JPS60170983A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS60170983A
JPS60170983A JP59027422A JP2742284A JPS60170983A JP S60170983 A JPS60170983 A JP S60170983A JP 59027422 A JP59027422 A JP 59027422A JP 2742284 A JP2742284 A JP 2742284A JP S60170983 A JPS60170983 A JP S60170983A
Authority
JP
Japan
Prior art keywords
layer
electrode
substrate
emitting device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59027422A
Other languages
Japanese (ja)
Inventor
Yasuo Idei
出井 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59027422A priority Critical patent/JPS60170983A/en
Publication of JPS60170983A publication Critical patent/JPS60170983A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • H01L33/0087Processes for devices with an active region comprising only II-VI compounds with a substrate not being a II-VI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0037Devices characterised by their operation having a MIS barrier layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To attain a high productivity by a method wherein a layer is grown, composed of a compound semiconductor belonging to the II-VI group, upon a substrate belonging to the II-V group available in a large size at a low price. CONSTITUTION:An Al-added n type layer 12 is grown on an n type GaP substrate 11. On the layer 12 grown in this way, a high-resistance layer 12a is created of ZnS due to asymmetric lattice constants along the interface between the layer 12 and substrate 11. A process follows wherein an ohmic electrode 13 is built on a part of the layer 12 and a high-resistance film 14 is formed of undoped ZnS over the upper surface of the layer 12. Then, on the film 14, a Schottky electrode 15 is built for the formation of a planar-type MISLED. When a voltage is applied across the electrodes 15 and 13 on the LED with the negative potential applied to the electrode 13, blue light is generated in the vicinity of the electrode 15. With the light-emitting device using a substrate belonging to the II-V group available in a large size at a low price, a high productivity may be attained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば表示用光源(LEDランプ、LEDデ
ィスプレイ菓子)等に用いられる半導体発光装置に関す
るもので、特に青色発光LED等の半導体発光装置に関
するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor light emitting device used, for example, as a display light source (LED lamp, LED display confectionery), etc., and particularly relates to a semiconductor light emitting device such as a blue light emitting LED. It is something.

〔発明の技術的背景〕[Technical background of the invention]

例えば特公昭58−26186号に示されるように、従
来の青色発光素子は次のようなものである。すなわち、
第1図において、Zn8(硫化亜鉛)単結晶1に発光効
率の向上を図るためA[(フルミニラム)、I”(イン
ジウム)またはGa(ガリウム)等の僅族元素を添加し
、さらに低抵抗化の目的でZn溶液中で熱処理を施す。
For example, as shown in Japanese Patent Publication No. 58-26186, a conventional blue light emitting device is as follows. That is,
In Fig. 1, minority group elements such as A[(fluminilum), I"(indium), or Ga(gallium) are added to Zn8 (zinc sulfide) single crystal 1 in order to improve the luminous efficiency and further lower the resistance. Heat treatment is performed in a Zn solution for the purpose of.

そして、この単結晶1の一方の表面にAJ或いはIn系
のオーミック電極2を形成する。
Then, an AJ or In-based ohmic electrode 2 is formed on one surface of this single crystal 1.

またこの単結晶1の上記オーミック電極と平行の対向し
た面には高抵抗層3を形成し、さらにこの高抵抗層3上
にA’u (金)またはpt(白金)からなるショット
キー電極4を形成する。
Further, a high resistance layer 3 is formed on the opposing surface of the single crystal 1 parallel to the ohmic electrode, and a Schottky electrode 4 made of A'u (gold) or pt (platinum) is further formed on this high resistance layer 3. form.

このようにして得られた装置のショットキー電極4およ
びオーミック電極2間に通電するとショットキー電極4
付近で青色発光が得られる。
When electricity is applied between the Schottky electrode 4 and the ohmic electrode 2 of the device thus obtained, the Schottky electrode 4
Blue light emission can be obtained in the vicinity.

尚、第1図に示すように装置を上記高抵抗層3を絶縁膜
とするM I S (Metal Inaulator
Semiconductor )i造とするのは、Zn
S等の…−■族半導体では自己補償効果によりp型不純
物をドープしてもp型結晶が得られずp −n接合形の
LFDを得ることができないためである。
Incidentally, as shown in FIG.
Semiconductor) i is made of Zn
This is because a p-type crystal cannot be obtained even when doped with a p-type impurity due to a self-compensation effect in a . . . -■ group semiconductor such as S, and a p-n junction type LFD cannot be obtained.

〔背景技術の問題点〕[Problems with background technology]

ところで、上記青色発光LED(2)ZnS単結晶1ノ
として用いられるZnS単結晶基板は、通常高圧溶融法
で製造されるが、一般に■−■族半導体では大型の単結
晶を得ることが難かしく、その直径は最大級のものでも
1.5(1m程度である。このため、1枚の単結晶基板
から得られるLFD数が少なく、生産性が悪いものであ
った。
By the way, the ZnS single crystal substrate used as the above-mentioned blue light emitting LED (2) ZnS single crystal 1 is usually manufactured by a high pressure melting method, but it is generally difficult to obtain a large single crystal with ■-■ group semiconductors. The diameter of the largest one is about 1.5 m (about 1 m). Therefore, the number of LFDs obtained from one single crystal substrate is small, resulting in poor productivity.

また、上記ZnS単結晶には青色発光のドーパントとし
てAlか添卯されているが、単にA6をドープしただけ
であると単結晶の軸抵抗は107Ω・α以上あり、’L
EDの基板として使用できない。従ってZnS単結晶を
10Ω・α以上に低抵抗化させる目的でZnS単結晶を
Zn(亜鉛)溶液中で一定時間熱処理する必要があるが
、この工程においてZn単結晶を大量に処理できず、量
産性が低いものであった。
In addition, the ZnS single crystal mentioned above is doped with Al as a blue-emitting dopant, but if it is simply doped with A6, the axial resistance of the single crystal is more than 107Ω・α, and 'L
It cannot be used as an ED substrate. Therefore, in order to lower the resistance of the ZnS single crystal to 10Ω・α or more, it is necessary to heat treat the ZnS single crystal in a Zn (zinc) solution for a certain period of time. It was of low quality.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような点に鑑みなされたもので、単結晶
牛導体基板にZn溶液による熱処理を必要とせず製造で
き、■二■族の単結晶基板を用いる必要のない賀価で量
産性に優れた生産性の高い半導体発光装置を提供するこ
とを目的とする。
The present invention has been made in view of the above points, and can be manufactured without requiring heat treatment with a Zn solution on a single crystal conductor substrate, and can be mass-produced at a low price without the need to use a Group 2 single crystal substrate. The purpose of the present invention is to provide a semiconductor light emitting device with excellent productivity and high productivity.

〔発明の概要〕[Summary of the invention]

すなわち本発明による半導体発光装置では、少なくとも
表面に、n−vt族化合物半導体の成長層を有する半導
体層と、上記成長層表面の一部領域上に形成された第1
電極と、上記成長層表面上で上記第1電極とは離間した
部位に高抵抗膜を介して設けられた第2電極とを具備し
たものである。
That is, the semiconductor light emitting device according to the present invention includes a semiconductor layer having a growth layer of an n-vt group compound semiconductor on at least the surface thereof, and a first semiconductor layer formed on a partial region of the surface of the growth layer.
The device includes an electrode, and a second electrode provided on the surface of the growth layer at a location separated from the first electrode via a high-resistance film.

〔発明の実施例〕[Embodiments of the invention]

以下図面?蓄熱して本発明の一実施例を説明する。 Is the drawing below? An embodiment of the present invention will be described by storing heat.

まず、第2図において例えばL E C(Liquid
Encapsulated Czochralskl 
)法により形成されたn型GaP(100)ウェー八を
基板11として用意する。
First, in FIG. 2, for example, L E C (Liquid
Encapsulated Czochralskl
) An n-type GaP (100) wafer formed by the method is prepared as a substrate 11.

続いてMOCVD (Metal Organic C
hemicalVapour Deposltion 
)法により、上記GaP基板1ノ上に青色発光ドーパン
トとしてAJの添加された約5μ風のn型ZnSをヘテ
ロエピタキシャル成長せしめ、成長層12を形成する。
Next was MOCVD (Metal Organic C
Chemical Vapor Deposition
) method, a growth layer 12 is formed by heteroepitaxially growing n-type ZnS of about 5 μm to which AJ is added as a blue-emitting dopant on the GaP substrate 1 .

このn型ZnSの成長は例えば次のようにして行なう。The growth of this n-type ZnS is performed, for example, as follows.

上記GaP基板1ノを、高周波もしくは電気炉加熱され
た炭化シリコン製のサセプタ(基板台)上に載置し、基
板温度を400℃前後に設定する。モしてZnの有機金
属例えばDMZ(ジメチル亜鉛)と、H!S(硫化水素
)ガスと、ドーパントとしてのlの有機金属例えばTE
A()リエテルアルミニウム)とを上記基板11上に流
す。尚、これらの各成分ガスの流斂はそれぞれDMZが
10ee/分(有機金属の設定温度O℃)、TEA・が
10ec/分(有機金属の設定温度20℃)、Hts(
Hsガスによる10%の希釈ガス)が30 cc/分と
なるようにする。
The GaP substrate 1 is placed on a silicon carbide susceptor (substrate stand) heated by high frequency or electric furnace, and the substrate temperature is set at around 400°C. Furthermore, organic metals such as Zn, such as DMZ (dimethylzinc), and H! S (hydrogen sulfide) gas and l organometallic as a dopant, e.g. TE.
A() rietheraluminum) is poured onto the substrate 11. The flow rates of these component gases are 10 ee/min for DMZ (organometallic set temperature 0°C), 10 ec/min for TEA (organic metal set temperature 20°C), and Hts (
10% dilution gas with Hs gas) at 30 cc/min.

以上のようにして形成されたZnSの成長層12には、
基板11との界面付近に格子定数の不整合に起因するZ
n5O高抵抗層12aが形成される。この両紙抗層は厚
みとしては0.5μm以上あり、絶縁破壊させるために
は100v以上の電圧を要するものである。−万、成長
層12の表面の比抵抗は、1Ω・α程度となり、従来の
低抵抗化せしめたZnS基板よりもさらに低いものとな
る。
In the ZnS growth layer 12 formed as above,
Z due to lattice constant mismatch near the interface with the substrate 11
An n5O high resistance layer 12a is formed. The thickness of both paper anti-layers is 0.5 μm or more, and a voltage of 100 V or more is required to cause dielectric breakdown. - The specific resistance of the surface of the growth layer 12 is about 1Ω·α, which is even lower than that of the conventional ZnS substrate with low resistance.

続いて、上記のようにして形成されたZnS膜の表面に
、メタルマスク等を用いた[n−Ga合金の蒸着を施し
、さらに370℃のシンターを行って、第3図に示すよ
うに第1電極としてIn−Gaのオーミック電極13を
成長/ii J 2の一部領域上に形成する。
Next, on the surface of the ZnS film formed as described above, an [n-Ga alloy was deposited using a metal mask, etc., and sintering was performed at 370°C to form a film as shown in FIG. An In-Ga ohmic electrode 13 is formed as one electrode on a partial region of the growth/ii J 2.

この後、上記成長j@12の上面に例えばMOCVD法
によってアンドープZnS膜を高抵抗膜14として10
00′A程度成長させる。
Thereafter, an undoped ZnS film is formed as a high resistance film 14 on the upper surface of the grown layer 12 by MOCVD, for example.
It is grown to about 00'A.

しかる後に、上記高抵抗膜14上の上記オーミック電極
13とは離間した部位に、メタルマスクを用いた金(A
u)或いは白金(pt)の蒸着によって第2電極として
ショットキー電極15を形成し、プレーナ型のM I 
S (MetalInsulator Sem1con
ductor ) L E Dを得る。
Thereafter, gold (A
u) Alternatively, a Schottky electrode 15 is formed as the second electrode by vapor deposition of platinum (PT), and a planar type MI
S (MetalInsulator Sem1con
ductor) Obtain LED.

このような装置のショットキー電極15とオーミック電
極13との間をオーミック電極13側を負極として通電
させると、ショットキー電極15近傍で青色発光(波長
が470 nm前後)が得られる。ここで、n型ZnS
成長層12の底面部忙高抵抗層12hが存在するため電
気的にはGap基板11の影響を受けることがなく、L
EDとしての基本的構造はM1図に示した従来のものと
同一とみなせる。
When electricity is passed between the Schottky electrode 15 and the ohmic electrode 13 of such a device with the ohmic electrode 13 as the negative electrode, blue light emission (with a wavelength of about 470 nm) is obtained in the vicinity of the Schottky electrode 15. Here, n-type ZnS
Since the high resistance layer 12h exists at the bottom of the growth layer 12, it is not electrically affected by the Gap substrate 11, and the L
The basic structure of the ED can be considered to be the same as the conventional one shown in Figure M1.

また、ショットキー篭極近傍で発光した光のうち下方に
向う光がqaP基板10で吸収されるため、第4図に示
すようにGaP基板を除去し、第3図のものより高い発
光効率を得るようにしてもよい。。
In addition, since the downward light emitted near the Schottky cage pole is absorbed by the qaP substrate 10, the GaP substrate is removed as shown in FIG. 4 to achieve a higher luminous efficiency than that in FIG. 3. You can also get it. .

尚、上記実施例では基板11としてn型GaP基板を用
い、成長層12としてZnS’t−用いる場合を示した
が、ヘテロエピタキシャル成長が可能で基板と成長層と
の格子不整合が比較的少ない組合わせであれば他のもの
でもよく、例えば基板としてはGaPおよびGaAaを
用いることができる。成長層は第■族元素としてZn、
Cd。
In the above embodiment, an n-type GaP substrate is used as the substrate 11 and a ZnS't- substrate is used as the growth layer 12. Other materials may be used as long as they are made of a material. For example, GaP and GaAa can be used as the substrate. The growth layer contains Zn as a group Ⅰ element,
Cd.

第■族元素としてS、Se、Teを用いることが期待さ
れるが現在のところZnS或いはZn5eが最も望まし
い。
It is expected that S, Se, and Te will be used as the Group Ⅰ element, but ZnS or Zn5e is currently most desirable.

また、成長層のへテロエピタキシャル成長の方−法とし
ては、MOCVD法ばかりでなく、例えば低温の結晶成
長で低抵抗の成長層の得られる分子線エピタキシ(MB
E)法を採用することができる。
In addition, methods for heteroepitaxial growth of a growth layer include not only the MOCVD method but also molecular beam epitaxy (MB), which can obtain a growth layer with low resistance through low-temperature crystal growth.
E) law can be adopted.

また、高抵抗膜14も上記実施例に限らず、例えば高純
度のZnS粉末の蒸着により形成したZnjS膜、スパ
ッタ法により形成した1000A前後の5i02膜、或
いは例えばH,02液によりZnS膜の表面を酸化処理
した膜等でもよい。
Furthermore, the high resistance film 14 is not limited to the above-mentioned embodiments, and may be, for example, a ZnjS film formed by vapor deposition of high-purity ZnS powder, a 5i02 film of about 1000A formed by sputtering, or a surface of a ZnS film formed by, for example, H,02 liquid. A film etc. which are oxidized may also be used.

また、成長層12へのドーパントとして、AIの他に例
えばGa、In等を用いてもよく、オーミック電極13
の電極材料としても、In。
Further, as a dopant for the growth layer 12, for example, Ga, In, etc. may be used in addition to AI, and the ohmic electrode 13 may be used as a dopant.
In can also be used as an electrode material.

In−Ga 、 ln−Hg 、等のIn或いはInを
含む合金やA/等の金属を用いることもできる。
In or alloys containing In such as In-Ga, ln-Hg, and metals such as A/ may also be used.

また、高抵抗膜J4上に形成する第2電極は必ずしもシ
ョットキー電極でなくともよいが、現在のところ、ショ
ットキー電極を用いたものが発光効率等の点で有利であ
る。
Further, the second electrode formed on the high-resistance film J4 does not necessarily have to be a Schottky electrode, but at present, a Schottky electrode is advantageous in terms of luminous efficiency and the like.

〔発明の効果〕〔Effect of the invention〕

上述のような本発明による半導体発光装置では次のよう
な効果が得られる。
The semiconductor light emitting device according to the present invention as described above provides the following effects.

まず、基板として女価で大面積(最大3インチ径程度)
のものが得られるGaP基板或いはGaAs基板の1−
2V&:基板を用いるため、1枚の基板から得られるL
ED数を多くでき、生産性が従来のものより高い。
First, as a board, it has a large area (maximum diameter of about 3 inches).
1- of GaP substrate or GaAs substrate that can obtain
2V&: Because the board is used, L obtained from one board
The number of EDs can be increased, and productivity is higher than conventional ones.

さらにドーパントのA7を含んだZnS或いはZn5e
の結晶をエピタキシャル成長により形成するため、この
成長層の表面付近q比抵抗を従来の装置のZnS単結晶
に比らべ極めて小さくできる。従って、本実施例装置の
ように成長層表面を通電路として利用する半導体発光装
置では、zn溶液中における低抵抗化のための煩雑な熱
処理を行なう必要がない。ここで、GaP基板或いはG
aAs基板上にII−Vl族の結晶を成長させた場合、
成長層の基板との界面付近に高抵抗層12aが形成され
るが、第1電極13および第2電極15を成長層12の
表面側に設けることにより、高抵抗層12aの影響さら
には基板の影響を避けることができる。
Furthermore, ZnS or Zn5e containing the dopant A7
Since this crystal is formed by epitaxial growth, the q resistivity near the surface of this grown layer can be made extremely small compared to the ZnS single crystal of the conventional device. Therefore, in a semiconductor light-emitting device that uses the surface of a grown layer as a current-conducting path like the device of this embodiment, there is no need to perform a complicated heat treatment to lower the resistance in a ZN solution. Here, GaP substrate or G
When a II-Vl group crystal is grown on an aAs substrate,
A high resistance layer 12a is formed near the interface between the growth layer and the substrate, but by providing the first electrode 13 and the second electrode 15 on the surface side of the growth layer 12, the influence of the high resistance layer 12a and the influence of the substrate can be reduced. influence can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体発光装置を示す断面図、第2図お
よび第3図はそれぞれ本発明の一実施例に係る半導体発
光装置を製造過程と共に示す断面図、第4図は本発明の
他の冥施例會示す断面図である。 11・・・基板、12・・・成長層、12a・・・高抵
抗層、13・・・オーミック電極(第1電極)、14・
・・高抵抗膜、15・・・ショットキー電極(第2電極
)。 出願人代理人 弁理士 鈴 圧式 彦 第 1 口 第2 口 ;rSa 図 第4図
FIG. 1 is a sectional view showing a conventional semiconductor light emitting device, FIGS. 2 and 3 are sectional views showing a semiconductor light emitting device according to an embodiment of the present invention along with the manufacturing process, and FIG. 4 is a sectional view showing a semiconductor light emitting device according to an embodiment of the present invention. FIG. DESCRIPTION OF SYMBOLS 11... Substrate, 12... Growth layer, 12a... High resistance layer, 13... Ohmic electrode (1st electrode), 14...
...High resistance film, 15... Schottky electrode (second electrode). Applicant's agent Patent attorney Suzu Ushiki Hiko No. 1 No. 2; rSa Figure Figure 4

Claims (1)

【特許請求の範囲】 (1)It−Vl族化合物半導体の成長層より成る半導
体妾金層と、上記成長層表面の一部領域上に形成された
第1電極と、上記成長層表面で上記第1電極とは離間し
た部位に扁抵抗膜を介して設けられた第2電極とを具備
することを特徴とする半導体発光装置。 (2)上記第1電極かオーミック電極であり、上記第2
電梯がショットキー電極であることを特徴とする%ff
請求の範囲第1項記載の半導体発光装置。 (3)上記半導体層がn型Zn8またはn型Zn8eの
成長層であることを特徴とする特許請求の範囲第1項ま
たは第2項記載の半導体発光装置。 釦 上記第1電極の形成される半導体層の表面側よりも
半導体層の裏面側の方か高抵抗であることを特徴とする
特許請求の範囲第1項乃至第3項いずれか1項記載の半
導体発光装置。 とを特徴とする特許請求の範囲第1項または第2項記載
の半導体発光装置。 (6)上記成長層は第1電極の形成される表面側よりも
上記単結晶基板と接する底面側の方が高抵抗であること
を特徴とする特許請求の範囲第5項記載の半導体発光装
置。 Q)上記単結晶基板がGAP基板またはG&A@基板で
あり、上記成長層がn型ZnS層またはn型・Zn5e
層であることを特徴とする特許請求の範囲@6項記載の
半導体発光装置。
[Scope of Claims] (1) A semiconductor layer consisting of a grown layer of an It-Vl group compound semiconductor, a first electrode formed on a partial region of the surface of the grown layer, and a first electrode formed on a part of the surface of the grown layer; 1. A semiconductor light emitting device comprising: a second electrode provided at a portion separated from the first electrode via a flat resistive film. (2) The first electrode is an ohmic electrode, and the second electrode is an ohmic electrode.
%ff characterized in that the electric ladder is a Schottky electrode
A semiconductor light emitting device according to claim 1. (3) The semiconductor light emitting device according to claim 1 or 2, wherein the semiconductor layer is a grown layer of n-type Zn8 or n-type Zn8e. Button according to any one of claims 1 to 3, characterized in that the resistance is higher on the back side of the semiconductor layer than on the front side of the semiconductor layer where the first electrode is formed. Semiconductor light emitting device. A semiconductor light emitting device according to claim 1 or 2, characterized in that: (6) The semiconductor light emitting device according to claim 5, wherein the growth layer has a higher resistance on the bottom surface side in contact with the single crystal substrate than on the surface side where the first electrode is formed. . Q) The single crystal substrate is a GAP substrate or a G&A@ substrate, and the growth layer is an n-type ZnS layer or an n-type Zn5e layer.
The semiconductor light emitting device according to claim 6, which is a layer.
JP59027422A 1984-02-16 1984-02-16 Semiconductor light-emitting device Pending JPS60170983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027422A JPS60170983A (en) 1984-02-16 1984-02-16 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027422A JPS60170983A (en) 1984-02-16 1984-02-16 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPS60170983A true JPS60170983A (en) 1985-09-04

Family

ID=12220661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027422A Pending JPS60170983A (en) 1984-02-16 1984-02-16 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS60170983A (en)

Similar Documents

Publication Publication Date Title
JP4810746B2 (en) Group III nitride compound semiconductor device
US6777805B2 (en) Group-III nitride compound semiconductor device
US6316792B1 (en) Compound semiconductor light emitter and a method for manufacturing the same
US6730941B2 (en) Boron phosphide-based semiconductor light-emitting device, production method thereof, and light-emitting diode
JP4119501B2 (en) Semiconductor light emitting device
JP2007157853A (en) Semiconductor light-emitting element, and method of manufacturing same
CN102067346A (en) Semiconductor light-emitting device with passivation layer
JPH10163531A (en) Light-emitting diode having electrode at periphery
JPH0268968A (en) Compound semiconductor light-emitting device
KR100827993B1 (en) Gallium nitride-based semiconductor device
JPH10308534A (en) Light transmitting electrode for light emitting semiconductor element and its manufacture
JPH06232450A (en) Gallium nitride compound semiconductor and forming method of electrode thereof
JP2001077414A (en) Group iii nitride semiconductor light-emitting diode
US5554877A (en) Compound semiconductor electroluminescent device
CN110034219B (en) Light emitting diode and method of manufacturing the same
JPS60170983A (en) Semiconductor light-emitting device
JPH05259509A (en) Semiconductor element
CN107706277B (en) Manufacturing method of transparent conducting layer and light emitting diode thereof
JP2000077712A (en) Semiconductor light emitting element
JPWO2004047188A1 (en) Boron phosphide-based semiconductor light-emitting device, manufacturing method thereof, and light-emitting diode
JP3987956B2 (en) Semiconductor light emitting device
JP3975763B2 (en) Boron phosphide-based semiconductor light-emitting device, manufacturing method thereof, and light-emitting diode
KR100348280B1 (en) method for fabricating blue emitting device
JPS62172766A (en) Semiconductor light emitting device and manufacture thereof
KR20000001665A (en) Blue light emitting element and the manufacturing method