JPS60172492A - Arm structure of industrial robot - Google Patents
Arm structure of industrial robotInfo
- Publication number
- JPS60172492A JPS60172492A JP2706584A JP2706584A JPS60172492A JP S60172492 A JPS60172492 A JP S60172492A JP 2706584 A JP2706584 A JP 2706584A JP 2706584 A JP2706584 A JP 2706584A JP S60172492 A JPS60172492 A JP S60172492A
- Authority
- JP
- Japan
- Prior art keywords
- arm
- resin
- industrial robot
- arms
- robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manipulator (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はロボットの腕に係り、重量を軽減した樹脂成型
腕の強度を改善し、周囲条件の変化に対する精度確保に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a robot arm, and relates to improving the strength of a resin-molded arm with reduced weight and ensuring accuracy against changes in ambient conditions.
従来の産業用ロボットを第1図により説明する。 A conventional industrial robot will be explained with reference to FIG.
1は本体、2は第1腕、3は第1腕回転軸、4は第2腕
、5は第2腕回転軸である。従来のロボットの腕材料は
、はとんどすべて、アルミタイキャストなど金属成型袋
か、鋼やアルミなどの金属加工製であり、係る腕は、重
量か大のため、大きな腕駆動力か必要で、腕駆動モータ
ー9出力は大型で高価となる欠点かあり、又、金属製腕
は製作上、形状に制約を受け、更に屯11(が大きいた
め本体lや回転軸3.5など腕支持構造体か頑強となり
装置全体として、高価になる欠点かあった。1 is a main body, 2 is a first arm, 3 is a first arm rotation axis, 4 is a second arm, and 5 is a second arm rotation axis. The arms of conventional robots are almost all made of metal molded bags such as aluminum tie-casting, or processed metals such as steel and aluminum, and the arms involved are heavy and large, so a large arm driving force is required. However, the arm drive motor 9 output has the disadvantage of being large and expensive, and the metal arm is also limited in shape due to manufacturing, and since the tonne 11 (is large), arm support such as the main body 1 and the rotating shaft 3.5 is required. This had the disadvantage of making the structure more robust and making the device as a whole more expensive.
本発明の目的は、ロボットの腕を軽量に形成し、かつ腕
強度を確保して、腕駆動力の軽減、駆動モーターの小型
化を可能をこし、安価なロボットを提供することにある
。SUMMARY OF THE INVENTION An object of the present invention is to provide a robot that is lightweight, has a strong arm strength, reduces arm driving force, and downsizes the drive motor, and is thus inexpensive.
11本体(1)に回転可能に第1腕(2)を載設し、該
第1腕(2)に回転可能に第2腕(4)を突設して成る
産業用ロボットに於いて、係る腕(2)、(4)を底面
とその周囲に垂直にフランジを配設した樋状又は船形に
樹脂を成型し、かつ前記第1腕(2)の底面に第1腕回
転軸(3)及び第2腕回転軸(5)を結ぶ金属板(13
a)あるいは繊維補強芯体(13b)をインサート一体
成型して形成したことを特徴とする産業用ロボットの腕
構造。11 In an industrial robot comprising a first arm (2) rotatably mounted on a main body (1), and a second arm (4) rotatably protruding from the first arm (2), The arms (2) and (4) are molded of resin into the shape of a gutter or boat with flanges arranged vertically on the bottom and around the bottom, and a first arm rotation shaft (3) is formed on the bottom of the first arm (2). ) and the metal plate (13) connecting the second arm rotation shaft (5).
a) Or an arm structure for an industrial robot, characterized in that it is formed by integrally molding a fiber-reinforced core body (13b) with an insert.
2、樹脂腕(2)、(4)の内面側に発泡樹脂(15)
表面側【こリジッドの樹脂又は繊維強化樹脂(14)を
配設した多層成型により形成した、特許請求の範囲第1
項記載の産業用ロボットの腕構造。2. Foamed resin (15) on the inner surface of resin arms (2) and (4)
Surface side [Claim 1 formed by multilayer molding with rigid resin or fiber-reinforced resin (14) disposed
The arm structure of the industrial robot described in Section 1.
〔発明の実施例〕
以下、本発明の一実施例を第2図及び第3図により説明
する。2は本体1に回転可能に載設された第1腕、4は
第1腕2に平行で回転可能に突設した第2腕、6は第2
腕4に垂直に摺動可能な、第3腕であり先何1晶に旋回
、把持可能な工具把持軸7を接続している。又、9は第
1腕2に内蔵した第2腕駆動モーターで同軸に第2腕原
動プーリー10を固定し、5は第2腕回転軸で第2腕従
動プーリー11を1+!11定してあり、両プーリー]
0.11を伝動ベルト12を介して連結する。[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. 2 is a first arm that is rotatably mounted on the main body 1, 4 is a second arm that is parallel to the first arm 2 and rotatably protrudes, and 6 is a second arm.
The third arm is slidable perpendicularly to the arm 4, and is connected to a tool gripping shaft 7 that can be pivoted and gripped. Further, 9 is a second arm driving motor built into the first arm 2, and the second arm driving pulley 10 is coaxially fixed thereto, and 5 is the second arm rotating shaft, which drives the second arm driven pulley 11 at 1+! 11, both pulleys]
0.11 are connected via a transmission belt 12.
本実施例のロボットによれは、第1腕2及び第2腕4を
底面とその周囲に補強フランジを配置した船形に成型し
、底面にU字形断面を形成した。In the robot of this embodiment, the first arm 2 and the second arm 4 are formed into a boat shape with reinforcing flanges arranged on the bottom and around the bottom, and a U-shaped cross section is formed on the bottom.
アルミもしくはマグネシューム合金など比重か極小の薄
い金属板13を配設し、かつ該腕2.4の表面側に炭素
繊維強化樹脂14いわゆるCFRPもしくはグラス繊維
強化樹脂いわゆるGFRPを配置し、内面側には、発泡
倍率か数倍であり、前記繊維強化樹脂のベースと同+A
質の発泡(b(脂を配置しかつ、iii+記薄金属根1
3をインサート成型、前記繊維強化樹脂14及び発泡樹
脂15を一体に成型して形成したので、該腕2.4の断
面2次モーメントは大幅に向」ニジ、その強度を極めて
大きく出来、実用上必要な強度を確保出来る。一般に、
アルミ合金、マグネシューム合金の線膨張係数は2×1
0″′/℃であり、よく使わnるグラス繊維強化樹脂で
は6〜8×lO″″/℃であるため、極めて高い精度を
要する高性能ロボットなどは樹脂腕の温度変化により寸
法変化の影響を受け易い。本発明の実施例によれば、前
記腕2の底面に第1腕回転軸3から第2腕回転軸5まで
の距離に対応して、前記金属板13をインサート成型し
たので、回転軸間距離は高性能タイプロボットの金属製
腕と全(同じ粘度を確保出来、樹脂腕2及び4全体とし
て、大幅に重量を軽減出来るので、腕駆動モーター8及
び9の小出力、小型化か可能で装置を安価に構成出来る
効果かあり、更に腕支持装置の簡単化か図nる効果かあ
る。又、本実施例によれば、腟内面側に発泡樹脂を用い
たので、薄い金属板重量増加分を吸収でさ、腕全体の重
量は該金属板13を用いない場合とほとんど変りかなく
て済む。A thin metal plate 13 of extremely small specific gravity such as aluminum or magnesium alloy is arranged, and carbon fiber reinforced resin 14 so-called CFRP or glass fiber reinforced resin so-called GFRP is arranged on the front side of the arm 2.4, and on the inner side. , the foaming ratio is several times higher than that of the fiber reinforced resin base + A
quality foaming (b) place the fat and iii + mark the thin metal base 1
3 is formed by insert molding, and the fiber-reinforced resin 14 and foamed resin 15 are integrally molded, the moment of inertia of the arm 2.4 is greatly reduced, and its strength can be extremely increased, making it practical. The necessary strength can be secured. in general,
The linear expansion coefficient of aluminum alloy and magnesium alloy is 2×1
0"'/℃, and for commonly used glass fiber reinforced resins, it is 6 to 8 x lO"''/℃, so high performance robots that require extremely high precision are affected by dimensional changes due to temperature changes in the resin arms. According to the embodiment of the present invention, the metal plate 13 is insert-molded on the bottom surface of the arm 2 in a manner corresponding to the distance from the first arm rotation axis 3 to the second arm rotation axis 5. The distance between the rotating axes can be maintained at the same viscosity as the metal arms of high-performance type robots, and the weight of the resin arms 2 and 4 as a whole can be significantly reduced, resulting in lower output and smaller size of the arm drive motors 8 and 9. This has the effect of making it possible to construct the device at a low cost, and also has the effect of simplifying the arm support device.Furthermore, according to this embodiment, since foamed resin is used for the inner surface of the vagina, thin metal By absorbing the increased weight of the plate, the weight of the entire arm remains almost the same as when the metal plate 13 is not used.
一方、有機材質のポリアラミドなどの繊維や、ポリアラ
ミド繊維を炭化処理した炭素繊維などは、前記線膨張係
数かマイナスト2×10″/℃で金属の1/2の数値で
あり、しかも温度上昇に伴い、マイナスの膨張すなわち
縮む性質であることか知られ、併せて、その強度が極め
て強いことに着眼した、本実施例によれば、係るロボッ
ト樹脂腕2.4をその底面内部の回転軸間距離に対応し
て、該ポリアラミド繊維織布や、炭素繊維織布又は他の
強化繊維織布を強化芯体として、インサートして、一体
成型して、形成すると、前記金属板13をインサート一
体成型して形成した場合とほぼ同じ効果か得らnる。On the other hand, fibers such as organic polyaramid fibers and carbon fibers made by carbonizing polyaramid fibers have a linear expansion coefficient of 1/2 that of metals, minus 2 x 10"/°C, and are more resistant to temperature rises. According to this embodiment, it is known that the robot resin arm 2.4 has a negative expansion or contraction property, and also has extremely strong strength. When the polyaramid fiber woven fabric, carbon fiber woven fabric, or other reinforcing fiber woven fabric is inserted as a reinforcing core body and integrally molded, the metal plate 13 is inserted and integrally formed according to the distance. Almost the same effect as when formed by
〔発明の効果〕
本発明によれば、ロボットの腕2.4を底面の周囲にか
つ垂直にフランジを設けて樋状又は船形に樹脂を一体成
型し、該腕底面の回転軸間距離に対応して、薄いU字形
もしくはU字形などの断面形状を有した金属板13をイ
ンサートし、一体成型して形成したので、従来例に見ら
れた金属製腕に比べて、大幅に重量を軽減することか出
来、腕駆動用モーターの小型化、低コスト化か可能にな
リ、更に、ロボット本体、回転軸など腕支持構造を頑強
にする必要か全くなく、簡単化出来、ロボット全体を安
価に構成できる効果かあり、又、ロボット周囲温度の変
化、把持前止の変化、及び腕成型諸元の変化の影響を全
樹脂腕の約1/3程度にすることか出来、極めて高い精
度を要するタイプのロボット腕の性能確保に効果かある
。[Effects of the Invention] According to the present invention, the arms 2.4 of the robot are integrally molded with resin in the shape of a gutter or boat with a flange provided vertically around the bottom surface, corresponding to the distance between the rotational axes of the bottom surface of the arm. Then, a metal plate 13 having a thin U-shape or U-shape cross-sectional shape is inserted and integrally formed, so the weight is significantly reduced compared to the metal arm seen in the conventional example. As a result, it is possible to downsize and reduce the cost of the arm drive motor.Furthermore, there is no need to make the arm support structure such as the robot body or rotation axis robust, making it simpler and making the entire robot cheaper. It has the effect of being able to be configured, and the effects of changes in the robot's ambient temperature, gripping front stop, and arm molding specifications can be reduced to about 1/3 of the total resin arm, which requires extremely high precision. It is effective in ensuring the performance of this type of robot arm.
第1図は従来のロボットの側面図、第2図は本発明の実
施例であるロボットの側面図、第3図は第2図の右側面
断面図の概略説明図である。
1・・・本体、2・・・第1腕、3・・・第1腕回転軸
、4・・・第2腕、5・・・第2腕回転軸、6・・・第
3腕、7・・・工具把持軸、8・・・第1腕駆動モータ
ー、9・・・第2腕駆動モーター、10・・・第2腕原
動ブーIJ−111・・・第2腕従動ブーIJ−112
・・・伝動ベルト、13・・・金属板、14・・・繊維
強化樹脂、15・・・発泡樹脂。
$1図
$3図FIG. 1 is a side view of a conventional robot, FIG. 2 is a side view of a robot according to an embodiment of the present invention, and FIG. 3 is a schematic explanatory diagram of a right side sectional view of FIG. DESCRIPTION OF SYMBOLS 1... Main body, 2... First arm, 3... First arm rotation axis, 4... Second arm, 5... Second arm rotation axis, 6... Third arm, 7... Tool gripping shaft, 8... First arm drive motor, 9... Second arm drive motor, 10... Second arm driving boob IJ-111... Second arm driven boob IJ- 112
... Transmission belt, 13... Metal plate, 14... Fiber reinforced resin, 15... Foamed resin. Figure $1 Figure $3
Claims (1)
第1腕(2)に回転可能に第2腕(4)を突設して成る
産業用ロボットに於いて、係る腕(2)、(4)を底面
とその周囲に垂直にフランジを配設した樋状又は船形に
樹脂を成型し、かつ前記第1腕(2)の底面に第1腕回
転軸(3)及び第2腕回転軸(5)を結ぶ金属板(13
a)あるいは繊維補強芯体(13b)をインサート一体
成型して形成したことを特徴とする産業用ロボットの腕
構造。 2、樹脂腕(2)、(4)の内面側に発泡樹脂(15)
表面側にリジッドの樹脂又は繊維強化樹脂(14)を配
設した多層成型により形成した、特許請求の範囲第1項
記載の産業用ロボットの腕構造。[Claims] 1. A first arm (2) is rotatably mounted on the main body (1), and a second arm (4) is rotatably protruded from the first arm (2). In an industrial robot, the arms (2) and (4) are molded from resin into a gutter-like or ship-like shape with flanges arranged vertically on the bottom and around the bottom, and the bottom of the first arm (2) is molded with resin. A metal plate (13) connecting the first arm rotation shaft (3) and the second arm rotation shaft (5)
a) Or an arm structure for an industrial robot, characterized in that it is formed by integrally molding a fiber-reinforced core body (13b) with an insert. 2. Foamed resin (15) on the inner surface of resin arms (2) and (4)
The arm structure of an industrial robot according to claim 1, which is formed by multilayer molding with a rigid resin or fiber-reinforced resin (14) disposed on the surface side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2706584A JPS60172492A (en) | 1984-02-17 | 1984-02-17 | Arm structure of industrial robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2706584A JPS60172492A (en) | 1984-02-17 | 1984-02-17 | Arm structure of industrial robot |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60172492A true JPS60172492A (en) | 1985-09-05 |
Family
ID=12210668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2706584A Pending JPS60172492A (en) | 1984-02-17 | 1984-02-17 | Arm structure of industrial robot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60172492A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017047522A (en) * | 2015-09-03 | 2017-03-09 | 積水化成品工業株式会社 | Robot arm |
-
1984
- 1984-02-17 JP JP2706584A patent/JPS60172492A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017047522A (en) * | 2015-09-03 | 2017-03-09 | 積水化成品工業株式会社 | Robot arm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210413499U (en) | Slip table module with organ cover | |
JPS60172492A (en) | Arm structure of industrial robot | |
JPS63225738A (en) | Leaf spring for vehicle | |
WO1999005380A3 (en) | Structural member having a metal shell reinforced by a reinforcing plate | |
CN217394984U (en) | Central double-shaft mechanism of parallel robot | |
CA2118923A1 (en) | Adjustable Steering Column Assembly | |
CN214740612U (en) | Novel treasured locking mechanism charges | |
JPS5373731A (en) | Propulsive shaft for driving vehicle | |
CN211806177U (en) | Glass is with single crucible casting manipulator | |
CN111230923A (en) | Service robot trunk and service robot thereof | |
CN221696364U (en) | Grinding device capable of avoiding bending deformation of plate | |
CN211104461U (en) | Precision plate cutting saw with angle adjusting mechanism | |
CN210257586U (en) | Stability-enhanced electric carving machine | |
CN221380702U (en) | Totally enclosed linear motor module | |
CN218577931U (en) | Handlebar lock structure and vehicle with same | |
CN216721108U (en) | Electric cylinder | |
CN216077341U (en) | Auxiliary control mechanism for engine throttle | |
CN111168412B (en) | Swing head structure directly driven by arc-shaped motor | |
CN211685565U (en) | Underwater power assembly and underwater robot | |
CN220614055U (en) | Robot big arm | |
CN114715372A (en) | Direct-drive efficient low-noise electric steering engine and control system and control method thereof | |
JPS62177480A (en) | Xy table | |
JPS60259395A (en) | Coupling device for arm of robot | |
JPH0374313U (en) | ||
JPS59120569A (en) | Steering wheel |