JPH06232450A - Gallium nitride compound semiconductor and forming method of electrode thereof - Google Patents

Gallium nitride compound semiconductor and forming method of electrode thereof

Info

Publication number
JPH06232450A
JPH06232450A JP3935993A JP3935993A JPH06232450A JP H06232450 A JPH06232450 A JP H06232450A JP 3935993 A JP3935993 A JP 3935993A JP 3935993 A JP3935993 A JP 3935993A JP H06232450 A JPH06232450 A JP H06232450A
Authority
JP
Japan
Prior art keywords
electrode
type
gallium nitride
compound semiconductor
gan layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3935993A
Other languages
Japanese (ja)
Other versions
JP2836685B2 (en
Inventor
Shuji Nakamura
修二 中村
Masayuki Senoo
雅之 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP3935993A priority Critical patent/JP2836685B2/en
Publication of JPH06232450A publication Critical patent/JPH06232450A/en
Application granted granted Critical
Publication of JP2836685B2 publication Critical patent/JP2836685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To improve an emission output of a light-emitting element using a gallium nitride compound semiconductor, to lower also a forward voltage and a forward current and thereby to make the light-emitting element be of practical use. CONSTITUTION:After an electrode having a width of 20mum or below is deposited on a gallium nitride compound semiconductor doped with a p-type dopant, the gallium nitride compound semiconductor is annealed at a temperature of 400 deg.C or above, so that the electrode be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として、青色発光ダ
イオード、青色発光レーザーダイオード等の発光デバイ
スに使用される窒化ガリウム系化合物半導体の細部の構
造に係り、特にp型ドーパントがドープされた窒化ガリ
ウム系化合物半導体と、その電極形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a detailed structure of a gallium nitride-based compound semiconductor used for a light emitting device such as a blue light emitting diode and a blue light emitting laser diode, and more particularly to a nitride doped with a p-type dopant. The present invention relates to a gallium compound semiconductor and an electrode forming method thereof.

【0002】[0002]

【従来の技術】青色発光ダイオード(LED)、青色レ
ーザーダイオード等に使用される実用的な半導体発光素
子材料として、窒化ガリウム(GaN)、窒化インジウ
ムガリウム(InGaN)、窒化ガリウムアルミニウム
(GaAlN)、窒化インジウムアルミニウムガリウム
(InAlGaN)等の窒化ガリウム系化合物半導体が
注目されている。
2. Description of the Related Art Gallium nitride (GaN), indium gallium nitride (InGaN), gallium aluminum nitride (GaAlN), and nitride are practical semiconductor light emitting device materials used for blue light emitting diodes (LEDs), blue laser diodes, and the like. Attention has been focused on gallium nitride-based compound semiconductors such as indium aluminum gallium (InAlGaN).

【0003】例えばGaNを用いたLED素子の構造に
ついて、図1および図2を用いて説明する。図1は従来
のLED素子の構造を示す断面図、図2はこの素子を電
極側から見た平面図である。この素子は、基本的にサフ
ァイアよりなる基板1の上に、AlNよりなるバッファ
層2と、n型GaN層3と、p型ドーパントがドープさ
れた高抵抗なi型GaN層4とが順に積層された構造を
有し、n型GaN層3には電極(以下、n型電極とい
う。)5、i型GaN層4には電極(以下p型電極とい
う。)6とが形成されている。そして、これらの電極間
に通電することにより、i型GaN層4からの発光を、
透光性基板であるサファイア基板1側から観測すること
ができる。特に、図2に示すように、p型電極6をi型
GaN層4のほぼ全面に形成することにより、i型Ga
N層4とp型電極6との接触抵抗を下げ、順方向電圧を
下げるようにしている。
The structure of an LED element using, for example, GaN will be described with reference to FIGS. 1 and 2. FIG. 1 is a sectional view showing the structure of a conventional LED device, and FIG. 2 is a plan view of this device seen from the electrode side. In this device, a buffer layer 2 made of AlN, an n-type GaN layer 3, and a high-resistance i-type GaN layer 4 doped with a p-type dopant are sequentially laminated on a substrate 1 basically made of sapphire. The n-type GaN layer 3 has an electrode (hereinafter, referred to as an n-type electrode) 5 and the i-type GaN layer 4 has an electrode (hereinafter, referred to as a p-type electrode) 6. Then, by supplying electricity between these electrodes, the light emitted from the i-type GaN layer 4 is
It can be observed from the sapphire substrate 1 side which is a translucent substrate. In particular, as shown in FIG. 2, by forming the p-type electrode 6 on almost the entire surface of the i-type GaN layer 4, i-type Ga is formed.
The contact resistance between the N layer 4 and the p-type electrode 6 is lowered, and the forward voltage is lowered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
発光素子は、i型GaN層4の抵抗率が106Ω・cm以上
と非常に高抵抗であるため、p型電極6を図2に示すよ
うにほぼ全面に形成しても、p型電極6はi型GaN層
とオーミックコンタクトしておらず、例えば、順方向電
流10mAにおいて、順方向電圧は20〜30Vと未だ
高く、しかも、発光出力は数μWでしかなく、LEDと
して満足のできる特性ではなかった。
However, in the conventional light emitting element, the p-type electrode 6 is shown in FIG. 2 because the i-type GaN layer 4 has a very high resistivity of 10 6 Ω · cm or more. Even if formed on almost the entire surface, the p-type electrode 6 does not make ohmic contact with the i-type GaN layer. For example, at a forward current of 10 mA, the forward voltage is still high at 20 to 30 V, and the light emission output is high. Was only a few μW, which was not a satisfactory characteristic for an LED.

【0005】本発明はこのような事情を鑑み成されたも
のであり、その目的とするところは窒化ガリウム系化合
物半導体を用いた発光素子の発光出力を向上させるとと
もに、順方向電圧、順方向電流を下げて実用的な発光素
子とするものである。
The present invention has been made in view of such circumstances, and an object of the present invention is to improve the light emission output of a light emitting device using a gallium nitride compound semiconductor, and to improve the forward voltage and the forward current. Is lowered to obtain a practical light emitting element.

【0006】[0006]

【課題を解決するための手段】我々は上記目的を達成す
るため、数々の実験を行ったところ、窒化ガリウム系化
合物半導体に形成する電極、特にp型ドーパントがドー
プされた高抵抗なi型窒化ガリウム系化合物半導体を低
抵抗なp型とするとともに、その窒化ガリウム系化合物
半導体のp型電極の形成方法を改良することにより、上
記問題が解決できることを見いだし本発明を成すに至っ
た。即ち、本発明の窒化ガリウム系化合物半導体は、p
型ドーパントがドープされた窒化ガリウム系化合物半導
体上に、アニーリングによりオーミックコンタクトされ
た20μm以下の幅を有するp型電極が形成されている
ことを特徴とする。また、そのp型電極はp型ドーパン
トがドープされた窒化ガリウム系化合物半導体上に、2
0μm以下の幅を有する電極を付着した後、該窒化ガリ
ウム系化合物半導体を400℃以上でアニーリングする
ことにより形成することができる。
[Means for Solving the Problems] In order to achieve the above-mentioned object, we have conducted a number of experiments and found that an electrode formed on a gallium nitride-based compound semiconductor, especially a high-resistance i-type nitride doped with a p-type dopant. The inventors have found that the above problems can be solved by making the gallium compound semiconductor to have a low resistance p-type and improving the method for forming the p-type electrode of the gallium nitride compound semiconductor, and have completed the present invention. That is, the gallium nitride-based compound semiconductor of the present invention has p
A p-type electrode having a width of 20 μm or less, which is ohmic-contacted by annealing, is formed on a gallium nitride-based compound semiconductor doped with a type dopant. Moreover, the p-type electrode is formed on the gallium nitride-based compound semiconductor doped with a p-type dopant.
It can be formed by depositing an electrode having a width of 0 μm or less and then annealing the gallium nitride-based compound semiconductor at 400 ° C. or higher.

【0007】p型電極は、20μm以下の幅を有する電
極である必要があり、形状、長さは問うものではない。
電流を均一に広げるためには、p型層全面にできるだけ
長距離で形成する方が好ましい。例えば、その形状が円
であれば直径が20μm以下、楕円であれば短径が20
μm以下であることを必要とし、それらの円、楕円形状
の電極をp型層全面に無数に形成することもできる。ま
た、図6に示すように幅20μm以下のp型電極6を複
数形成して、その上からp型電極6を電気的に接続する
ために、Au、In、Al、半田等の導電性材料で被覆
してもよい。
The p-type electrode needs to be an electrode having a width of 20 μm or less, and its shape and length are irrelevant.
In order to uniformly spread the current, it is preferable to form the p-type layer over the entire surface as long as possible. For example, if the shape is a circle, the diameter is 20 μm or less, and if it is an ellipse, the minor axis is 20 μm.
It is necessary that the thickness be less than or equal to μm, and innumerable circular and elliptical electrodes can be formed on the entire surface of the p-type layer. Further, as shown in FIG. 6, a plurality of p-type electrodes 6 having a width of 20 μm or less are formed, and in order to electrically connect the p-type electrodes 6 from above, a conductive material such as Au, In, Al, or solder is used. You may coat with.

【0008】p型不純物をドープした窒化ガリウム系化
合物半導体に電極を付着する方法は、例えば蒸着、スパ
ッタリング、メッキ等の方法を用いることができ、フォ
トレジスト等の適当なマスクを窒化ガリウム系化合物半
導体上に形成し、そのマスクを介することにより、幅2
0μm以下とすることができる。電極材料としては、例
えばAu、Pt、Ni、Inまたはこれらの合金を使用
することができる。
As a method of attaching the electrode to the gallium nitride compound semiconductor doped with p-type impurities, for example, a method such as vapor deposition, sputtering or plating can be used, and an appropriate mask such as photoresist is used for the gallium nitride compound semiconductor. Formed on top and through the mask, width 2
It can be 0 μm or less. As the electrode material, for example, Au, Pt, Ni, In or alloys thereof can be used.

【0009】[0009]

【作用】以下、本発明によるp型電極の作用を図3、お
よび図4を参照して説明する。図3は、本発明によるp
型電極6を形成したi型GaN層4の構造を示す部分断
面図、図4は、従来法によるp型電極6を形成したi型
GaN層4の構造を示す部分断面図である。
The operation of the p-type electrode according to the present invention will be described below with reference to FIGS. 3 and 4. FIG. 3 shows p according to the present invention.
FIG. 4 is a partial cross-sectional view showing the structure of the i-type GaN layer 4 having the type electrode 6 formed therein, and FIG. 4 is a partial cross-sectional view showing the structure of the i-type GaN layer 4 having the p-type electrode 6 formed by the conventional method.

【0010】前にも述べたように、p型ドーパントをド
ープしたi型GaN層4は抵抗率が106Ω・cm以上もあ
るほぼ絶縁体に近い層である。この高抵抗なi型GaN
層を低抵抗なp型とするため、我々は先に特願平3−3
21353号において、このi型GaN層を400℃以
上でアニーリングすることにより、低抵抗なp型とする
技術を提案した。しかも、p型ドーパントをドープした
i型GaNがアニーリングによって低抵抗なp型となる
作用は以下のとおりである。それは、窒化ガリウム系化
合物半導体成長時、原料ガスとしてNH3等の水素原子
を含むガスを使用しており、この水素原子(H)が窒化
ガリウム系化合物半導体中でp型ドーパント(M)とM
−Hの状態で結合して、p型ドーパントを不活性な状態
にすることにより、i型GaN層が高抵抗になる。そこ
で、アニーリングによる熱により、M−Hで結合してい
るp型ドーパントから、Hを解離して窒化ガリウム系化
合物半導体層中から除去することにより、Mを活性化さ
せ、i型を低抵抗なp型にすることができるのである。
これはアニーリングによる窒化ガリウム系化合物半導体
特有の作用である。
As described above, the i-type GaN layer 4 doped with the p-type dopant is a layer having a resistivity of 10 6 Ω · cm or more and is almost an insulator. This high resistance i-type GaN
In order to make the layer a p-type with low resistance, we first applied Japanese Patent Application No. 3-3.
In No. 21353, a technique of making this i-type GaN layer into a p-type having low resistance by annealing at 400 ° C. or higher was proposed. Moreover, the action of i-type GaN doped with a p-type dopant to become a p-type with low resistance by annealing is as follows. When a gallium nitride-based compound semiconductor is grown, a gas containing hydrogen atoms such as NH 3 is used as a source gas, and the hydrogen atoms (H) are mixed with p-type dopant (M) and M in the gallium nitride-based compound semiconductor.
The i-type GaN layer has a high resistance by binding in the -H state and making the p-type dopant inactive. Therefore, by heat generated by annealing, H is dissociated from the p-type dopant bound by MH and removed from the gallium nitride-based compound semiconductor layer, thereby activating M and reducing i-type resistance. It can be p-type.
This is an action peculiar to gallium nitride-based compound semiconductor due to annealing.

【0011】ところで、p−n接合を有する半導体発光
素子の電極を形成する場合、p型層およびn型層に数々
の電極材料を付着した後、電極材料を合金化する目的
で、あるいは半導体層と電極材料とのオーミックコンタ
クトを良好にする目的で、その半導体発光素子を数百度
でアニーリングする場合がある。この電極形成時のアニ
ーリングにより、上記作用が特に窒化ガリウム系化合物
半導体に現れるのである。即ち、アニーリング時に、p
型ドーパントと結合している水素原子が出ていく工程
は、まずアニーリングにより熱的解離が起こり、M−H
の結合が解かれる。次に、拡散により解離された水素
は、p型電極6のない部分のi型GaN層4表面に到達
し、外部に放出される。
By the way, in the case of forming an electrode of a semiconductor light emitting device having a pn junction, after adhering various electrode materials to the p-type layer and the n-type layer, the purpose is to alloy the electrode material, or the semiconductor layer. The semiconductor light emitting device may be annealed at several hundred degrees for the purpose of improving ohmic contact between the electrode and the electrode material. Due to the annealing at the time of forming the electrode, the above-mentioned action appears especially in the gallium nitride-based compound semiconductor. That is, when annealing, p
In the process in which hydrogen atoms bonded to the type dopant come out, first, thermal dissociation occurs due to annealing, and MH
The bond of is released. Next, the hydrogen dissociated by diffusion reaches the surface of the i-type GaN layer 4 where there is no p-type electrode 6, and is released to the outside.

【0012】ところが、図4に示すように、i型GaN
層4の上に従来のように広い幅の電極を付着すると、ア
ニーリング時に、i型GaN層4中でp型ドーパントと
解離した水素が上部の電極に妨げられ、出てこられなく
なる。特に、電極下部の水素が出て行かないために、電
極の真下の部分のi型GaN層4はやはり高抵抗領域の
ままである。一方、図3に示すように、幅20μm以下
の電極を付着すると、水素は電極真下のi型GaN層4
から出ていくことができるようになり、全体が低抵抗な
p型となる。つまり、i型GaN層4中に含まれる水素
の拡散距離はおよそ10μm以内であると推定すること
ができる。
However, as shown in FIG. 4, i-type GaN is used.
When a wide electrode is conventionally deposited on the layer 4, hydrogen dissociated from the p-type dopant in the i-type GaN layer 4 during the annealing is blocked by the upper electrode and does not come out. In particular, since hydrogen under the electrode does not flow out, the i-type GaN layer 4 directly below the electrode remains in the high resistance region. On the other hand, as shown in FIG. 3, when an electrode having a width of 20 μm or less is attached, hydrogen is generated in the i-type GaN layer 4 directly below the electrode.
It becomes possible to get out of, and becomes the p-type with a low resistance as a whole. That is, it can be estimated that the diffusion distance of hydrogen contained in the i-type GaN layer 4 is within about 10 μm.

【0013】また、図7は、サファイア基板上に、Ga
Nバッファ層と、その上にMgドープi型GaN層とを
成長させたウエハーを、アニーリング装置に入れて窒素
雰囲気中で10分間アニーリングした場合、アニーリン
グ温度と、アニーリング後のi型GaN層の抵抗率との
関係を示す図である。この図に示すように400℃を超
えるあたりからi型GaN層の抵抗率が急激に減少し、
700℃を超えるとほぼ一定の値となり、低抵抗なp型
となる。従ってアニーリング温度は400℃以上、さら
に好ましくは700℃以上で行う。さらにアニーリング
雰囲気は水素を含まない雰囲気中で行うことが好まし
い。なぜなら、水素がi型GaN層に再吸蔵されて、高
抵抗になる恐れがあるからである。
Further, FIG. 7 shows that Ga is formed on a sapphire substrate.
When a wafer having an N buffer layer and an Mg-doped i-type GaN layer grown thereon was placed in an annealing apparatus and annealed in a nitrogen atmosphere for 10 minutes, the annealing temperature and the resistance of the i-type GaN layer after annealing were measured. It is a figure which shows the relationship with a rate. As shown in this figure, the resistivity of the i-type GaN layer sharply decreases from around 400 ° C.,
When the temperature exceeds 700 ° C., the value becomes almost constant and the resistance becomes p-type. Therefore, the annealing temperature is 400 ° C. or higher, more preferably 700 ° C. or higher. Further, the annealing atmosphere is preferably performed in an atmosphere containing no hydrogen. This is because hydrogen may be re-occluded in the i-type GaN layer and become high in resistance.

【0014】従って、本発明の電極形成方法において、
i型GaN層4上に、幅20μm以下の電極を蒸着、ス
パッタ等で付着した後、400℃以上でアニーリングす
ることにより、i型GaN層4は全面に低抵抗なp型と
なり、同時にp型電極6とp型に変わったGaN層4と
がオーミックコンタクトされて、電流が流れやすくな
る。
Therefore, in the electrode forming method of the present invention,
An electrode having a width of 20 μm or less is deposited on the i-type GaN layer 4 by vapor deposition, sputtering, or the like, and then annealed at 400 ° C. or more, so that the i-type GaN layer 4 has a low resistance p-type at the same time, and at the same time p-type. The electrode 6 and the GaN layer 4 that has changed to the p-type are in ohmic contact with each other, and a current easily flows.

【0015】[0015]

【実施例】以下、図5および図6を参照しながら実施例
で本発明を詳説する。図5は、本発明の一実施例による
p型電極が形成されたGaN層を有するチップを、電極
側から見た平面図であり、図6は、図5のp型電極6の
一部拡大断面図である。
The present invention will be described in detail below with reference to FIGS. 5 and 6. FIG. 5 is a plan view of a chip having a GaN layer on which a p-type electrode is formed according to an embodiment of the present invention as viewed from the electrode side, and FIG. 6 is a partially enlarged view of the p-type electrode 6 of FIG. FIG.

【0016】[実施例1]透光性基板である2インチφ
のサファイア基板1のC面に、MOCVD装置を用い
て、GaNバッファ層2を200オングストロームの膜
厚で成長させ、GaNバッファ層2の上にSiをドープ
したn型GaN層3を4μmの膜厚で成長させ、さら
に、n型GaN層3の上に、Mgをドープしたi型Ga
N層4を成長させる。さらにi型GaN層4の上には幅
20μmでストライプ状のp型電極6を形成し、n型G
aN層の上にはn型電極5を形成する。以下、n型電極
5とp型電極6の形成方法を詳説する。
[Example 1] 2 inch φ which is a transparent substrate
The GaN buffer layer 2 was grown to a film thickness of 200 angstroms on the C-plane of the sapphire substrate 1 using a MOCVD apparatus, and the Si-doped n-type GaN layer 3 having a film thickness of 4 μm was formed on the GaN buffer layer 2. On the n-type GaN layer 3, i-type Ga doped with Mg is grown.
The N layer 4 is grown. Further, a stripe-shaped p-type electrode 6 having a width of 20 μm is formed on the i-type GaN layer 4, and n-type G
The n-type electrode 5 is formed on the aN layer. Hereinafter, a method for forming the n-type electrode 5 and the p-type electrode 6 will be described in detail.

【0017】 i型GaN層4の上に、フォトリソグ
ラフィー技術により、所定のパターンで保護膜を作成す
る。 i型GaN層4の一部をn型GaN層3が露出する
までエッチングする。 エッチング終了後、保護膜を剥離し、フォトレジス
トで図5に示すようにストライプ状のp型電極パター
ン、平面状のn型電極パターンを作成する。 n型GaN層3にはAlを蒸着し、p型GaN層4
にはAu/Niを蒸着して、それぞれn型電極6、p型
電極5を形成する。なお、p型電極は幅20μmのスト
ライプを10μm間隔で形成し、16本のストライプを
形成する。両電極形成後、窒素雰囲気中、700℃でウ
エハーを10分間アニーリングする。 アニーリング後、p型電極5を電気的に接続するた
めに、図6に示すように、p型電極5の上にAu、I
n、Al等の導電性材料7を蒸着する。
A protective film having a predetermined pattern is formed on the i-type GaN layer 4 by a photolithography technique. A part of the i-type GaN layer 4 is etched until the n-type GaN layer 3 is exposed. After the etching is completed, the protective film is peeled off, and a stripe-shaped p-type electrode pattern and a plane-shaped n-type electrode pattern are formed with a photoresist as shown in FIG. Al is deposited on the n-type GaN layer 3 and the p-type GaN layer 4 is formed.
Then, Au / Ni is vapor-deposited to form an n-type electrode 6 and a p-type electrode 5, respectively. The p-type electrode is formed by forming stripes having a width of 20 μm at intervals of 10 μm to form 16 stripes. After forming both electrodes, the wafer is annealed at 700 ° C. for 10 minutes in a nitrogen atmosphere. After the annealing, in order to electrically connect the p-type electrode 5, as shown in FIG.
A conductive material 7 such as n or Al is deposited.

【0018】以上のようにして電極5、6を形成した
後、ウエハーを1×0.8mm角のチップ状にカットし
て、発光ダイオードとして発光させると、順方向電流2
0mAにおいて、順方向電圧4V、ピーク波長430n
mの発光を示し、発光出力は60μWであった。
After the electrodes 5 and 6 are formed as described above, the wafer is cut into 1 × 0.8 mm square chips to emit light as a light emitting diode.
Forward voltage 4V, peak wavelength 430n at 0 mA
The emission output was 60 μW.

【0019】[実施例2]p型電極6の幅15μm、ス
トライプ間隔15μm、本数16にする他は、実施例1
と同様にしてウエハーを加工し、発光ダイオードとした
ところ、同じく順方向電流20mA、順方向電圧4V、
発光出力60μWと実施例1と同等であった。
[Embodiment 2] Embodiment 1 is different from Embodiment 1 except that the width of the p-type electrode 6 is 15 μm, the stripe interval is 15 μm, and the number is 16.
When the wafer was processed in the same manner as described above to form a light emitting diode, the forward current was 20 mA, the forward voltage was 4 V,
The light emission output was 60 μW, which was equivalent to that in Example 1.

【0020】[比較例1]p型電極6の幅を25μm、
ストライプ間隔5μm、本数16にする他は、実施例1
と同様にしてウエハーを加工し、発光ダイオードとした
ところ、同じく順方向電流20mAにおいて、順方向電
圧5V、発光出力30μWでしかなかった。
Comparative Example 1 The width of the p-type electrode 6 is 25 μm,
Example 1 except that the stripe interval is 5 μm and the number is 16
When a wafer was processed in the same manner as described above to form a light emitting diode, the forward voltage was 5 V and the light emission output was 30 μW at the same forward current of 20 mA.

【0021】[比較例2]p型電極6の幅を30μm、
ストライプ間隔10μm、本数12にする他は、実施例
1と同様にしてウエハーを加工し、発光ダイオードとし
たところ、同じく順方向電流20mAにおいて、順方向
電圧7V、発光出力10μWでしかなかった。
Comparative Example 2 The width of the p-type electrode 6 is 30 μm,
A wafer was processed into a light emitting diode in the same manner as in Example 1 except that the stripe spacing was 10 μm and the number of lines was 12, and the forward voltage was 7 V and the light emission output was 10 μW at the same forward current of 20 mA.

【0022】[比較例3]p型電極6の幅を50μm、
ストライプ間隔10μm、本数8にする他は、実施例1
と同様にしてウエハーを加工し、発光ダイオードとした
ところ、同じく順方向電流20mAにおいて、順方向電
圧10V、発光出力5μWでしかなかった。
[Comparative Example 3] The width of the p-type electrode 6 is 50 μm,
Example 1 except that the stripe interval is 10 μm and the number is 8
When a wafer was processed in the same manner as described above to form a light emitting diode, the forward voltage was 10 V and the light emission output was 5 μW at the same forward current of 20 mA.

【0023】[0023]

【発明の効果】以上説明したように、20μm以下の幅
を有するp型電極を形成した窒化ガリウム系化合物半導
体は、アニーリングによりi型窒化ガリウム系化合物半
導体層全体が全て低抵抗なp型となっているため、発光
素子とした場合に、その発光特性は、ほぼ同等な優れた
特性を示す。一方、その幅が20μmよりも大きいp型
電極を形成した場合には、電極の下部で高抵抗な層が残
留するため、発光特性が不十分となる。しかも電極幅が
大きいほどその特性は悪くなる傾向にある。
As described above, in a gallium nitride compound semiconductor having a p-type electrode having a width of 20 μm or less, the entire i-type gallium nitride compound semiconductor layer becomes p-type with low resistance by annealing. Therefore, when it is used as a light emitting element, the light emitting characteristics thereof are almost equal and excellent. On the other hand, when a p-type electrode having a width of more than 20 μm is formed, a high resistance layer remains below the electrode, resulting in insufficient light emission characteristics. Moreover, the characteristics tend to deteriorate as the electrode width increases.

【0024】したがって本発明の電極形成方法を用いる
ことにより、電極も含めた優れたp型窒化ガリウム系化
合物半導体を実現することができ、その産業上の利用価
値は大きい。
Therefore, by using the electrode forming method of the present invention, an excellent p-type gallium nitride-based compound semiconductor including an electrode can be realized, and its industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来のLED素子の一構造を示す模式断面
図。
FIG. 1 is a schematic cross-sectional view showing a structure of a conventional LED element.

【図2】 図1の素子を電極側から見た平面図。FIG. 2 is a plan view of the element of FIG. 1 viewed from the electrode side.

【図3】 本発明の一実施例によるp型電極を形成した
i型GaN層の構造を示す部分断面図。
FIG. 3 is a partial cross-sectional view showing a structure of an i-type GaN layer on which a p-type electrode is formed according to an embodiment of the present invention.

【図4】 従来法によるp型電極を形成したi型GaN
層の構造を示す部分断面図。
FIG. 4 i-type GaN having a p-type electrode formed by a conventional method
The partial cross section figure which shows the structure of a layer.

【図5】 本発明の一実施例によるp型電極が形成され
たGaN層を有するチップを電極側から見た平面図。
FIG. 5 is a plan view of a chip having a GaN layer on which a p-type electrode is formed according to an embodiment of the present invention, as viewed from the electrode side.

【図6】 図5の電極6の一部を拡大した断面図。FIG. 6 is an enlarged cross-sectional view of a part of the electrode 6 of FIG.

【図7】 アニーリング温度と、アニーリング後のi型
GaN層の抵抗率との関係を示す図。
FIG. 7 is a diagram showing the relationship between the annealing temperature and the resistivity of the i-type GaN layer after annealing.

【符号の説明】[Explanation of symbols]

1・・・・・基板 2・・・・・バッ
ファ層 3・・・・・n型GaN層 4・・・・・i型
GaN層 5・・・・・n型電極 6・・・・・p型
電極 7・・・・・導電性材料
1 ... Substrate 2 ... Buffer layer 3 ... n-type GaN layer 4 ... i-type GaN layer 5 ... n-type electrode 6 ... p-type electrode 7 ... Conductive material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 p型ドーパントがドープされた窒化ガリ
ウム系化合物半導体上に、アニーリングによりオーミッ
クコンタクトされるとともに、20μm以下の幅を有す
る電極が形成されていることを特徴とする窒化ガリウム
系化合物半導体。
1. A gallium nitride-based compound semiconductor, characterized in that an electrode having a width of 20 μm or less is formed on the gallium nitride-based compound semiconductor doped with a p-type dopant by ohmic contact by annealing. .
【請求項2】 p型ドーパントがドープされた窒化ガリ
ウム系化合物半導体上に、20μm以下の幅を有する電
極を付着した後、該窒化ガリウム系化合物半導体を40
0℃以上でアニーリングすることを特徴とする窒化ガリ
ウム系化合物半導体の電極形成方法。
2. A gallium nitride-based compound semiconductor doped with a p-type dopant is deposited with an electrode having a width of 20 μm or less, and then the gallium nitride-based compound semiconductor is deposited with a thickness of 40 μm.
A method for forming an electrode of a gallium nitride-based compound semiconductor, which comprises annealing at 0 ° C. or higher.
JP3935993A 1993-02-02 1993-02-02 Method for manufacturing p-type gallium nitride-based compound semiconductor Expired - Lifetime JP2836685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3935993A JP2836685B2 (en) 1993-02-02 1993-02-02 Method for manufacturing p-type gallium nitride-based compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3935993A JP2836685B2 (en) 1993-02-02 1993-02-02 Method for manufacturing p-type gallium nitride-based compound semiconductor

Publications (2)

Publication Number Publication Date
JPH06232450A true JPH06232450A (en) 1994-08-19
JP2836685B2 JP2836685B2 (en) 1998-12-14

Family

ID=12550879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3935993A Expired - Lifetime JP2836685B2 (en) 1993-02-02 1993-02-02 Method for manufacturing p-type gallium nitride-based compound semiconductor

Country Status (1)

Country Link
JP (1) JP2836685B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851235A (en) * 1994-08-09 1996-02-20 Rohm Co Ltd Manufacture of semiconductor light emitting element
JPH1154831A (en) * 1997-08-05 1999-02-26 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
JPH11186605A (en) * 1997-12-18 1999-07-09 Toyoda Gosei Co Ltd Electrode forming method of gallium nitride based compound semiconductor and manufacture of element
US6191436B1 (en) 1995-03-13 2001-02-20 Toyoda Gosei Co., Ltd. Optical semiconductor device
US6248608B1 (en) * 2000-08-31 2001-06-19 Formosa Epitaxy Incorporation Manufacturing method of a gallium nitride-based blue light emitting diode (LED) ohmic electrodes
US6835958B2 (en) 2002-02-06 2004-12-28 Toyoda Gosei Co., Ltd. Light-emitting device
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
WO2007138774A1 (en) * 2006-05-31 2007-12-06 Panasonic Corporation Semiconductor light source and light-emitting device drive circuit
JP2014160872A (en) * 2014-05-26 2014-09-04 Ricoh Co Ltd Method for manufacturing semiconductor device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2018174164A (en) * 2017-03-31 2018-11-08 日亜化学工業株式会社 Method of manufacturing light-emitting element
JP2019220723A (en) * 2016-12-16 2019-12-26 日亜化学工業株式会社 Method for manufacturing light-emitting element

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851235A (en) * 1994-08-09 1996-02-20 Rohm Co Ltd Manufacture of semiconductor light emitting element
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6191436B1 (en) 1995-03-13 2001-02-20 Toyoda Gosei Co., Ltd. Optical semiconductor device
US6573114B1 (en) 1995-03-13 2003-06-03 Toyoda Gosei Co., Ltd. Optical semiconductor device
US6933169B2 (en) 1995-03-13 2005-08-23 Toyoda Gosei Co., Ltd. Optical semiconductor device
JPH1154831A (en) * 1997-08-05 1999-02-26 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
JPH11186605A (en) * 1997-12-18 1999-07-09 Toyoda Gosei Co Ltd Electrode forming method of gallium nitride based compound semiconductor and manufacture of element
US6248608B1 (en) * 2000-08-31 2001-06-19 Formosa Epitaxy Incorporation Manufacturing method of a gallium nitride-based blue light emitting diode (LED) ohmic electrodes
US6835958B2 (en) 2002-02-06 2004-12-28 Toyoda Gosei Co., Ltd. Light-emitting device
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
US7773646B2 (en) 2006-05-31 2010-08-10 Panasonic Corporation Semiconductor light source and light-emitting device drive circuit
JP5097111B2 (en) * 2006-05-31 2012-12-12 パナソニック株式会社 Semiconductor light source device
WO2007138774A1 (en) * 2006-05-31 2007-12-06 Panasonic Corporation Semiconductor light source and light-emitting device drive circuit
JP2014160872A (en) * 2014-05-26 2014-09-04 Ricoh Co Ltd Method for manufacturing semiconductor device
JP2019220723A (en) * 2016-12-16 2019-12-26 日亜化学工業株式会社 Method for manufacturing light-emitting element
JP2022164879A (en) * 2016-12-16 2022-10-27 日亜化学工業株式会社 Method for manufacturing light-emitting element
JP2018174164A (en) * 2017-03-31 2018-11-08 日亜化学工業株式会社 Method of manufacturing light-emitting element

Also Published As

Publication number Publication date
JP2836685B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US20180012929A1 (en) Light-emitting device and manufacturing method thereof
JP4091049B2 (en) Nitride semiconductor light emitting device having electrostatic discharge prevention function
EP1810351B1 (en) Gan compound semiconductor light emitting element
JP2666228B2 (en) Gallium nitride based compound semiconductor light emitting device
KR100895452B1 (en) Positive electrode for semiconductor light-emitting device
KR101064006B1 (en) Light emitting element
JP2828187B2 (en) Gallium nitride based compound semiconductor light emitting device
EP1079444A2 (en) Light-emitting semiconductor device using group III nitride compound
JP3244010B2 (en) Light-emitting diode with peripheral electrodes
JP2004319912A (en) Semiconductor light emitting device
EP3404726B1 (en) Ultraviolet light-emitting device
JPH0832112A (en) Group iii nitride semiconductor light emitting element
JP2001308380A (en) Gallium nitride semiconductor light-emitting element
JPH06237012A (en) Semiconductor light emitting element of gallium nitride compound
JP2836685B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor
US20030047743A1 (en) Semiconductor light emitting device
US7875896B2 (en) Transparent positive electrode
JP2868081B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2006024913A (en) Translucent positive electrode for compound semiconductor light-emitting device of gallium nitride series, and the light-emitting device
JPH08306643A (en) Electrode and light emitting element for iii-v group compound semiconductor
KR20110043823A (en) Semiconductor light emitting device
JP3223810B2 (en) Gallium nitride based compound semiconductor light emitting device
KR101068864B1 (en) Semiconductor light emitting device and menufacturing method thereof
JP2006245555A (en) Translucent electrode
JP2661009B2 (en) Gallium nitride based compound semiconductor light emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 15