との間の寄生容量による結合、あるいは4
電配線相互の寄生容量による結合を防止することが出来
、高性能、高集積度の半導体集積回路装置:を得ること
が出来る。
As described above, according to the present invention, coupling due to parasitic capacitance between a circuit element and conductive wiring that crosses the circuit element, or
Coupling due to parasitic capacitance between electric wires can be prevented, and a high performance, highly integrated semiconductor integrated circuit device can be obtained.

なお、本発明を、導電配線と他の導−配線およびNPN
 )ランジスタとの交差構造金側にとって説明したが、
PNPトランジスタ、コンテンサー等の他の回路素子と
導電配線との間に本発明を実施しても同様の効果が得ら
れる。
Note that the present invention is applicable to conductive wiring, other conductive wiring, and NPN.
) Explained for the gold side the cross structure with the transistor,
Similar effects can be obtained even if the present invention is implemented between other circuit elements such as PNP transistors and capacitors and conductive wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、夫々従来の半導体集積回路装置
の部分断面図。第3図および第4図は夫々本発明の実施
例を示す部分断面図である。 1 ・・半導体基板、2・・・・・・絶縁膜(酸化膜)
、3・・・・・多結晶シリコン層、4・・・酸化膜、5
 ・・・白金シリサイド層、6−・・・・・酸化膜、7
,7′・・・・・導電配線、8・・・・・・開孔部、9
・・・・・・P型半導体基板、10−・・・高濃度P型
拡散領域、11・・・・高濃度N型拡散領域、12・・
・ 開孔部、13・ N型拡散領域、14・・・・・・
高濃度N型埋込み領域、15・・・P型ベース領域、1
6・・・・・高XUP型ベースコンタクト領域。 代理人 弁理士 内 原 晋 3 第1図 10 + 14 7 1110 第2図
1 and 2 are partial cross-sectional views of conventional semiconductor integrated circuit devices, respectively. FIGS. 3 and 4 are partial cross-sectional views showing embodiments of the present invention, respectively. 1...Semiconductor substrate, 2...Insulating film (oxide film)
, 3... Polycrystalline silicon layer, 4... Oxide film, 5
...Platinum silicide layer, 6-...Oxide film, 7
, 7'... Conductive wiring, 8... Opening part, 9
...P-type semiconductor substrate, 10--high concentration P-type diffusion region, 11--high concentration N-type diffusion region, 12-.
・ Opening part, 13・ N-type diffusion region, 14...
High concentration N-type buried region, 15... P-type base region, 1
6...High XUP type base contact region. Agent Patent Attorney Susumu Uchihara 3 Figure 1 10 + 14 7 1110 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)不純物層に一部が埋設された第1の絶縁膜と、前
記不純物層の一部と接する多結晶半導体層と、前記第1
の絶縁膜上に設けられ多結晶半導体の酸化によって形成
された第2の絶縁膜と、この第2の絶縁膜上に形成され
た第3の絶縁膜と、この第3の絶縁膜上に形成された導
体層とを有し、この導体層下に前記第1.第2および第
3の絶縁膜が存在していることを特徴とする半導体集積
回路装置。
(1) a first insulating film partially buried in an impurity layer; a polycrystalline semiconductor layer in contact with a portion of the impurity layer;
a second insulating film provided on the insulating film and formed by oxidation of a polycrystalline semiconductor; a third insulating film formed on the second insulating film; and a third insulating film formed on the third insulating film. conductor layer, and the first conductor layer is formed under the conductor layer. A semiconductor integrated circuit device characterized in that second and third insulating films are present.
(2)前記不純物層および前記多結晶半導体層は他の導
体層の一部を構成することを特徴とする特許請求の範囲
第(11項記載の半導体集積回路装置。
(2) The semiconductor integrated circuit device according to claim 11, wherein the impurity layer and the polycrystalline semiconductor layer constitute a part of another conductor layer.
(3)前記不純物層は回路素子の一部分を構成すること
を特徴とする特許請求の範囲第(1)項記載の半導体集
積回路装置。
(3) The semiconductor integrated circuit device according to claim (1), wherein the impurity layer constitutes a part of a circuit element.
JP2971684A 1984-02-20 1984-02-20 Semiconductor ic device Pending JPS60173859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2971684A JPS60173859A (en) 1984-02-20 1984-02-20 Semiconductor ic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2971684A JPS60173859A (en) 1984-02-20 1984-02-20 Semiconductor ic device

Publications (1)

Publication Number Publication Date
JPS60173859A true JPS60173859A (en) 1985-09-07

Family

ID=12283831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2971684A Pending JPS60173859A (en) 1984-02-20 1984-02-20 Semiconductor ic device

Country Status (1)

Country Link
JP (1) JPS60173859A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391592A (en) * 1977-09-12 1978-08-11 Toshiba Corp Semiconductor device
JPS5666056A (en) * 1979-11-01 1981-06-04 Nec Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391592A (en) * 1977-09-12 1978-08-11 Toshiba Corp Semiconductor device
JPS5666056A (en) * 1979-11-01 1981-06-04 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4160989A (en) Integrated circuit having complementary bipolar transistors
JPS60173859A (en) Semiconductor ic device
JPH09205218A (en) Zener diode and its manufacturing method
JPS59144171A (en) Semiconductor integrated circuit device
US5843828A (en) Method for fabricating a semiconductor device with bipolar transistor
JPH04355958A (en) Semiconductor device and manufacture thereof
JPS61201456A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0254662B2 (en)
JPS6262466B2 (en)
JPH0420263B2 (en)
JPH0157506B2 (en)
US5831328A (en) Semiconductor device and manufacturing method of the device
JPH02135770A (en) Semiconductor integrated circuit
JPS6120141B2 (en)
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
JP2993041B2 (en) Complementary MOS semiconductor device
JPS6246072B2 (en)
JPH07130759A (en) Semiconductor integrated circuit device
JPS6024039A (en) Semiconductor device
GB1571621A (en) Integrated circuits and their manufacture
JP3158404B2 (en) Method for manufacturing semiconductor device
JPS6140140B2 (en)
JPS62232965A (en) Semiconductor device
JP2631673B2 (en) Semiconductor device and manufacturing method thereof
JPS63215076A (en) Semiconductor integrated circuit device