JP2868081B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents

Gallium nitride based compound semiconductor light emitting device

Info

Publication number
JP2868081B2
JP2868081B2 JP26785796A JP26785796A JP2868081B2 JP 2868081 B2 JP2868081 B2 JP 2868081B2 JP 26785796 A JP26785796 A JP 26785796A JP 26785796 A JP26785796 A JP 26785796A JP 2868081 B2 JP2868081 B2 JP 2868081B2
Authority
JP
Japan
Prior art keywords
type
gallium nitride
compound semiconductor
based compound
type electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26785796A
Other languages
Japanese (ja)
Other versions
JPH09107125A (en
Inventor
修二 中村
雅之 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP26785796A priority Critical patent/JP2868081B2/en
Publication of JPH09107125A publication Critical patent/JPH09107125A/en
Application granted granted Critical
Publication of JP2868081B2 publication Critical patent/JP2868081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主として、青色発光ダ
イオード、青色発光レーザーダイオード等の発光デバイ
スに使用される窒化ガリウム系化合物半導体発光素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride-based compound semiconductor light emitting device mainly used for a light emitting device such as a blue light emitting diode and a blue light emitting laser diode.

【0002】[0002]

【従来の技術】青色発光ダイオード、青色レーザーダイ
オード等に使用される実用的な半導体材料として、窒化
ガリウム(GaN)、窒化インジウムガリウム(InG
aN)、窒化ガリウムアルミニウム(GaAlN)、窒
化インジウムアルミニウムガリウム(InAlGaN)
等の窒化ガリウム系化合物半導体が注目されている。
2. Description of the Related Art Practical semiconductor materials used for blue light emitting diodes, blue laser diodes, and the like include gallium nitride (GaN) and indium gallium nitride (InG).
aN), gallium aluminum nitride (GaAlN), indium aluminum gallium nitride (InAlGaN)
Gallium nitride based compound semiconductors such as

【0003】例えば、GaNを用いた青色発光素子はM
IS(Metal-Insulater-Semiconductor)構造のものが
よく知られており、この構造を図1の断面図、および図
2の平面図を用いて説明する。これは基本的に、透光性
基板であるサファイア基板1の上に、AlNよりなるバ
ッファ層2と、n型GaN層3と、p型ドーパントをド
ープしたGaN層4よりなる構造を有している。p型ド
ーパントをドープしたGaN層4は、低抵抗の半導体で
はなく、実際は抵抗率が106Ω・cm以上の高抵抗な半
絶縁体(i型)となっている。
For example, a blue light emitting device using GaN is M
An IS (Metal-Insulater-Semiconductor) structure is well known, and this structure will be described with reference to a cross-sectional view of FIG. 1 and a plan view of FIG. This basically has a structure including a buffer layer 2 made of AlN, an n-type GaN layer 3, and a GaN layer 4 doped with a p-type dopant on a sapphire substrate 1 which is a light-transmitting substrate. I have. The GaN layer 4 doped with the p-type dopant is not a low-resistance semiconductor, but is actually a high-resistance semi-insulator (i-type) having a resistivity of 10 6 Ω · cm or more.

【0004】さらにn型GaN層3には、例えばAl、
Inよりなるn型電極6(本明細書では、n型窒化ガリ
ウム系化合物半導体に形成される電極を全てn型電極と
いう。)が形成されている。一方、p型ドーパントをド
ープしたi型GaN層4にも、例えばAu、Inよりな
るp型電極5(同じく、本明細書では、p型ドーパント
がドープされた窒化ガリウム系化合物半導体に形成され
る電極を全てp型電極という。)が形成されている。p
型電極を接続する層は、正確にはp型でなくi型のGa
N層4である。ただ、このi型GaN層4は、p型ドー
パントをドープしたGaN層4であるので、ここに接続
する電極はp型電極という。
Further, for example, Al,
An n-type electrode 6 made of In (in the present specification, all electrodes formed on the n-type gallium nitride-based compound semiconductor are referred to as n-type electrodes) is formed. On the other hand, the i-type GaN layer 4 doped with the p-type dopant is also formed on the p-type electrode 5 made of, for example, Au or In (similarly, in the present specification, formed on the gallium nitride-based compound semiconductor doped with the p-type dopant). All the electrodes are referred to as p-type electrodes). p
The layer connecting the type electrodes is not exactly p-type but i-type Ga
This is the N layer 4. However, since the i-type GaN layer 4 is a GaN layer 4 doped with a p-type dopant, an electrode connected thereto is called a p-type electrode.

【0005】この構造の青色発光素子は、図2の平面図
に示すように、p型電極5をi型GaN層4の全面に形
成することにより電界を均一に広げ、GaN層4を全面
発光させて、光をサファイア基板側1から取り出す構造
としている。
In the blue light emitting device having this structure, as shown in the plan view of FIG. 2, an electric field is uniformly spread by forming a p-type electrode 5 on the entire surface of an i-type GaN layer 4 so that the GaN layer 4 emits light over the entire surface. Thus, the light is extracted from the sapphire substrate side 1.

【0006】[0006]

【発明が解決しようとする課題】この構造の発光ダイオ
ードは、i型GaN層4を発光層とし、この発光層にp
型電極5を形成している。ところがこの構造の発光ダイ
オードは、順方向電圧が高く、しかも発光出力が低い欠
点がある。順方向電圧が高いのは、i型GaN層4がほ
ぼ絶縁体だからである。このような高抵抗なi型窒化ガ
リウム系化合物半導体を有する発光素子は、順方向電圧
が高く、発光出力は極めて悪い。
In the light emitting diode having this structure, the i-type GaN layer 4 is used as a light emitting layer, and the light emitting layer has a p-type layer.
Form electrode 5 is formed. However, the light emitting diode of this structure has a drawback that the forward voltage is high and the light emission output is low. The forward voltage is high because the i-type GaN layer 4 is almost an insulator. A light-emitting element having such a high-resistance i-type gallium nitride-based compound semiconductor has a high forward voltage and an extremely poor light-emitting output.

【0007】従って、本発明は、従来の青色発光素子の
発光出力を増大させるという難しい問題を解決すること
を目的に開発されたものである。
Accordingly, the present invention has been developed for the purpose of solving the difficult problem of increasing the light emission output of the conventional blue light emitting device.

【0008】[0008]

【課題を解決するための手段】本発明者は従来技術では
想像もできないような特異な発光状態によって、上記問
題が解決できることを見いだした。すなわち、本発明の
窒化ガリウム系化合物半導体発光素子は下記の構成を備
える。それは、基板の上に、少なくともn型窒化ガリウ
ム系化合物半導体層と、p型ドーパントをドープして水
素を含むp型窒化ガリウム系化合物半導体層とを有す
る。n型窒化ガリウム系化合物半導体層には、n型電極
が電気的に接続されており、p型ドーパントのドープさ
れたp型窒化ガリウム系化合物半導体層には、p型電極
を接続している。さらに、p型電極は、p型窒化ガリウ
ム系化合物半導体層のほぼ全面に広がって設けられる共
に、アニーリングするときにp型窒化ガリウム系化合物
半導体層から除去される水素ガスを透過させる微細な空
隙のガス透過部を有する。ガス透過部を有するp型電極
は、アニーリング処理してp型窒化ガリウム系化合物半
導体層に電気接続される工程で、p型窒化ガリウム系化
合物半導体層から水素ガスを透過させて除去する。すな
わち、p型電極が、アニーリングしてp型窒化ガリウム
系化合物半導体層に電気接続される工程で、p型窒化ガ
リウム系化合物半導体層から水素ガスを除去させる。ガ
ス透過部を透過して水素の除去されたp型窒化ガリウム
系化合物半導体層は、水素が除去された部分の抵抗が小
さくなって、強く発光する。
The present inventor has found that the above problem can be solved by a unique light emitting state which cannot be imagined by the prior art. That is, the gallium nitride-based compound semiconductor light emitting device of the present invention has the following configuration. It has at least an n-type gallium nitride-based compound semiconductor layer and a p-type gallium nitride-based compound semiconductor layer containing hydrogen doped with a p-type dopant on a substrate. An n-type electrode is electrically connected to the n-type gallium nitride-based compound semiconductor layer, and a p-type electrode is connected to the p-type gallium nitride-based compound semiconductor layer doped with a p-type dopant. Further, the p-type electrode is provided so as to extend over substantially the entire surface of the p-type gallium nitride-based compound semiconductor layer, and has fine voids through which hydrogen gas removed from the p-type gallium nitride-based compound semiconductor layer during annealing is transmitted. It has a gas permeable part. The step of annealing the p-type electrode having the gas permeable portion and electrically connecting the p-type electrode to the p-type gallium nitride-based compound semiconductor layer removes hydrogen gas from the p-type gallium nitride-based compound semiconductor layer by transmitting hydrogen gas. That is, hydrogen gas is removed from the p-type gallium nitride-based compound semiconductor layer in the step of annealing and electrically connecting the p-type electrode to the p-type gallium nitride-based compound semiconductor layer. In the p-type gallium nitride-based compound semiconductor layer from which hydrogen has been removed through the gas-permeable portion, the resistance of the portion from which hydrogen has been removed becomes small, and light is emitted strongly.

【0009】以下、本発明の発光素子を図3を参照して
説明する。この発光素子は、p型ドーパントをドープし
たp型GaN層4Aに、オーミックコンタクトさせる目
的で、アニーリングしたp型電極5を接続している。ア
ニーリングしてp型GaN層4Aに電気的に接続された
p型電極5は、その周縁部において、p型GaN層4A
との接触抵抗が小さくなる。それは、アニーリングする
ときに、p型GaN層4Aに含まれる水素が除去され
て、抵抗が減少するからである。この状態でp型GaN
層4Aに接続されたp型電極5に通電すると、電流がp
型電極5の周縁部に集中して流れ、p型電極5の周縁近
傍を他の部分よりも強く発光させる。即ち、本発明の窒
化ガリウム系化合物半導体発光素子は、図1のi型層G
aN層4を均一に発光させる従来の通説とは逆に、p型
GaN層4Aと接触抵抗の小さいp型電極5の周縁近傍
で局部的に強く発光させることによって、総合的な発光
出力を著しく増大させるのである。以上、図3のホモ接
合LEDについて説明したが、例えばダブルへテロ構造
LEDの場合も同様に、p型電極の周縁近傍で強く発光
させることができる。
Hereinafter, the light emitting device of the present invention will be described with reference to FIG. In this light emitting device, an annealed p-type electrode 5 is connected to a p-type GaN layer 4A doped with a p-type dopant for the purpose of making ohmic contact. The p-type electrode 5 that has been annealed and electrically connected to the p-type GaN layer 4A has a p-type GaN layer 4A
And the contact resistance with the contact is reduced. This is because during annealing, hydrogen contained in the p-type GaN layer 4A is removed, and the resistance decreases. In this state, p-type GaN
When a current is applied to the p-type electrode 5 connected to the layer 4A, the current becomes p
It flows intensively at the peripheral edge of the mold electrode 5 and emits light near the peripheral edge of the p-type electrode 5 more strongly than other portions. That is, the gallium nitride-based compound semiconductor light emitting device of the present invention has the i-type layer G of FIG.
Contrary to the conventional myth that the aN layer 4 emits light uniformly, the overall light emission output is markedly increased by locally emitting light near the periphery of the p-type GaN layer 4A and the p-type electrode 5 having a small contact resistance. Increase it. Although the homojunction LED in FIG. 3 has been described above, for example, in the case of a double heterostructure LED as well, it is possible to emit light strongly near the periphery of the p-type electrode.

【0010】p型電極5、およびn型電極6には、例え
ばAu、Al、In、Ni、Pt、Cr、Tiまたはこ
れらの金属の合金を使用することができる。p型電極5
の形状はドット、ストライプ、碁盤格子状等任意の形状
で形成することができる。また図4に示すように、互い
に独立してp型電極5を形成した後、これらの電極を電
気的に接続するために、導電性材料8でオーバーコート
することもできる。
For the p-type electrode 5 and the n-type electrode 6, for example, Au, Al, In, Ni, Pt, Cr, Ti or an alloy of these metals can be used. p-type electrode 5
Can be formed in any shape such as a dot, a stripe, or a grid pattern. Further, as shown in FIG. 4, after forming the p-type electrodes 5 independently of each other, it is also possible to overcoat with a conductive material 8 in order to electrically connect these electrodes.

【0011】[0011]

【作用】本発明の窒化ガリウム系化合物半導体発光素子
は、p型電極をアニーリング処理してp型窒化ガリウム
系化合物半導体層に電気接続する工程で、p型窒化ガリ
ウム系化合物半導体層の発光出力、とくに、有効に利用
できる部分の発光出力を大きくできる。例えば、図3に
示すように、ガス透過部を有するp型電極5を設けた発
光素子は、p型電極のガス透過部で、p型GaN層4A
の電気抵抗を低くする。つまり、ガス透過部を有するp
型電極5がアニーリングしてp型GaN層4Aに電気抵
抗される発光素子は、アニーリングによって、p型Ga
N層4Aの電気抵抗が部分的に異なるようになる。p型
電極5のガス透過部は、アニーリング処理においてp型
GaN層4Aから水素ガスを透過させる。このため、p
型GaN層4Aのガス透過部に対応する部分は、水素が
除去されて電気抵抗が小さくなり、電流が流れやすくな
って、発光出力が強くなる。ガス透過部を有するp型電
極5は、アニーリング処理してp型GaN層4Aに電気
接続するときは、p型GaN層4Aの水素ガスを透過し
て除去し、発光させるときは、p型GaN層4Aの発光
を透過させる。このため、ガス透過部を有するp型電極
は、発光を有効に取り出しできる部分を強く発光させ
て、全体として発光出力を強くできる。
The gallium nitride-based compound semiconductor light emitting device of the present invention comprises a step of electrically connecting the p-type electrode to the p-type gallium nitride-based compound semiconductor layer by annealing the p-type electrode. In particular, it is possible to increase the light emission output of a portion that can be effectively used. For example, as shown in FIG. 3, a light emitting element provided with a p-type electrode 5 having a gas-permeable portion has a p-type GaN layer 4A at the gas-permeable portion of the p-type electrode.
Lower the electrical resistance of the That is, p having a gas permeable portion
The light emitting element in which the mold electrode 5 is annealed and is electrically resistive to the p-type GaN layer 4A is formed by p-type Ga by annealing.
The electric resistance of the N layer 4A becomes partially different. The gas permeable portion of the p-type electrode 5 transmits hydrogen gas from the p-type GaN layer 4A in the annealing process. Therefore, p
In the portion corresponding to the gas-permeable portion of the type GaN layer 4A, hydrogen is removed, the electric resistance is reduced, the current easily flows, and the light emission output is increased. When the p-type electrode 5 having the gas permeable portion is annealed and electrically connected to the p-type GaN layer 4A, the hydrogen gas in the p-type GaN layer 4A is permeated and removed. The light emitted from the layer 4A is transmitted. For this reason, the p-type electrode having the gas permeable portion can emit light intensely at a portion where light can be effectively extracted, and can increase the light emission output as a whole.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。但し、以下に示す実施例は本発明の技術思想を具
体化するための発光素子を例示するものであって、本発
明の発光素子は、構成部品の化学組成、全体の構造や配
置等を下記のものに特定するものではない。本発明の発
光素子は特許請求の範囲の要旨に含まれる範囲で変更す
ることができる。
Embodiments of the present invention will be described below with reference to the drawings. However, the following examples illustrate light emitting devices for embodying the technical idea of the present invention, and the light emitting device of the present invention has the following chemical composition of components, the entire structure and arrangement, and the like. It is not something specific. The light emitting device of the present invention can be modified within the scope of the claims.

【0013】図3に示す窒化ガリウム系化合物半導体発
光素子は、透光性基板であるサファイア基板1のC面
に、MOCVD装置を用いて、GaNバッファ層2を2
00オングストロームの膜厚で成長させている。GaN
バッファ層2の上にSiをドープしたn型GaN層3を
4μmの膜厚で成長させている。さらにn型GaN層の
上に、Mgをドープしたp型GaN層4Aを設け、p型
GaN層4Aの上にはp型電極5をn型GaN層の上に
はn型電極6を設けている。
In the gallium nitride based compound semiconductor light emitting device shown in FIG. 3, a GaN buffer layer 2 is formed on a C-plane of a sapphire substrate 1 which is a light-transmitting substrate by using a MOCVD apparatus.
It is grown with a thickness of 00 Å. GaN
An n-type GaN layer 3 doped with Si is grown on the buffer layer 2 to a thickness of 4 μm. Furthermore, a p-type GaN layer 4A doped with Mg is provided on the n-type GaN layer, a p-type electrode 5 is provided on the p-type GaN layer 4A, and an n-type electrode 6 is provided on the n-type GaN layer. I have.

【0014】図3に示す発光素子は、p型GaN層4A
と、n型GaN層3の上にそれぞれp型電極5と、n型
電極6を設けている。電極5、6は下記のようにして形
成される。 p型GaN層4Aの上にフォトレジストで所定のパ
ターンを作成する。 p型GaN層4Aの一部をn型GaN層3が露出す
るまでエッチングする。 エッチング終了後レジストを剥離し、再度フォトレ
ジストで電極5、6のパターンを作成する。 n型GaN層3にはAlを蒸着し、p型GaN層4
AにはNiを蒸着して、それぞれn型電極6、p型電極
5とする。なおp型電極は、微細な空隙のガス透過部を
設けるために、幅30μmのストライプとし、ストライ
プ間隔も10μmとして1チップに15本設ける。両電
極形成後、700℃でウエハーをアニーリングする。 p型GaN層4Aに設けたストライプ状のp型電極
5を電気的に接続するために、図4に示すように、p型
電極5の上にAu、In等の導電性材料8を蒸着する。
The light emitting device shown in FIG. 3 has a p-type GaN layer 4A.
And a p-type electrode 5 and an n-type electrode 6 on the n-type GaN layer 3, respectively. The electrodes 5 and 6 are formed as described below. A predetermined pattern is formed with a photoresist on the p-type GaN layer 4A. A part of the p-type GaN layer 4A is etched until the n-type GaN layer 3 is exposed. After the completion of the etching, the resist is peeled off, and the patterns of the electrodes 5 and 6 are formed again with the photoresist. Al is deposited on the n-type GaN layer 3 and the p-type GaN layer 4
A is vapor-deposited with Ni to form an n-type electrode 6 and a p-type electrode 5, respectively. In addition, 15 p-type electrodes are provided on one chip with a stripe width of 30 μm and a stripe interval of 10 μm in order to provide a gas permeable portion with minute voids. After both electrodes are formed, the wafer is annealed at 700.degree. In order to electrically connect the striped p-type electrode 5 provided on the p-type GaN layer 4A, a conductive material 8 such as Au or In is deposited on the p-type electrode 5 as shown in FIG. .

【0015】図3に示す発光素子は、p型電極5が形成
されたp型GaN層4Aと、ガス透過部に位置するp型
GaN層4Aとの電気抵抗をアニーリングにより変化さ
せて調整する。この結果、p型電極5を形成した下部の
p型GaN層4Aの電気抵抗を、ガス透過部のp型Ga
N層4Aに比較して大きくしている。この構造の発光素
子は、p型電極5が形成された下部のp型GaN層は抵
抗が大きいので電流が流れにくく、ガス透過部にあって
p型電極5の周縁下部のp型GaN層4Aの抵抗は小さ
いので、電流が流れやすい。したがってp型電極5の周
縁部に集中して電流が流れ、この部分の発光出力を大き
くすることができる。
In the light emitting device shown in FIG. 3, the electric resistance of the p-type GaN layer 4A on which the p-type electrode 5 is formed and the electric resistance of the p-type GaN layer 4A located in the gas permeable portion are changed by annealing. As a result, the electric resistance of the lower p-type GaN layer 4A on which the p-type electrode 5 is formed is reduced by the p-type Ga
It is larger than the N layer 4A. In the light-emitting device having this structure, the p-type GaN layer below the p-type electrode 5 formed thereon has a large resistance, so that it is difficult for current to flow. Has a small resistance, so that current easily flows. Therefore, the current flows intensively at the peripheral portion of the p-type electrode 5, and the light emission output at this portion can be increased.

【0016】本発明の発光素子は、アニーリング処理し
てp型電極5を形成した下部のp型GaN層4Aの抵抗
を大きくし、ガス透過部のp型GaN層4Aの抵抗を小
さくする。p型GaN層4Aにp型電極5を形成した
後、p型電極5のガス透過部に水素ガスを透過させて、
この状態を実現できる。p型GaN層4Aの電気抵抗
は、p型GaN層4A中に含まれる水素によって高くな
っている。GaN層を成長させる時に、GaN層に水素
が含まれる。GaN層を成長させる時に水素を完全に除
くことは極めて難しい。それはGaN層成長時に窒素源
としてアンモニア等の水素と窒素を含む化合物ガスを使
用し、このアンモニアが成長時に分解して、原子状水素
ができ、この水素原子がどうしてもアクセプターとして
ドープされているp型ドーパント(例えば、Mg、Z
n)と結合して、p型ドーパントを不活性化してしまう
ためである。したがって原子状水素がp型GaN層中に
入ると、水素はアクセプタードーパントを不活性化し
て、p型GaNを高抵抗化してしまう。
In the light emitting device of the present invention, the resistance of the lower p-type GaN layer 4A on which the p-type electrode 5 is formed by the annealing treatment is increased, and the resistance of the p-type GaN layer 4A in the gas permeable portion is reduced. After the p-type electrode 5 is formed on the p-type GaN layer 4A, hydrogen gas is transmitted through the gas permeable portion of the p-type electrode 5,
This state can be realized. The electric resistance of the p-type GaN layer 4A is increased by hydrogen contained in the p-type GaN layer 4A. When growing the GaN layer, the GaN layer contains hydrogen. It is extremely difficult to completely remove hydrogen when growing a GaN layer. It uses a compound gas containing hydrogen and nitrogen such as ammonia as a nitrogen source during the growth of the GaN layer, and this ammonia is decomposed during growth to form atomic hydrogen, and this hydrogen atom is doped as an acceptor by any means. Dopants (eg, Mg, Z
This is because they combine with n) to inactivate the p-type dopant. Therefore, when atomic hydrogen enters the p-type GaN layer, the hydrogen inactivates the acceptor dopant and increases the resistance of the p-type GaN.

【0017】p型GaN層4A中の水素は、例えば40
0℃以上でアニーリングすることにより除去できる。つ
まり、GaN層中で、M−Hの状態で結合しているp型
ドーパント(M)と水素(H)から、水素のみが出てい
くことによりアクセプタードーパントが活性化し正孔が
できる。正孔の発生はp型GaN層4Aの抵抗をさらに
低下させる。p型GaN層4Aにp型電極5を形成した
状態で、例えば、700℃でアニーリングを行うと、p
型電極5の真下の部分からは水素が結晶中から出ること
ができず、p型電極5の下に残ったままとなる。したが
って、p型電極5を形成してアニーリングすることによ
って、p型電極5が形成されたp型GaN層4Aの抵抗
を大きく、ガス透過部に位置する部分の抵抗を小さくで
きる。つまり、p型GaN層4Aの電気抵抗の分布を調
整することができる。アニーリングを行う場合、水素を
含まない雰囲気中で行うことが望ましく、アンモニア、
ヒドラジン等の水素を含む雰囲気中で行うと、p型Ga
N層に再吸蔵される恐れがある。
The hydrogen in the p-type GaN layer 4A is, for example, 40
It can be removed by annealing at 0 ° C. or higher. That is, in the GaN layer, only the hydrogen is emitted from the p-type dopant (M) and the hydrogen (H) bonded in the MH state, so that the acceptor dopant is activated and holes are generated. The generation of holes further reduces the resistance of the p-type GaN layer 4A. When annealing is performed at, for example, 700 ° C. in a state where the p-type electrode 5 is formed on the p-type GaN layer 4A,
Hydrogen cannot escape from the portion directly below the type electrode 5 from the crystal, and remains under the p-type electrode 5. Therefore, by forming and annealing the p-type electrode 5, the resistance of the p-type GaN layer 4A on which the p-type electrode 5 is formed can be increased, and the resistance of the portion located in the gas-permeable portion can be reduced. That is, the distribution of the electric resistance of the p-type GaN layer 4A can be adjusted. When performing annealing, it is desirable to perform in an atmosphere containing no hydrogen, ammonia,
When performed in an atmosphere containing hydrogen such as hydrazine, p-type Ga
There is a risk of being reoccluded in the N layer.

【0018】以上のようにして得られた発光素子は、通
電すると、図3の矢印Aで示すp型電極5の周縁部分で
電流が多く流れる。それは、p型電極5を形成した下部
のp型GaN層4Aの抵抗が大きく、形成されないガス
透過部の抵抗が小さいからである。従って、矢印Aで示
すp型電極5の周縁部に集中して電流が流れ、この部分
が高い発光出力で発光する。
When a current is applied to the light emitting device obtained as described above, a large amount of current flows in the peripheral portion of the p-type electrode 5 indicated by the arrow A in FIG. This is because the resistance of the lower p-type GaN layer 4A on which the p-type electrode 5 is formed is large, and the resistance of the gas-permeable portion that is not formed is small. Therefore, current flows intensively at the peripheral portion of the p-type electrode 5 indicated by the arrow A, and this portion emits light with a high light emission output.

【0019】最後にウエハーを1×0.8mm角のチッ
プ状にカットして発光ダイオードに組み込んで発光させ
ると順方向電流20mAにおいて、順方向電圧5Vで4
30nmの発光を示し、発光出力は10μWであった。
Finally, the wafer was cut into chips of 1 × 0.8 mm square and assembled in a light emitting diode to emit light. At a forward current of 20 mA, a forward voltage of 5 V
It emitted light of 30 nm, and the emission output was 10 μW.

【0020】図5は異なる構造のp型窒化ガリウム系化
合物半導体の発光素子を示している。この発光素子も、
MOCVD装置を用いて、サファイア基板1のC面にG
aNバッファ層を200オングストロームの膜厚で成長
させている。GaNバッファ層2の上に、Siをドープ
したn型GaN層3を4μmの膜厚で成長させ、さらに
n型GaN層3の上に、p型またはn型のInGaN層
9を100オングストロームの膜厚で成長させ、このI
nGaN層9の上にMgをドープしたp型GaN層4A
を設け、n型GaN層3とp型GaN層4Aの上にn型
電極6とp型電極5とを形成している。
FIG. 5 shows a light emitting device of a p-type gallium nitride compound semiconductor having a different structure. This light emitting element also
Using a MOCVD apparatus, G is applied to the C face of the sapphire substrate 1.
The aN buffer layer is grown to a thickness of 200 Å. An n-type GaN layer 3 doped with Si is grown to a thickness of 4 μm on the GaN buffer layer 2, and a p-type or n-type InGaN layer 9 is formed on the n-type GaN layer 3 to a thickness of 100 Å. Grown in thickness, this I
Mg doped p-type GaN layer 4A on nGaN layer 9
And an n-type electrode 6 and a p-type electrode 5 are formed on the n-type GaN layer 3 and the p-type GaN layer 4A.

【0021】この構造の発光素子においても、p型電極
5が形成された部分のp型GaN層4Aの抵抗を、形成
されない部分よりも大きくしている。この構造の発光素
子はp型電極5とn型電極6とに通電すると、InGa
N層9が発光し、p型電極周縁近傍のInGaN層9の
強い発光をサファイア基板側から観測できる。同じくこ
の発光素子を発光ダイオードとしたところ、順方向電圧
20mAにおいて、順方向電圧5Vで420nmの発光
を示し、発光出力は300μWであった。
Also in the light emitting device having this structure, the resistance of the p-type GaN layer 4A in the portion where the p-type electrode 5 is formed is made larger than that in the portion where the p-type electrode 5 is not formed. When a current is applied to the p-type electrode 5 and the n-type electrode 6 in the light emitting element having this structure, InGa
The N layer 9 emits light, and the strong light emission of the InGaN layer 9 near the periphery of the p-type electrode can be observed from the sapphire substrate side. Similarly, when this light-emitting element was a light-emitting diode, it emitted light of 420 nm at a forward voltage of 5 V and a light-emitting output of 300 μW at a forward voltage of 20 mA.

【0022】図3と図5に示す発光素子は、p型GaN
層4Aの上に、図6に示すように、微細な空隙のガス透
過部を有するストライプ状のp型電極5を設けている。
この図に示すp型電極5は、p型窒化ガリウム系化合物
半導体層のほぼ全面に広がって設けられている。p型電
極5は、図7ないし図9に示すように、ほぼ全面に形成
される。図7に示すp型電極5は碁盤格子状として、碁
盤の隙間に無数の微細な空隙のガス透過部を設けてい
る。図8に示すp型電極5は点状に形成して、点の間に
ガス透過部を設けている。図9に示すp型電極5は同心
円の線状に形成されて線の隙間にガス透過部を設けてい
る。つまり、p型電極5の形状は特に問うものではな
い。
The light emitting device shown in FIGS. 3 and 5 is a p-type GaN
As shown in FIG. 6, a striped p-type electrode 5 having a gas permeable portion with fine voids is provided on the layer 4A.
The p-type electrode 5 shown in this figure is provided so as to extend over almost the entire surface of the p-type gallium nitride-based compound semiconductor layer. The p-type electrode 5 is formed on almost the entire surface as shown in FIGS. The p-type electrode 5 shown in FIG. 7 is formed in a grid pattern, and a number of fine gas-permeable portions are provided in gaps in the grid. The p-type electrode 5 shown in FIG. 8 is formed in a point shape, and a gas permeable portion is provided between the points. The p-type electrode 5 shown in FIG. 9 is formed in a concentric linear shape, and a gas permeable portion is provided in a gap between the lines. That is, the shape of the p-type electrode 5 is not particularly limited.

【0023】[0023]

【発明の効果】本発明の窒化ガリウム系化合物半導体発
光素子は、p型電極を、p型窒化ガリウム系化合物半導
体層のほぼ全面に均一に設けると共に、このp型電極
に、水素ガスを透過できる微細な空隙のガス透過部を設
けている。ガス透過部を備えるp型電極は、アニーリン
グ処理してp型窒化ガリウム系化合物半導体層に電気的
に接続されている。この構造の窒化ガリウム系化合物半
導体発光素子は、p型窒化ガリウム系化合物半導体層表
面の広い領域に広げて、ガス透過部のあるp型電極を設
けることができる。微細な空隙のガス透過部を有するp
型電極は、p型窒化ガリウム系化合物半導体層の全面に
広げて設けることもできる。ガス透過部が光を透過させ
るからである。光を透過させるガス透過部のないp型電
極は、p型窒化ガリウム系化合物半導体層の全面に設け
ることができない。それは、p型窒化ガリウム系化合物
半導体層の発光がp型電極に遮られて取り出しできない
からである。本発明の発光素子は、p型電極に微細な空
隙のガス透過部を設けているので、p型電極を、p型窒
化ガリウム系化合物半導体層の全面に設けることも可能
である。p型電極のガス透過部は、p型電極をp型窒化
ガリウム系化合物半導体層に電気接続するアニーリング
においては、p型窒化ガリウム系化合物半導体層から水
素を除去し、発光させるときにおいては、光を透過させ
て発光する光を有効に取り出しする。とくに、好ましい
ことに、p型窒化ガリウム系化合物半導体層は、水素が
除去される部分が強く発光する物性があるので、p型電
極のガス透過部は、アニーリングするときに、p型窒化
ガリウム系化合物半導体層を強く発光する部分とし、さ
らに、発光させるときは、この発光を有効に外部に取り
出しする理想的な特長を実現する。
According to the gallium nitride-based compound semiconductor light emitting device of the present invention, a p-type electrode is provided uniformly over substantially the entire surface of the p-type gallium nitride-based compound semiconductor layer, and hydrogen gas can be transmitted through the p-type electrode. A gas permeable portion having fine voids is provided. The p-type electrode including the gas permeable portion is electrically connected to the p-type gallium nitride-based compound semiconductor layer by performing an annealing process. The gallium nitride-based compound semiconductor light emitting device having this structure can be provided over a wide area on the surface of the p-type gallium nitride-based compound semiconductor layer to provide a p-type electrode having a gas permeable portion. P having a gas permeable portion with fine voids
The type electrode can also be provided so as to extend over the entire surface of the p-type gallium nitride-based compound semiconductor layer. This is because the gas transmitting portion transmits light. A p-type electrode without a gas-permeable portion for transmitting light cannot be provided on the entire surface of the p-type gallium nitride-based compound semiconductor layer. This is because light emission from the p-type gallium nitride-based compound semiconductor layer is blocked by the p-type electrode and cannot be extracted. In the light emitting device of the present invention, the p-type electrode is provided with a gas permeable portion having fine voids, so that the p-type electrode can be provided on the entire surface of the p-type gallium nitride-based compound semiconductor layer. In the annealing for electrically connecting the p-type electrode to the p-type gallium nitride-based compound semiconductor layer, the gas permeable portion of the p-type electrode removes hydrogen from the p-type gallium nitride-based compound semiconductor layer and emits light when emitting light. The light emitted by passing through is effectively extracted. In particular, since the p-type gallium nitride-based compound semiconductor layer has a property of strongly emitting light at a portion from which hydrogen is removed, the gas-permeable portion of the p-type electrode is formed by annealing the p-type gallium nitride-based compound semiconductor layer. When the compound semiconductor layer is made to emit light intensely, furthermore, when light is emitted, an ideal feature of effectively extracting this light emission to the outside is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の発光素子の一例を示す断面図。FIG. 1 is a cross-sectional view illustrating an example of a conventional light-emitting element.

【図2】 図1に示す発光素子の平面図。FIG. 2 is a plan view of the light-emitting element shown in FIG.

【図3】 本発明の一実施例を示す発光素子の断面図。FIG. 3 is a cross-sectional view of a light-emitting element showing one embodiment of the present invention.

【図4】 図3に示すp型電極の上に導電性材料をオー
バーコートした状態を示す断面図。
FIG. 4 is a sectional view showing a state in which a conductive material is overcoated on the p-type electrode shown in FIG. 3;

【図5】 本発明の他の実施例に係る発光素子の断面
図。
FIG. 5 is a sectional view of a light emitting device according to another embodiment of the present invention.

【図6】 p型電極の形状の他の具体例を示す平面図。FIG. 6 is a plan view showing another specific example of the shape of the p-type electrode.

【図7】 p型電極の形状の他の具体例を示す平面図。FIG. 7 is a plan view showing another specific example of the shape of the p-type electrode.

【図8】 p型電極の形状の他の具体例を示す平面図。FIG. 8 is a plan view showing another specific example of the shape of the p-type electrode.

【図9】 p型電極の形状の他の具体例を示す平面図。FIG. 9 is a plan view showing another specific example of the shape of the p-type electrode.

【符号の説明】[Explanation of symbols]

1・・サファイア基板 2・・バッファ層 3・・n型GaN層 4・・i型GaN層 4A・p型GaN層 5・・p型電極 6・・n型電極 8・・導電性材料 9・・InGaN層 1. Sapphire substrate 2. Buffer layer 3. n-type GaN layer 4. i-type GaN layer 4A p-type GaN layer 5. p-type electrode 6. n-type electrode 8. conductive material 9.・ InGaN layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板の上に、少なくともn型窒化ガリウ
ム系化合物半導体層と、p型ドーパントをドープして水
素を含むp型窒化ガリウム系化合物半導体層とを有し、
前記n型窒化ガリウム系化合物半導体層にn型電極が、
前記p型窒化ガリウム系化合物半導体層にp型電極が接
続されてなる窒化ガリウム系化合物半導体発光素子にお
いて、 p型電極は、p型窒化ガリウム系化合物半導体層のほぼ
全面に設けられる共に、アニーリングするときにp型窒
化ガリウム系化合物半導体層から除去される水素ガスを
透過させる微細な空隙のガス透過部を有し、このp型電
極が、アニーリング処理してp型窒化ガリウム系化合物
半導体層に電気接続されてなることを特徴とする窒化ガ
リウム系化合物半導体発光素子。
A substrate comprising at least an n-type gallium nitride-based compound semiconductor layer and a p-type gallium nitride-based compound semiconductor layer doped with a p-type dopant and containing hydrogen;
An n-type electrode is provided on the n-type gallium nitride-based compound semiconductor layer,
In the gallium nitride-based compound semiconductor light emitting device in which a p-type electrode is connected to the p-type gallium nitride-based compound semiconductor layer, the p-type electrode is provided on substantially the entire surface of the p-type gallium nitride-based compound semiconductor layer and is annealed. A gas permeable portion having fine voids through which hydrogen gas is sometimes removed from the p-type gallium nitride-based compound semiconductor layer is provided, and the p-type electrode is annealed to be electrically connected to the p-type gallium nitride-based compound semiconductor layer. A gallium nitride-based compound semiconductor light emitting device, which is connected.
JP26785796A 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device Expired - Fee Related JP2868081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26785796A JP2868081B2 (en) 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26785796A JP2868081B2 (en) 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4598393A Division JPH0783136B2 (en) 1993-02-10 1993-02-10 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09107125A JPH09107125A (en) 1997-04-22
JP2868081B2 true JP2868081B2 (en) 1999-03-10

Family

ID=17450606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26785796A Expired - Fee Related JP2868081B2 (en) 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2868081B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2276075A1 (en) * 2000-02-15 2011-01-19 OSRAM Opto Semiconductors GmbH Radiation emitting semiconductor device and method for its production
KR100387099B1 (en) * 2001-05-02 2003-06-12 광주과학기술원 GaN-Based Light Emitting Diode and Fabrication Method thereof
DE10152922B4 (en) * 2001-10-26 2010-05-12 Osram Opto Semiconductors Gmbh Nitride-based semiconductor device
JP3972670B2 (en) 2002-02-06 2007-09-05 豊田合成株式会社 Light emitting device
JP2007027540A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and illuminator using same
KR100652864B1 (en) 2005-12-16 2006-12-04 서울옵토디바이스주식회사 Light emitting diode having an improved transparent electrode structure for ac power operation
DE102007018307A1 (en) * 2007-01-26 2008-07-31 Osram Opto Semiconductors Gmbh Semiconductor chip and method for producing a semiconductor chip

Also Published As

Publication number Publication date
JPH09107125A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
KR101122184B1 (en) Micro-pixel ultraviolet light emitting diode
EP0703631B1 (en) Light-emitting semiconductor device using group III nitride compound
JP3505643B2 (en) Gallium nitride based semiconductor light emitting device
JP2004319912A (en) Semiconductor light emitting device
JP2828187B2 (en) Gallium nitride based compound semiconductor light emitting device
KR101008285B1 (en) ?-nitride semiconductor light emitting device
JP2006245524A (en) Nitride semiconductor light emitting element with vertical structure
JPH0832112A (en) Group iii nitride semiconductor light emitting element
JPH06237012A (en) Semiconductor light emitting element of gallium nitride compound
JP2004172189A (en) Nitride semiconductor device and its manufacturing method
JP2836685B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor
KR20100122998A (en) Light emitting device and method for fabricating the same
JP2007036010A (en) Schottky barrier diode equipment and its manufacturing method
JP2868081B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2800666B2 (en) Gallium nitride based compound semiconductor laser device
JP3767863B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR100960277B1 (en) Manufacturing method of ?-nitride semiconductor light emitting device
JP3223810B2 (en) Gallium nitride based compound semiconductor light emitting device
KR100743471B1 (en) Manufacturnig of iii-nitride semiconductor light emitting device
KR100576847B1 (en) Gallium nitride based semiconductor light emitting diode and method of producing the same
KR100743468B1 (en) Iii-nitride semiconductor light emitting device
JP2003179263A (en) Gallium nitride semiconductor light emitting element
JP4126448B2 (en) Manufacturing method of semiconductor light emitting device
KR100647017B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
US6897494B1 (en) GaN light emitting diode with conductive outer layer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees