JPS60171264A - Ceramic structural part and manufacture - Google Patents

Ceramic structural part and manufacture

Info

Publication number
JPS60171264A
JPS60171264A JP59023968A JP2396884A JPS60171264A JP S60171264 A JPS60171264 A JP S60171264A JP 59023968 A JP59023968 A JP 59023968A JP 2396884 A JP2396884 A JP 2396884A JP S60171264 A JPS60171264 A JP S60171264A
Authority
JP
Japan
Prior art keywords
metal
ceramic
temperature
strain
ceramic structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59023968A
Other languages
Japanese (ja)
Inventor
忠彦 三吉
明弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59023968A priority Critical patent/JPS60171264A/en
Publication of JPS60171264A publication Critical patent/JPS60171264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービンや自動車エンジンなどのような高
温、高16カの条件下でイ更用可能なセラミ、クス構造
部品及びIングやシールのような耐摩耗性や耐薬品性の
要求される条件下で1史用可能なセラミックス構造部品
、並びにその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to ceramic, gas structural parts, I-rings, and seals that can be reused under high temperature and high force conditions such as gas turbines and automobile engines. The present invention relates to ceramic structural parts that can be used for a single period under such conditions that require wear resistance and chemical resistance, and a method for producing the same.

〔発明の背景〕[Background of the invention]

炭化ケイ素、窒化ケイ素、サイアロン(81,At。 Silicon carbide, silicon nitride, Sialon (81, At.

0・N系の固溶体)などのセラミックスは例えば100
0℃以上の高温で高強度が要求される構造部品として広
い応用が期待されている。またZrO2やAt203な
どのセラミックスは耐摩耗性や耐薬品性の要求される構
造部品としての応用が期待されている。
For example, ceramics such as 0・N solid solution)
It is expected to find wide application as structural parts that require high strength at temperatures above 0°C. Furthermore, ceramics such as ZrO2 and At203 are expected to be used as structural parts that require wear resistance and chemical resistance.

しかしながら、これらのセラミ、クスは、強度のばらつ
きが大きいこと、熱衝撃や機械的衝堪に弱いことなどの
理由で構造材料としての(g頼性に欠ける欠点があり、
これがこれらセラミックス構造部品の実用化を阻む原因
となっていた。これらの欠点は、従来のセラミックスが
脆性材料であ広セラミックスの製造工程上不可避の表面
や内部の欠陥に応力集中して破壊しやすいことに起因し
ている。
However, these ceramics and clays have the disadvantage of being unreliable as structural materials due to large variations in strength, weakness in thermal shock and mechanical impact, etc.
This has hindered the practical application of these ceramic structural parts. These drawbacks are due to the fact that conventional ceramics are brittle materials and easily break due to stress concentration on surface and internal defects that are inevitable in the manufacturing process of ceramics.

〔発明の目的〕[Purpose of the invention]

本発明は上述の従来技術の欠点を除き、強度のばらつき
が少く、耐熱衝撃性や耐機械的衝撃性の大きい、高信頼
性のこの種セラミックス構造部品及びその製法を提供す
ること全目的としている。
The entire purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a highly reliable ceramic structural component of this type with little variation in strength, high resistance to thermal shock and mechanical shock, and a method for manufacturing the same. .

〔発明の概要〕[Summary of the invention]

本発明のセラミックス構造部品は、セラミック粒子の粒
界に金属が分散して存在する構造を有し、低歪時の変形
抵抗が高歪時の変形抵抗よりも小さい特性を有するセラ
ミック粒子焼結体よフなることを特徴とするものである
。ここに、変形抵抗とは、応力を歪による変位で微分し
た微分係数を意味する。
The ceramic structural component of the present invention is a ceramic particle sintered body having a structure in which metal is dispersed in the grain boundaries of ceramic particles, and having a characteristic that deformation resistance at low strain is smaller than deformation resistance at high strain. It is characterized by being different. Here, deformation resistance means a differential coefficient obtained by differentiating stress with displacement due to strain.

本発明のセラミックス構造部品全構成するセラミック粒
子は、炭化ケイ素、窒化ケイ素、サイアロンまたはZ 
r02、At2o5のうちの少くとも1種であるのが好
ましい。
The ceramic particles constituting all the ceramic structural parts of the present invention are silicon carbide, silicon nitride, SiAlON or Z
At least one of r02 and At2o5 is preferable.

本発明のセラミ、クス構造部品の一製法は、炭化ケイ素
、窒化ケイ素またはサイアロンの粉末のうちの少くとも
1種に金属および焼結助剤を混合し、成形し、焼成する
各工程からなり、焼成工程において、1ooo℃以上で
の昇温速度を15℃/分以上とし、最高温度で保持する
ことなく直ちに、15℃/分以上の降温速度で少くとも
1000℃まで冷却することを特徴とするものである。
One method for manufacturing the ceramic and glass structural parts of the present invention includes the steps of mixing at least one of silicon carbide, silicon nitride, or sialon powder with a metal and a sintering aid, molding, and firing. In the firing process, the heating rate is 15°C/min or higher at 100°C or higher, and the product is immediately cooled to at least 1000°C at a cooling rate of 15°C/min or higher without being held at the maximum temperature. It is something.

(また本発明のセラミックス構造部品の他の製法は、Z
rO2またはAt2o3等の金属酸化物粉末に金属また
は焼結時に分解して金属粒子を生成する化合物を混合し
、成形し、焼成する各工程からなり、焼成工程において
、800℃以上での昇温速度を7℃/分以上とし、最高
温度で保持することなく直ちに、7℃/分以上の降温速
度で少くとも800℃まで冷却することを特畝とするも
のである。
(Also, another manufacturing method for the ceramic structural parts of the present invention is Z
It consists of the steps of mixing metal or a compound that decomposes during sintering to produce metal particles with metal oxide powder such as rO2 or At2o3, molding, and firing.In the firing process, the heating rate is 800℃ or higher. is set at 7° C./min or more, and the special feature is that the temperature is immediately cooled to at least 800° C. at a cooling rate of 7° C./min or more without being held at the maximum temperature.

〔発明の実施例〕[Embodiments of the invention]

第1図はセラミック構造部品の応力と歪による変位との
関係を示す特性曲線であり、曲線A、Cは従来のものを
示し、曲線Bは本発明によるものを例示している。曲線
の勾配が変形抵抗であり、弾性域ではヤング率に相当す
る。
FIG. 1 is a characteristic curve showing the relationship between stress and displacement due to strain in a ceramic structural component, with curves A and C showing the conventional curve, and curve B illustrating the curve according to the present invention. The slope of the curve is the deformation resistance, which corresponds to Young's modulus in the elastic region.

本発明者らが種々検討した結果、従来のセラミ、クス構
造部品においては、第1図の曲線へのように、変形抵抗
は歪によらずほぼ一定の大きな値を持ち、このため、使
用時に応力が加わった際、欠陥があると欠陥に応力集中
して比較的低応力で破壊し、4N頼性が低くなることが
わかった。一方、本発明のように、第1図の曲線Bの如
き、低歪時に比較的小さな変形抵抗を持ち、高歪時に大
きな変形抵抗を持つセラミックス材料を用いれば、応力
が加わった時に最初低い変形抵抗の効果で少し変形して
応力集中を緩和し、その後は局い変形抵抗の効果で大き
な応力に耐え、結果として、欠陥による強度のばらつき
の少い、高信頼性のセラミ、クス構造部品が得られるこ
とがわかった。また、低歪時の小さな変形抵抗は熱衝撃
時や機械的衝撃時の応力集中緩和にも有効であり、その
後の高歪時の大きな変形抵抗と相俟って、セラミックス
構造部品に大きな耐熱衝撃性や大きな耐機械的衝撃性の
効果をもたらすことがわかった。
As a result of various studies conducted by the present inventors, the deformation resistance of conventional ceramic and glass structural parts has a large value that is almost constant regardless of strain, as shown in the curve shown in Figure 1. It was found that when stress is applied, if there is a defect, the stress is concentrated on the defect and breaks at a relatively low stress, resulting in low 4N reliability. On the other hand, if a ceramic material having a relatively small deformation resistance at low strain and a large deformation resistance at high strain is used, as shown by curve B in FIG. The resistance effect causes a slight deformation to relieve stress concentration, and then the local deformation resistance effect allows the product to withstand large stresses, resulting in highly reliable ceramic/cushion structural parts with less variation in strength due to defects. I found out that I can get it. In addition, the small deformation resistance at low strain is effective in alleviating stress concentration during thermal shock and mechanical shock, and combined with the subsequent large deformation resistance at high strain, ceramic structural parts have a large resistance to thermal shock. It was found that this material has a significant effect on durability and mechanical impact resistance.

このような低歪時に小さく、高歪時に大きな変形抵抗を
持つセラミックス材料は、炭化ケイ素、窒化ケイ素もし
くはサイアロンのように、耐熱性が大きく且つ剛性率と
ヤング率の大きなケイ素化合物粒子またはZ r02も
しくはAt203のような金属酸化物粒子の集合体の粒
界に金属を分散することによシ実現できる。このような
構造のセラミックス材料に応力が加わると、最初は粒界
の金属が変形するた、めに変形抵抗は小さいが、ある限
度以上変形すると剛性率およびヤング率の大きなケイ素
化合物粒子または金属酸化物粒子の影響で変形抵抗が大
きくなり、それ以上の変形が阻止される。
Such ceramic materials, which have a small deformation resistance at low strain and a large deformation resistance at high strain, are silicon compound particles with high heat resistance and high rigidity and Young's modulus, such as silicon carbide, silicon nitride, or sialon, or Zr02 or This can be achieved by dispersing metal at the grain boundaries of an aggregate of metal oxide particles such as At203. When stress is applied to a ceramic material with such a structure, the metal at the grain boundaries deforms, so the deformation resistance is low, but when deformed beyond a certain limit, silicon compound particles or metal oxides with large rigidity and Young's modulus Deformation resistance increases due to the influence of particles, and further deformation is prevented.

第2図はこのような本発明のセラミックス構造部品の微
構造を示す模式図である。図において、1は炭化ケイ素
、窒化ケイ素、サイアロン、ZrO2、At205など
のセラミックス粒子、2はこれらの粒子の集合体の粒界
に析出した金属粒子である。図のように、粒子集合体の
粒界の一部に金属が存在し、すべての粒子を金属が取囲
んでいない場合に、特に低歪時に小さな変形抵抗、高歪
時に大きな変形抵抗を持つ特性が実現されやすいので、
この構造は特に望ましいものである。実験の結果、その
ように粒子集合体の粒界の一部にのみ金属が存在する場
合に上記のような特性が特に実現され易いものであり、
他方、例えば市販のサーメットのように粒子を全て金属
が取フ囲んだ構造では高歪時に大きい変形抵抗が生じに
くいことが確められた。
FIG. 2 is a schematic diagram showing the microstructure of the ceramic structural component of the present invention. In the figure, 1 is a ceramic particle such as silicon carbide, silicon nitride, Sialon, ZrO2, At205, etc., and 2 is a metal particle precipitated at the grain boundary of an aggregate of these particles. As shown in the figure, when metal exists in some of the grain boundaries of a particle aggregate and does not surround all particles, it has a characteristic of having small deformation resistance especially at low strains and large deformation resistance at high strains. Since it is easy to realize
This structure is particularly desirable. As a result of experiments, the above characteristics are particularly easy to achieve when metal exists only in a part of the grain boundaries of a particle aggregate,
On the other hand, it has been confirmed that in a structure in which all particles are surrounded by metal, such as commercially available cermet, large deformation resistance is less likely to occur when the strain is high.

本発明のセラミックス構造材料中の炭化ケイ素、窒化ケ
イ素、サイアロン、ZrO2またはAt203の含有量
は50モル係以上であることが望ましい。これよシ少い
含有量であると、炭化ケイ素、窒化ケイ素、サイアロン
の場合空気中で1000℃以上の温度で使用される場合
に強度が低下し、また、ZrO2、At2o3の場合耐
摩耗性や耐薬品性などが低下し、セラミックス構造部品
の信頼度が低下する。
The content of silicon carbide, silicon nitride, sialon, ZrO2 or At203 in the ceramic structural material of the present invention is desirably 50 molar or more. If the content is lower than this, the strength of silicon carbide, silicon nitride, and sialon will decrease when used in air at temperatures above 1000°C, and the wear resistance of ZrO2 and At2o3 will decrease. Chemical resistance, etc. decreases, and the reliability of ceramic structural parts decreases.

含有させる金属としては、炭化ケイ素、窒化ケイ素、サ
イアロンの場合111a、■aまたはVa族元素のよう
な高融点金属元素が望ましい。粒界の金属の融点が低す
ぎると、得られるセラミ、クス構造部品の例えば100
0℃以上の高温強度が低下して望ましくない。なお、金
属元素としては、T1%VまたはCrを用いるのが、耐
熱性だけで無く、耐酸化性の優れたセラミックス構造部
品が得られるため特に望ましい。一方、ZrO2、Az
2o3の場合、ptやCrのような耐酸化性の大きな金
属の含有が望ましい。
The metal to be contained is preferably a high melting point metal element such as silicon carbide, silicon nitride, 111a in the case of Sialon, ①a or Va group element. If the melting point of the metal at the grain boundary is too low, the resultant ceramic or glass structure part will have a
This is undesirable because the strength at high temperatures of 0° C. or higher decreases. Note that it is particularly desirable to use T1%V or Cr as the metal element because a ceramic structural component having not only excellent heat resistance but also excellent oxidation resistance can be obtained. On the other hand, ZrO2, Az
In the case of 2o3, it is desirable to contain metals with high oxidation resistance such as pt and Cr.

また、炭化ケイ素、窒化ケイ素、サイアロンのようなケ
イ素化合物とII[a、Ma%Va族元素の金属の組合
せを用いる場合、一般に焼結時に金属粒子表面の一部が
ケイ素化合物と反応して化合物を作るため、ケイ素化合
物と金属粒子の密着性が犬きく、得られるセラミックス
構造物の強度が特に大きくなる。
In addition, when using a combination of a silicon compound such as silicon carbide, silicon nitride, or sialon and a metal of group II [a, Ma%Va group element, a part of the metal particle surface generally reacts with the silicon compound during sintering and forms a compound. Because of this, the adhesion between the silicon compound and the metal particles is very strong, and the strength of the resulting ceramic structure is particularly high.

本発明のセラミックス構造部品中の金属含有量としては
3〜20モル饅の範囲内であることが好ましい。金屑含
有量がこの範囲より少いと、低歪時の変形抵抗低下に有
効でなく、また、この範囲より多いと、高歪時の変形抵
抗が大きくならなくなる。
The metal content in the ceramic structural component of the present invention is preferably in the range of 3 to 20 moles. If the gold dust content is less than this range, it will not be effective in reducing the deformation resistance at low strain, and if it is more than this range, the deformation resistance will not become large at high strain.

このように炭化ケイ素、窒化ケイ素またはサイアロンの
うちの少くとも1種が粒子集合体として50モル係以上
含有され、かつ、上記粒子集合体の粒界の1都に1ll
a、IVaまたはVa族金属が金属の単体の形で3〜2
0モル係存在する構造のセラミック材料は、ガスタービ
ンや自動車エンジンのような約1000℃以上の高温で
、高応力かつ高熱衝撃の条件下でも信頼性高く使用でき
るセラミックス構造部品を与える。
In this way, at least one of silicon carbide, silicon nitride, or Sialon is contained as a particle aggregate of 50 mol or more, and 1 liter of silicon carbide, silicon nitride, or sialon is contained in one grain boundary of the particle aggregate.
a, IVa or Va group metal in the form of an elemental metal, 3 to 2
Ceramic materials with a zero molar ratio structure provide ceramic structural components that can be used reliably under high stress and thermal shock conditions at high temperatures of about 1000° C. or higher, such as in gas turbines and automobile engines.

上記構造の材料を得るためには、炭化ケイ素、賭化ケイ
素またはサイアロンの少くとも1種に、金属及び焼結助
剤を混合し、所定の形状に成形後、焼成する。焼結助剤
としてはアルミニウム化合物、ホウ素化合物、Y2O3
、’go s CeO2などの酸化物を用いることがで
きる。
In order to obtain a material having the above structure, at least one of silicon carbide, silicon carbide, or sialon is mixed with a metal and a sintering aid, and after being formed into a predetermined shape, it is fired. Sintering aids include aluminum compounds, boron compounds, Y2O3
,'go s CeO2 and the like can be used.

この焼成のとき、金属の拡散が活発になる温度、すなわ
ち1000℃以上の温度に長時間保持しないことが重要
である。1000℃以上での保持時間が長すぎると、金
属同志の焼結が進んで金属自身が大きな集合体を作った
り、金属が炭化ケイ素、窒化ケイ素、サイアロンなどと
ほとんど全て反応して、上記構造が実現できない。した
がって、10000以上での昇温速度を15℃/分以上
とし、炭化ケイ素、窒化ケイ素、サイアロンの焼結温度
まで昇温後、直ちに、15℃/分以上の降温速度で少く
とも1000℃まで冷却するという、−急熱急冷の焼成
グロフィルを用いる必要がある。
During this firing, it is important not to hold the temperature at a temperature at which metal diffusion becomes active, that is, at a temperature of 1000° C. or higher, for a long period of time. If the holding time at 1000°C or higher is too long, the metals will progress to sinter and form large aggregates, or the metals will react with silicon carbide, silicon nitride, sialon, etc., causing the above structure to change. It can't be achieved. Therefore, the temperature increase rate at 10,000℃ or higher is set to 15℃/min or higher, and after the temperature is raised to the sintering temperature of silicon carbide, silicon nitride, or sialon, the temperature is immediately cooled to at least 1000℃ at a cooling rate of 15℃/minute or higher. It is necessary to use a fired glofill that undergoes rapid heating and cooling.

また前述のような本発明のセラミ、り構造部品はセラミ
ック粒子としてZrO2またはm2o 3のような金属
酸化物を用いて同様な工程で作ることもできる。この場
合、添加金属として白金粉末やクロム粉末などを混合す
るか又は焼結時に分解して白金粒子やクロム粒子などを
生成するような例えば塩化白金酸や硝酸クロムなどを加
えて成形・焼成するのがよく、焼成工程においては、前
記と同様に粒界金属分散構造を得るには、800℃以上
での昇温速度fニア℃/分以上とし、最高温度到達後直
ちに7C/分以上の降温速度で少くとも5oocまで冷
却するという急熱急冷の焼成ゾ目フィルを用いる必要が
ある。このような方法で得られたセラミックス構造部品
は1000℃以下程度の温度の耐熱性と、耐摩耗性、耐
薬品性、耐熱衝撃性などの要求される部品、例えばポン
プ材、シール材、切削工具などに幅広い応用が可能であ
る。
The ceramic structural parts of the present invention as described above can also be made in a similar process using metal oxides such as ZrO2 or m2O3 as the ceramic particles. In this case, it is possible to mix platinum powder or chromium powder as an additive metal, or to add, for example, chloroplatinic acid or chromium nitrate, which decomposes during sintering to produce platinum particles or chromium particles, followed by molding and firing. In the firing process, in order to obtain a grain boundary metal dispersion structure in the same manner as above, the temperature increase rate should be f near ℃/min or more at 800℃ or higher, and the temperature decrease rate should be 7C/min or higher immediately after reaching the maximum temperature. It is necessary to use a firing filler that is rapidly heated and cooled to at least 5 ooc. Ceramic structural parts obtained by this method can be used for parts that require heat resistance at temperatures below 1000°C, wear resistance, chemical resistance, thermal shock resistance, etc., such as pump materials, sealing materials, and cutting tools. A wide range of applications are possible.

以下、本発明の具体的実施例を比較例と共に説明する。Hereinafter, specific examples of the present invention will be described together with comparative examples.

〔実施例1〕 平均粒伍0.5μmのSi3N4粉末に、焼結助剤とし
て平均粒径1μmのY2O54モルチ、At2054モ
ルチを混合したものを用意した。次にこれに平均粒径0
605μmのCr粉末を第1表の割合に混合し、バイン
ダとして51 PVA (ポリビニルアルコール)水浴
液を全粉末に対して、10重量%加え、ツノ4−プレス
法を用いて、60φX5t(単位部)に成形した。次に
、これを窒素fス4気圧中で昇温速度15C/分で昇温
し、最高温度1850℃到達後直ちに15℃/分の降温
速度で1000℃まで冷却するという温度プロフィルで
焼結した0 得られた試料を3X4X35[に切断し、表面をダイヤ
モンドペーストで研摩した後、4点曲げ法(土部スノや
ン30 m 、下部スノ母ンlO■)で曲げ強度、及び
強度ばらつきを示すワイブル係数を測定した。また、試
料に1000℃の熱風を10分間当てた後、室温の風′
fr:10分間当てるという熱衝撃試験e100サイク
ルくり返した後の曲げ強度及びワイプル係aを測定した
。測定結果を第1、 表に示す。なお、分析の結果、加
えたCr中の約半分は金属Crのままで、残りはCr5
12に変化していることがわかった。第1表に示したC
r量は金属単体として存在するCr量である。
[Example 1] Si3N4 powder with an average grain size of 0.5 μm was mixed with Y2O54 morch and At2054 morch with an average grain size of 1 μm as sintering aids. Next, add this to the average particle size of 0
605 μm Cr powder was mixed in the proportions shown in Table 1, 51 PVA (polyvinyl alcohol) water bath liquid was added as a binder at 10% by weight based on the total powder, and 60φ×5t (unit part) was prepared using the horn 4-press method. It was molded into. Next, this was sintered using a temperature profile in which the temperature was raised at a temperature increase rate of 15 C/min in a nitrogen gas atmosphere of 4 atm, and immediately after reaching the maximum temperature of 1850 °C, it was cooled down to 1000 °C at a cooling rate of 15 °C/min. 0 The obtained sample was cut into 3 x 4 x 35 pieces, the surface was polished with diamond paste, and the bending strength and strength variation were measured using the 4-point bending method (Tsuchibe Sunoyan 30 m, Lower Sunoman 1O■). The Weibull coefficient was measured. In addition, after exposing the sample to hot air at 1000℃ for 10 minutes,
fr: Thermal shock test (e) of 10 minutes of application was repeated for 100 cycles, and the bending strength and wipe coefficient a were measured. The measurement results are shown in Table 1. As a result of the analysis, about half of the added Cr remained as metal Cr, and the rest was Cr5.
It turns out that it has changed to 12. C shown in Table 1
The amount r is the amount of Cr present as a simple metal.

第1表中、試料点3〜A6が本発明の実施例で、A1,
2および7は比較例である。
In Table 1, sample points 3 to A6 are examples of the present invention, A1,
2 and 7 are comparative examples.

第1表に見られるように、本発明の実施例であるA3な
いし扁6のCr量3〜20モモルの試料では初期特性、
熱衝撃後の特性共に曲げ強度及びワイブル係数共に大き
く、構造部品としての信頼性が高いことがわかる。その
うち試料点4の変位(歪)一応力特性を第1図Bに示す
。このように、この試料では低歪時に、変形抵抗が小さ
く、高歪時に変形抵抗の大きな特性を持っている。同様
な傾向は試料A3,5,6においても認められた。
As seen in Table 1, the initial characteristics of the A3 to flat 6 samples with a Cr content of 3 to 20 moles, which are examples of the present invention,
It can be seen that both the bending strength and the Weibull coefficient are large in the properties after thermal shock, and the reliability as a structural component is high. The displacement (strain)-stress characteristics of sample point 4 are shown in FIG. 1B. As described above, this sample has a characteristic that the deformation resistance is small when the strain is low, and the deformation resistance is large when the strain is high. Similar trends were also observed in samples A3, 5, and 6.

一方、第1図のAは比較例である試料Alの特性、第1
図のCは同じく試料A7の特性であり、これら比較例の
ものは変形抵抗が歪によらず一定であることがわかる。
On the other hand, A in FIG. 1 shows the characteristics of sample Al, which is a comparative example.
C in the figure similarly shows the characteristics of sample A7, and it can be seen that the deformation resistance of these comparative examples is constant regardless of strain.

さらに上記本発明実施例の試料の組織を観察したところ
、第2図に見られるように、Si3N4焼結体の粒界の
一部に金属CrとCrSi2の混合物が分散して存在す
ることが認められた。
Furthermore, when the structure of the sample of the above-mentioned example of the present invention was observed, as shown in FIG. It was done.

なお、同様な方法で本発明実施例の試料A3゜4.5ま
たは6の組成を用いて、自動車エンジン用シリンダライ
チ及びピストンを作製した。得られた自動車エンジンを
用いて、起動−停止の〈シ返しおよび連続運転をおこな
ったが破損などの問題はまったく認められなかった。
Incidentally, litchi cylinders and pistons for automobile engines were produced in the same manner using the compositions of Samples A3°4.5 and 6 of Examples of the present invention. Using the obtained automobile engine, we performed start-stop cycles and continuous operation, but no problems such as breakage were observed.

〔実施例2〕 実施例1と同様な方法で、5i5N4に第2表に示すI
Va、 Va、 Ma族元素を添加し、印加圧力300
kg/crn2、昇温速度20℃/分、最高温度180
0Cとし、最高温度到達後直ちに15℃/分の降温速度
で1000℃まで冷却するという温度プロフィルでホッ
トプレス焼結した。そして実施例1と同様な方法で測定
した試料の特性も第2表に示す。第2表中、試料点9〜
12およびA15〜18が本発明の実施例であり、Jf
6.8.13,14および19は比較例である◎ 添加する金属の種類によって添加量と金属の形で存在す
る量の割合が変化するが、金属としての存在量が3〜2
0モルチモル囲内である本発明実施例の試料においては
曲げ強度とワイゾル係数の大きいことがわかる。また、
これらの試料においては、第1図Bと同様に、低歪時に
変形抵抗が小さく、高歪時に大きい特性が認められた。
[Example 2] In the same manner as in Example 1, 5i5N4 was treated with I shown in Table 2.
Add Va, Va, Ma group elements and apply pressure 300
kg/crn2, heating rate 20℃/min, maximum temperature 180
Hot press sintering was carried out using a temperature profile in which the temperature was set at 0C and immediately after the maximum temperature was reached, the material was cooled down to 1000C at a cooling rate of 15C/min. Table 2 also shows the characteristics of the samples measured in the same manner as in Example 1. In Table 2, sample point 9~
12 and A15-18 are examples of the present invention, Jf
6.8.13, 14, and 19 are comparative examples.◎ The ratio of the amount added and the amount present in the form of metal changes depending on the type of metal added, but the amount present as a metal is 3 to 2.
It can be seen that the bending strength and the Weisol coefficient are large in the samples of the examples of the present invention, which are within the range of 0 mol. Also,
In these samples, similar to FIG. 1B, it was observed that the deformation resistance was small when the strain was low, and large when the strain was high.

〔実施例3〕 平均粒径0.7μm05L5N4粉末に平均粒径0.5
μmのAt203、平均粒径2μmのAtN及び平均粒
径1μmのst、o2をサイアロンノ一般式’S i 
6−、Az、o、Na−、の2が0.5〜2.0になる
ように秤量し、これに、第3表に示す金属粉末及び低重
合ポリエチレンを15重量係加え、1500 kl/c
m2の圧力で射出成形した。該成形体は次に窒素ガス中
で昇温速度20℃/分で昇温し、最高温度1700’C
に到達後、直ちにl’4温速度20り/分で冷却するこ
とにょシ焼結した。得られた試料中の金属含有量と特性
の関係を第3表に示す。
[Example 3] Average particle size 0.7 μm 05L5N4 powder with average particle size 0.5
μm of At203, average grain size of 2 μm of AtN, and average grain size of 1 μm of st, o2 are expressed by the general formula 'S i
6-, Az, o, Na-, were weighed so that 2 was 0.5 to 2.0, and 15 weights of the metal powder and low polymerized polyethylene shown in Table 3 were added to this, and 1500 kl/ c.
Injection molding was carried out at a pressure of m2. The molded body was then heated in nitrogen gas at a heating rate of 20°C/min to a maximum temperature of 1700'C.
Immediately after reaching the temperature, sintering was carried out by cooling at a temperature rate of 20 l/min. Table 3 shows the relationship between the metal content and properties of the obtained samples.

第3表において、本発明の実施例の試料は屋20.21
.22,24,25,26.27であシ、獣料屋′23
および28は比較例である。本発明の実施例の試料では
大きな曲げ強度とワイプル係数を持つことがわかる。ま
た、、これらの試料は、第1図Bと同様に、低歪時に変
形抵抗が小さく、高歪時に大きい特性が認められた。さ
らに、これらの試料と同じ材料で40φのターボチャー
ジャロータを作、Q、1100℃の風を断続的に送って
回転試験をおこなったが、破損などの問題はまったくな
かった。
In Table 3, the samples of the embodiments of the present invention are 20.21
.. 22, 24, 25, 26. 27, animal restaurant '23
and 28 are comparative examples. It can be seen that the sample according to the example of the present invention has a large bending strength and a large wipe coefficient. Furthermore, in these samples, similar to FIG. 1B, it was observed that the deformation resistance was small when the strain was low, and large when the strain was high. Furthermore, a 40φ turbocharger rotor was made from the same material as these samples, and a rotation test was conducted by intermittently blowing air at 1100°C, but there were no problems such as damage.

〔実施例4〕 す8000のα型SIC粉末に対して、平均粒径2〃m
のAtNを2モル係、平均粒径2μmのW粉末を30モ
ル係加え、成形後、真空中で最高温度2100℃でホッ
トプレス焼結した。この焼結は昇温速度20℃/分で昇
温し、上記最高温度到達後、保持時間なしに直ちに降温
速度20℃/分で冷却した。この試料では試料中の金属
゛単体の形でのW存在量は4モル饅でちゃ、低歪時の変
形抵抗が小さく、高歪時に大きい特性が認められた。
[Example 4] For α-type SIC powder of 8,000 mm, an average particle size of 2 m
2 mol of AtN and 30 mol of W powder having an average particle size of 2 μm were added, and after molding, hot press sintering was performed in vacuum at a maximum temperature of 2100°C. In this sintering, the temperature was raised at a temperature increase rate of 20° C./min, and after reaching the maximum temperature, it was immediately cooled at a temperature decreasing rate of 20° C./min without holding time. In this sample, when the amount of W present in the form of a single metal in the sample was 4 mol, it was observed that the deformation resistance was small at low strain and large at high strain.

〔実施例5〕 平均粒径0.5μmのZrO2に4モル係の平均粒径0
.5μmのY2O3及び塩化白金酸の水溶液(ptに換
算して5モル%)及び5重i % PVA水溶液10チ
を加え、よく混合した。次いでこれを成形後、空気中で
最高温度1550℃で焼結した。なお、焼成に当っては
、800℃以上での昇温速度を10℃/分とし、上記最
高温度で保持することなく直ちに、800℃まで10℃
/分の降温速度で冷却する温度グロフィルを用いた。
[Example 5] ZrO2 with an average particle size of 0.5 μm has an average particle size of 0
.. 5 μm of Y2O3 and an aqueous solution of chloroplatinic acid (5 mol% in terms of pt) and 10% of a 5% i% PVA aqueous solution were added and mixed well. This was then molded and sintered in air at a maximum temperature of 1550°C. In addition, during firing, the temperature increase rate at 800°C or higher is 10°C/min, and the temperature is increased immediately by 10°C to 800°C without being held at the maximum temperature above.
A temperature glofil that cools at a cooling rate of /min was used.

得られた試料では、ZrO2の粒界の所々にptが粒径
約0.1〜0.5μmの金属の形で析出した構造を有し
ていた。この試料の曲げ試験の結果、低歪時に変形抵抗
が小さく、高歪時に大きい特性が認められた。
The obtained sample had a structure in which PT was precipitated in the form of metal with a grain size of about 0.1 to 0.5 μm at some places at the grain boundaries of ZrO2. As a result of the bending test of this sample, it was found that the deformation resistance was small when the strain was low, and it was large when the strain was high.

また、塩化白金酸の代りに平均粒径0.1μmの白金粒
子を用いても同様な傾向が認められた。
A similar tendency was also observed when platinum particles with an average particle size of 0.1 μm were used instead of chloroplatinic acid.

さらに、昇降閥速度について検討の結果、昇降温速度が
7℃/分以上であることが望ましく、昇降濡速度が遅す
ぎると、金属粒子同志が凝集して、焼結体中での分散性
が悪くなることが分った。
Furthermore, as a result of a study on the rising and falling rate, it was found that it is desirable that the temperature rising and falling rate is 7°C/min or more; if the rising and falling rate is too slow, the metal particles will aggregate and the dispersibility in the sintered body will deteriorate. I knew it would get worse.

ZrO2の代りにA4203を、また、白金の代シにク
ロム粉末や硝酸クロムを用いた場合にも同様な結果が得
られた。
Similar results were obtained when A4203 was used in place of ZrO2, and chromium powder or chromium nitrate was used in place of platinum.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、強度のばらつきが少く、耐熱衝撃性・
耐機械的衝撃性が大きい信頼性の亮いセラミックス構造
部品を得ることができる。
According to the present invention, there is little variation in strength, thermal shock resistance and
It is possible to obtain a highly reliable ceramic structural component with high mechanical impact resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例および比較例の試料の6力と歪と
の関係を示す特性曲線図、第2図は本発明のセラミック
焼結体の微細構造組織を示す模式1・・・セラミック粒
子 2・・・析出金属第1図 第2図
Fig. 1 is a characteristic curve diagram showing the relationship between six forces and strain for samples of examples of the present invention and comparative examples, and Fig. 2 is a diagram showing the microstructure of the ceramic sintered body of the present invention. Particle 2...Precipitated metal Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、 セラミック粒子の粒界に金属が分散して存在する
構造を有し、低歪時の変形抵抗が嶋歪時の変形抵抗より
も小さい特性金有するセラミック粒子焼結体よりなるこ
と全特徴とするセラミックス構造部品。 2、 セラミック粒子は、炭化ケイ素、窒化ケイ素、サ
イアロンまたはZrO2、At203のうちの少くとも
1種である特許請求の範囲第1項記載のセラミックス構
造部品。 3、炭化ケイ素、窒化ケイ素、サイアロン、ZrO2ま
たはAt2o3のうちの少くとも1種の含有量が50モ
ル係以上、金属単体の含有量が3〜20モル係の!砒囲
内にある特許請求の範囲第2項記載のセラミックス構造
部品。 4、炭化ケイ素、窒化ケイ素またはサイアロンの粉末の
うちの少くとも1種に金属および焼結助剤を混合し、成
形し、焼成する各工浬からなり、焼成工程において、1
000℃以上での昇温速度を15℃/分以上とし、最高
温度で保持することなく直ちに、15℃/分以上の降温
速度で少くとも1000℃まで冷却することを特徴とす
るセラミックス構造部品の製法。 5、ZrO2’EたはAt2o3等の金属酸化物粉末に
金属または焼結時に分解して金属粒子を生成する化合物
を混合し、成形し、焼成する各工程からな広部成工程に
おいて、800℃以上での昇温速度を7℃/分以上とし
、最高温度で保持することなく直ちに、7C/分以上の
降温速匿で少くとも800℃まで冷却することを特徴と
するセラミックス構造部品の製法。
[Claims] 1. Ceramic particle sintered body having a structure in which metal is dispersed in the grain boundaries of ceramic particles, and having a characteristic metal in which deformation resistance at low strain is smaller than deformation resistance at island strain. Ceramic structural parts with all the characteristics. 2. The ceramic structural component according to claim 1, wherein the ceramic particles are at least one of silicon carbide, silicon nitride, sialon, ZrO2, and At203. 3. The content of at least one of silicon carbide, silicon nitride, Sialon, ZrO2, or At2o3 is 50 moles or more, and the content of elemental metals is 3 to 20 moles! A ceramic structural component according to claim 2 within the scope of the present invention. 4. Consists of each process of mixing at least one of silicon carbide, silicon nitride, or sialon powder with a metal and a sintering aid, molding, and firing, and in the firing process, 1
Ceramic structural parts characterized in that the heating rate at 15°C/min or higher at 000°C or higher is immediately cooled to at least 1000°C at a cooling rate of 15°C/min or higher without being held at the maximum temperature. Manufacturing method. 5. In the wide-area forming step, which includes the steps of mixing a metal or a compound that decomposes during sintering to produce metal particles with metal oxide powder such as ZrO2'E or At2o3, molding, and firing, the temperature is 800°C. A method for manufacturing a ceramic structural component, characterized in that the temperature increase rate is 7° C./min or more, and immediately the temperature is cooled to at least 800° C. at a temperature decreasing rate of 7 C/min or more without being held at the maximum temperature.
JP59023968A 1984-02-10 1984-02-10 Ceramic structural part and manufacture Pending JPS60171264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59023968A JPS60171264A (en) 1984-02-10 1984-02-10 Ceramic structural part and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59023968A JPS60171264A (en) 1984-02-10 1984-02-10 Ceramic structural part and manufacture

Publications (1)

Publication Number Publication Date
JPS60171264A true JPS60171264A (en) 1985-09-04

Family

ID=12125347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59023968A Pending JPS60171264A (en) 1984-02-10 1984-02-10 Ceramic structural part and manufacture

Country Status (1)

Country Link
JP (1) JPS60171264A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245767A (en) * 1984-05-18 1985-12-05 Yoshio Miyamoto Metal dispersion strengthened ceramics and its production
JPS6364972A (en) * 1986-09-04 1988-03-23 日本特殊陶業株式会社 Manufacture of silicon nitride sintered body
JPH02192448A (en) * 1988-03-18 1990-07-30 Honda Motor Co Ltd Sintered ceramics and production thereof
JPH0477360A (en) * 1990-07-18 1992-03-11 Showa Denko Kk Silicon carbide sintered body and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245767A (en) * 1984-05-18 1985-12-05 Yoshio Miyamoto Metal dispersion strengthened ceramics and its production
JPH0243809B2 (en) * 1984-05-18 1990-10-01 Yoshio Myamoto
JPS6364972A (en) * 1986-09-04 1988-03-23 日本特殊陶業株式会社 Manufacture of silicon nitride sintered body
JPH02192448A (en) * 1988-03-18 1990-07-30 Honda Motor Co Ltd Sintered ceramics and production thereof
JPH0477360A (en) * 1990-07-18 1992-03-11 Showa Denko Kk Silicon carbide sintered body and its manufacture

Similar Documents

Publication Publication Date Title
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
Mitomo et al. Sintering, properties and applications of silicon nitride and sialon ceramics
JPH01121110A (en) Cutting tool insert made of ceramic
US3836374A (en) Hot pressed silicon nitride
JP2004091272A (en) beta-SIALON SINTERED COMPACT
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JPS60171264A (en) Ceramic structural part and manufacture
JPS60246268A (en) Sialon base ceramic
JPS6291480A (en) Ceramic formation
EP0244226B1 (en) Silicon nitride sintered body and method for producing same
US4550063A (en) Silicon nitride reinforced nickel alloy composite materials
JPS60186468A (en) Ceramic structural material and manufacture
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JPS6236991B2 (en)
JP2573230B2 (en) Silicon nitride ceramics
JPH0244784B2 (en)
JPS6230666A (en) High toughenss silicon nitride sintered body and manufacture
JPS60161383A (en) Ceramic part
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPS62278169A (en) Ceramic sintered body parts and manufacture
JP2588254B2 (en) Wear-resistant sliding member
JPS59223272A (en) Ceramics structure and manufacture
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JP2566580B2 (en) Silicon carbide / silicon nitride composite sintered body
JPS63277574A (en) Sintered beta-sialon