JPH06237012A - Semiconductor light emitting element of gallium nitride compound - Google Patents

Semiconductor light emitting element of gallium nitride compound

Info

Publication number
JPH06237012A
JPH06237012A JP4598393A JP4598393A JPH06237012A JP H06237012 A JPH06237012 A JP H06237012A JP 4598393 A JP4598393 A JP 4598393A JP 4598393 A JP4598393 A JP 4598393A JP H06237012 A JPH06237012 A JP H06237012A
Authority
JP
Japan
Prior art keywords
type
light emitting
type electrode
gan layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4598393A
Other languages
Japanese (ja)
Other versions
JPH0783136B2 (en
Inventor
Shuji Nakamura
修二 中村
Masayuki Senoo
雅之 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP4598393A priority Critical patent/JPH0783136B2/en
Publication of JPH06237012A publication Critical patent/JPH06237012A/en
Publication of JPH0783136B2 publication Critical patent/JPH0783136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase the light emitting output power of a blue light emitting element by emitting the light from the vicinity of the periphery of a p-type electrode stronger than the other part. CONSTITUTION:At least an n-type gallium-nitride-based compound semiconductor layer and a p-type gallium-nitride-based compound semiconductor layer, wherein P p-type dopand is doped and the resistivity is made to be 1,000OMEGA.cm or less, are provided on a substrate. An n-type electrode 6 and a p-type electrode 5, which undergo annealing and are electrically connected, are formed on the n-type gallium-nitride-based compound semiconductor layer and the p-type gallium-nitride-based compound semiconductor layer, wherein p-type dopant is doped. A current is conducted through the n-type electrode 6 and the p-type electrode 5, and the vicinity of the periphery of the p-type electrode emits the light stronger than the other part. Thus, the light emitting output power of the blue light emitting element can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として、青色発光ダ
イオード、青色発光レーザーダイオード等の発光デバイ
スに使用される窒化ガリウム系化合物半導体発光素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride-based compound semiconductor light emitting device mainly used for light emitting devices such as blue light emitting diodes and blue light emitting laser diodes.

【0002】[0002]

【従来の技術】青色発光ダイオード、青色レーザーダイ
オード等に使用される実用的な半導体材料として、窒化
ガリウム(GaN)、窒化インジウムガリウム(InG
aN)、窒化ガリウムアルミニウム(GaAlN)、窒
化インジウムアルミニウムガリウム(InAlGaN)
等の窒化ガリウム系化合物半導体が注目されている。
2. Description of the Related Art Gallium nitride (GaN) and indium gallium nitride (InG) are practical semiconductor materials used for blue light emitting diodes, blue laser diodes and the like.
aN), gallium aluminum nitride (GaAlN), indium aluminum gallium nitride (InAlGaN)
The gallium nitride-based compound semiconductors such as the above have attracted attention.

【0003】例えば、GaNを用いた青色発光素子はM
IS(Metal-Insulater-Semiconductor)構造のものが
よく知られており、この構造を図1の断面図、および図
2の平面図を用いて説明する。これは基本的に、透光性
基板であるサファイア基板1の上に、AlNよりなるバ
ッファ層2と、n型GaN層3と、p型ドーパントをド
ープしたGaN層4よりなる構造を有している。p型ド
ーパントをドープしたGaN層4は、低抵抗の半導体で
はなく、実際は抵抗率が106Ω・cm以上の高抵抗な半
絶縁体(i型)となっている。
For example, a blue light emitting element using GaN is M
An IS (Metal-Insulator-Semiconductor) structure is well known, and this structure will be described with reference to the sectional view of FIG. 1 and the plan view of FIG. This basically has a structure including a buffer layer 2 made of AlN, an n-type GaN layer 3, and a GaN layer 4 doped with a p-type dopant on a sapphire substrate 1 which is a transparent substrate. There is. The p-type dopant-doped GaN layer 4 is not a low-resistance semiconductor, but is actually a high-resistance semi-insulator (i-type) having a resistivity of 10 6 Ω · cm or more.

【0004】さらにn型GaN層3には、例えばAl、
Inよりなるn型電極6(本明細書では、n型窒化ガリ
ウム系化合物半導体に形成される電極を全てn型電極と
いう。)が形成されている。一方、p型ドーパントをド
ープしたi型GaN層4にも、例えばAu、Inよりな
るp型電極5(同じく、本明細書では、p型ドーパント
がドープされた窒化ガリウム系化合物半導体に形成され
る電極を全てp型電極という。)が形成されている。p
型電極を接続する層は、正確にはp型でなくi型のGa
N層4である。ただ、このi型GaN層4は、p型ドー
パントをドープしたGaN層4であるので、ここに接続
する電極はp型電極という。
Further, for the n-type GaN layer 3, for example, Al,
An n-type electrode 6 made of In (in this specification, all electrodes formed on an n-type gallium nitride compound semiconductor are referred to as n-type electrodes) is formed. On the other hand, in the i-type GaN layer 4 doped with the p-type dopant, the p-type electrode 5 made of, for example, Au or In (similarly, in the present specification, it is formed in the gallium nitride-based compound semiconductor doped with the p-type dopant. All electrodes are referred to as p-type electrodes). p
The layer connecting the mold electrodes is not exactly p-type but i-type Ga.
It is the N layer 4. However, since this i-type GaN layer 4 is a GaN layer 4 doped with a p-type dopant, the electrode connected thereto is called a p-type electrode.

【0005】この構造の青色発光素子は、図2の平面図
に示すように、p型電極5をi型GaN層4の全面に形
成することにより電界を均一に広げ、p型GaN層4を
全面発光させて、光をサファイア基板側1から取り出す
構造としている。
In the blue light emitting device having this structure, as shown in the plan view of FIG. 2, a p-type electrode 5 is formed on the entire surface of the i-type GaN layer 4 to uniformly spread the electric field, thereby forming the p-type GaN layer 4. The entire surface is made to emit light and the light is extracted from the sapphire substrate side 1.

【0006】[0006]

【発明が解決しようとする課題】この構造の発光ダイオ
ードは、i型GaN層4を発光層とし、この発光層にp
型電極5を形成している。ところがこの構造の発光ダイ
オードは、順方向電圧が高く、しかも発光出力が低い欠
点がある。順方向電圧が高いのは、i型GaN層4がほ
ぼ絶縁体だからである。このような高抵抗なi型窒化ガ
リウム系化合物半導体を有する発光素子は、順方向電圧
が高く、発光出力は極めて悪い。
In the light emitting diode having this structure, the i-type GaN layer 4 is used as a light emitting layer, and the p-type light emitting layer is used as the light emitting layer.
The mold electrode 5 is formed. However, the light emitting diode having this structure has a drawback that the forward voltage is high and the light emission output is low. The forward voltage is high because the i-type GaN layer 4 is almost an insulator. A light emitting device having such a high-resistance i-type gallium nitride compound semiconductor has a high forward voltage, and the light emission output is extremely poor.

【0007】従って、本発明は、従来の青色発光素子の
発光出力を増大させるという難しい問題を解決すること
を目的に開発されたものである。
Therefore, the present invention was developed for the purpose of solving the difficult problem of increasing the light emission output of the conventional blue light emitting element.

【0008】[0008]

【課題を解決するための手段】本発明者は従来技術では
想像もできないような特異な発光状態によって、上記問
題が解決できることを見いだした。即ち、本発明の窒化
ガリウム系化合物半導体発光素子は下記の構成を備え
る。それは、基板の上に、少なくともn型窒化ガリウム
系化合物半導体層と、p型ドーパントがドープして抵抗
率を1000Ω・cm以下としたp型窒化ガリウム系化
合物半導体層とを有し、前記n型窒化ガリウム系化合物
半導体層と前記p型ドーパントがドープされたp型窒化
ガリウム系化合物半導体層とには、アニーリング処理し
て電気的に接続したn型電極、およびp型電極が形成さ
れており、n型電極とp型電極とに通電することによ
り、p型電極の周縁近傍を他の部分よりも強く発光させ
るように構成したことを特徴とする。
The inventor of the present invention has found that the above problems can be solved by a peculiar light emitting state that cannot be imagined by the prior art. That is, the gallium nitride-based compound semiconductor light emitting device of the present invention has the following configuration. It has at least an n-type gallium nitride-based compound semiconductor layer on a substrate and a p-type gallium nitride-based compound semiconductor layer doped with a p-type dopant and having a resistivity of 1000 Ω · cm or less. An n-type electrode and a p-type electrode that are annealed and electrically connected are formed on the gallium nitride-based compound semiconductor layer and the p-type gallium nitride-based compound semiconductor layer doped with the p-type dopant, It is characterized in that the vicinity of the peripheral edge of the p-type electrode is made to emit light more strongly than other portions by energizing the n-type electrode and the p-type electrode.

【0009】以下、本発明の発光素子を図3を参照して
説明する。この発光素子は、p型ドーパントをドープし
たp型GaN層4Aに、オーミックコンタクトさせる目
的で、アニーリングしたp型電極5を接続している。ア
ニーリングしてp型GaN層4Aに電気的に接続された
p型電極6は、その周縁部において、p型GaN層4と
の接触抵抗が小さくなっている。それは、アニーリング
するときに、p型GaN層4Aに含まれる水素が除去さ
れてp型GaN層4Aの抵抗が減少するからである。こ
の状態でp型GaN層4Aに接続されたp型電極6に通
電すると、電流がp型電極5の周縁部に集中して流れ、
p型電極5の周縁近傍を他の部分よりも強く発光させ
る。即ち、本発明の窒化ガリウム系化合物半導体発光素
子は、図1のi型層GaN層4を均一に発光させる従来
の通説とは逆に、p型GaN層4Aと接触抵抗の小さい
p型電極5の周縁近傍で局部的に強く発光させることに
よって、総合的な発光出力を著しく増大させるのであ
る。以上、図3のホモ接合LEDについて説明したが、
例えばダブルへテロ構造LEDの場合も同様に、p型電
極の周縁近傍で強く発光させることができる。
The light emitting device of the present invention will be described below with reference to FIG. In this light emitting device, an annealed p-type electrode 5 is connected to the p-type GaN layer 4A doped with a p-type dopant for ohmic contact. The contact resistance with the p-type GaN layer 4 is small in the peripheral portion of the p-type electrode 6 that is annealed and electrically connected to the p-type GaN layer 4A. This is because hydrogen contained in the p-type GaN layer 4A is removed during annealing, and the resistance of the p-type GaN layer 4A is reduced. In this state, when the p-type electrode 6 connected to the p-type GaN layer 4A is energized, the current concentrates on the peripheral portion of the p-type electrode 5,
The vicinity of the peripheral edge of the p-type electrode 5 is made to emit light more strongly than other portions. That is, in the gallium nitride-based compound semiconductor light emitting device of the present invention, contrary to the conventional theory that the i-type GaN layer 4 of FIG. 1 is made to uniformly emit light, the p-type GaN layer 4A and the p-type electrode 5 having a small contact resistance are used. The strong light emission locally in the vicinity of the peripheral edge significantly increases the total light emission output. The homojunction LED of FIG. 3 has been described above.
For example, in the case of a double heterostructure LED, similarly, strong light can be emitted near the periphery of the p-type electrode.

【0010】p型電極5、およびn型電極6には、例え
ばAu、Al、In、Ni、Pt、Cr、Tiまたはこ
れらの金属の合金を使用することができる。p型電極5
の形状はドット、ストライプ、碁盤格子状等任意の形状
で形成することができ、また図4に示すように、互いに
独立してp型電極5を形成した後、これらの電極を電気
的に接続するために、導電性材料8でオーバーコートす
ることもできる。
For the p-type electrode 5 and the n-type electrode 6, for example, Au, Al, In, Ni, Pt, Cr, Ti or alloys of these metals can be used. p-type electrode 5
Can be formed in any shape such as dots, stripes, and checkerboard lattices. Further, as shown in FIG. 4, after the p-type electrodes 5 are formed independently of each other, these electrodes are electrically connected. To this end, the conductive material 8 may be overcoated.

【0011】[0011]

【作用】本発明の窒化ガリウム系化合物半導体発光素子
は、p型GaN層4A上のp型電極5の周縁近傍に電流
が集中して流れるようにして、この部分の発光出力を大
きくできる。例えば、図3に示すように、p型電極5を
設けた発光素子は、電極5周縁近傍のp型GaN層4A
と、電極が形成されないp型GaN層4Aとの電気抵抗
を変化させることによって電流の流れ方を調整できる。
つまり、p型電極5の近傍のp型GaN層4Aの電気抵
抗を大きくし、p型電極5が形成されないp型GaN層
4Aの電気抵抗を小さくすると、p型電極5の周縁に電
流が集中して流れるようになる。それは、p型電極5の
周縁の方が接触抵抗が小さいので、電流はp型電極5の
周縁に集中して流れるようになるからである。
In the gallium nitride-based compound semiconductor light-emitting device of the present invention, the current is concentrated and flows near the periphery of the p-type electrode 5 on the p-type GaN layer 4A, so that the emission output of this portion can be increased. For example, as shown in FIG. 3, the light emitting element provided with the p-type electrode 5 has a p-type GaN layer 4A near the periphery of the electrode 5.
Then, by changing the electric resistance with the p-type GaN layer 4A on which the electrode is not formed, the manner of current flow can be adjusted.
That is, when the electric resistance of the p-type GaN layer 4A near the p-type electrode 5 is increased and the electric resistance of the p-type GaN layer 4A in which the p-type electrode 5 is not formed is decreased, current concentrates on the periphery of the p-type electrode 5. And then it begins to flow. This is because the peripheral edge of the p-type electrode 5 has a smaller contact resistance, so that the electric current concentrates on the peripheral edge of the p-type electrode 5.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。但し、以下に示す実施例は本発明の技術思想を具
体化するための発光素子を例示するものであって、本発
明の発光素子は、構成部品の化学組成、全体の構造や配
置等を下記のものに特定するものではない。本発明の発
光素子は特許請求の範囲の要旨に含まれる範囲で変更す
ことができる。
Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify a light emitting device for embodying the technical idea of the present invention, and the light emitting device of the present invention has the following chemical composition of components, overall structure and arrangement, etc. It is not specific to one. The light emitting device of the present invention can be modified within the scope of the claims.

【0013】図3に示す窒化ガリウム系化合物半導体発
光素子は、透光性基板であるサファイア基板1のC面
に、MOCVD装置を用いて、GaNバッファ層2を2
00オングストロームの膜厚で成長させている。GaN
バッファ層2の上にSiをドープしたn型GaN層3を
4μmの膜厚で成長させている。さらにn型GaN層の
上に、Mgをドープしたp型GaN層4Aを設け、p型
GaN層4Aの上にはp型電極5をn型GaN層の上に
はn型電極6を設けている。
In the gallium nitride-based compound semiconductor light emitting device shown in FIG. 3, a GaN buffer layer 2 is formed on the C surface of a sapphire substrate 1 which is a transparent substrate by using a MOCVD device.
It is grown to a film thickness of 00 angstrom. GaN
An n-type GaN layer 3 doped with Si is grown on the buffer layer 2 to a film thickness of 4 μm. Further, a Mg-doped p-type GaN layer 4A is provided on the n-type GaN layer, a p-type electrode 5 is provided on the p-type GaN layer 4A, and an n-type electrode 6 is provided on the n-type GaN layer. There is.

【0014】図3に示す発光素子は、p型GaN層4A
と、n型GaN層3の上にそれぞれp型電極5と、n型
電極6を設けている。電極5、6は下記のようにして形
成される。 p型GaN層4Aの上にフォトレジストで所定のパ
ターンを作成する。 p型GaN層4Aの一部をn型GaN層3が露出す
るまでエッチングする。 エッチング終了後レジストを剥離し、再度フォトレ
ジストで電極5、6のパターンを作成する。 n型GaN層3にはAlを蒸着し、p型GaN層4
AにはNiを蒸着して、それぞれn型電極6、p型電極
5とする。なおp型電極は幅30μmのストライプと
し、ストライプ間隔も10μmとして1チップに15本
設ける。両電極形成後、700℃でウエハーをアニーリ
ングする。 p型GaN層4Aに設けたストライプ状のp型電極
5を電気的に接続するために、図4に示すように、p型
電極5の上にAu、In等の導電性材料8を蒸着する。
The light emitting device shown in FIG. 3 has a p-type GaN layer 4A.
And a p-type electrode 5 and an n-type electrode 6 are provided on the n-type GaN layer 3, respectively. The electrodes 5 and 6 are formed as follows. A predetermined pattern is formed with a photoresist on the p-type GaN layer 4A. A part of the p-type GaN layer 4A is etched until the n-type GaN layer 3 is exposed. After the etching is completed, the resist is peeled off, and the pattern of the electrodes 5 and 6 is formed again with the photoresist. Al is deposited on the n-type GaN layer 3 and the p-type GaN layer 4 is formed.
Ni is vapor-deposited on A to form an n-type electrode 6 and a p-type electrode 5, respectively. The p-type electrode is a stripe having a width of 30 μm, and the stripe interval is 10 μm, and 15 pieces are provided on one chip. After forming both electrodes, the wafer is annealed at 700 ° C. In order to electrically connect the striped p-type electrode 5 provided on the p-type GaN layer 4A, a conductive material 8 such as Au or In is deposited on the p-type electrode 5 as shown in FIG. .

【0015】図3に示す発光素子は、p型電極5を形成
されたp型GaN層4Aと、形成されないp型GaN層
4Aとの電気抵抗をアニーリングにより変化させて調整
する。この結果、p型電極5を形成した下部のp型Ga
N層4Aの電気抵抗を、形成されないp型GaN層4A
に比較して大きくしている。この構造の発光素子は、p
型電極5が形成された下部のp型GaN層は抵抗が大き
いので電流が流れにくく、p型電極5の周縁下部のp型
GaN層4Aの抵抗は小さいので、電流が流れやすい。
したがってp型電極5の周縁部に集中して電流が流れ、
この部分の発光出力を大きくすることができる。
In the light emitting device shown in FIG. 3, the electrical resistances of the p-type GaN layer 4A having the p-type electrode 5 formed thereon and the p-type GaN layer 4A not having the p-type electrode 5 are adjusted by annealing. As a result, the lower p-type Ga on which the p-type electrode 5 is formed is
The electric resistance of the N layer 4A is not formed and the p-type GaN layer 4A is not formed.
It is larger than. The light emitting device of this structure has p
The lower p-type GaN layer on which the type electrode 5 is formed has a large resistance, and thus it is difficult for a current to flow.
Therefore, the current flows concentratedly on the peripheral portion of the p-type electrode 5,
The light emission output of this portion can be increased.

【0016】本発明の発光素子は、p型電極5を形成し
た下部のp型GaN層4Aの抵抗を大きくし、形成しな
いp型GaN層4Aの抵抗を小さくする方法を特定しな
いが、p型GaN層4Aにp型電極5を形成した後、p
型電極5が形成されないp型GaN層中に含まれる水素
を除去することでこの状態を実現できる。p型GaN層
4Aの電気抵抗は、p型GaN層4A中に含まれる水素
によって高くなっている。GaN層を成長させる時に、
GaN層に水素が含まれる。GaN層を成長させる時に
水素を完全に除くことは極めて難しい。それはGaN層
成長時に窒素源としてアンモニア等の水素と窒素を含む
化合物ガスを使用し、このアンモニアが成長時に分解し
て、原子状水素ができ、この水素原子がどうしてもアク
セプターとしてドープされているp型ドーパント(例え
ば、Mg、Zn)と結合して、p型ドーパントを不活性
化してしまうためである。したがって原子状水素がp型
GaN層中に入ると、水素はアクセプタードーパントを
不活性化して、p型GaNを高抵抗化してしまう。
The light emitting device of the present invention does not specify a method for increasing the resistance of the p-type GaN layer 4A below the p-type electrode 5 and decreasing the resistance of the p-type GaN layer 4A not formed. After forming the p-type electrode 5 on the GaN layer 4A, p
This state can be realized by removing hydrogen contained in the p-type GaN layer in which the mold electrode 5 is not formed. The electric resistance of the p-type GaN layer 4A is increased by the hydrogen contained in the p-type GaN layer 4A. When growing a GaN layer,
Hydrogen is contained in the GaN layer. It is extremely difficult to completely remove hydrogen when growing a GaN layer. It uses a compound gas containing hydrogen and nitrogen such as ammonia as a nitrogen source during the growth of a GaN layer, and this ammonia decomposes during the growth to form atomic hydrogen, and this hydrogen atom is inevitably doped as an acceptor. This is because the p-type dopant is inactivated by combining with the dopant (eg, Mg, Zn). Therefore, when atomic hydrogen enters the p-type GaN layer, the hydrogen inactivates the acceptor dopant and increases the resistance of the p-type GaN.

【0017】p型GaN層4A中の水素は、例えば40
0℃以上でアニーリングすることにより除去できる。つ
まり、GaN層中で、M−Hの状態で結合しているp型
ドーパント(M)と水素(H)から、水素のみが出てい
くことによりアクセプタードーパントが活性化し正孔が
できる。正孔の発生はp型GaN層4Aの抵抗をさらに
低下させる。p型GaN層4Aにp型電極5を形成した
状態で、例えば、700℃でアニーリングを行うと、p
型電極5の真下の部分からは水素が結晶中から出ること
ができず、p型電極5の下に残ったままとなる。したが
って、p型電極5を形成してアニーリングすることによ
って、p型電極5が形成されたp型GaN層4Aの抵抗
を大きく、形成されない部分の抵抗を小さくできる。つ
まり、p型GaN層4Aの電気抵抗の分布を調整するこ
とができる。アニーリングを行う場合、水素を含まない
雰囲気中で行うことが望ましく、アンモニア、ヒドラジ
ン等の水素を含む雰囲気中で行うと、p型GaN層に再
吸蔵される恐れがある。
The hydrogen in the p-type GaN layer 4A is, for example, 40
It can be removed by annealing at 0 ° C or higher. That is, in the GaN layer, only hydrogen is released from the p-type dopant (M) and hydrogen (H) that are bonded in the MH state, so that the acceptor dopant is activated and holes are formed. The generation of holes further reduces the resistance of the p-type GaN layer 4A. When p-type electrode 5 is formed on p-type GaN layer 4A and annealed at 700 ° C., for example, p
Hydrogen cannot escape from the crystal directly under the mold electrode 5, and remains under the p-type electrode 5. Therefore, by forming the p-type electrode 5 and annealing, the resistance of the p-type GaN layer 4A in which the p-type electrode 5 is formed can be increased, and the resistance of a portion not formed can be decreased. That is, the distribution of the electric resistance of the p-type GaN layer 4A can be adjusted. When performing annealing, it is desirable to perform it in an atmosphere containing no hydrogen, and if it is performed in an atmosphere containing hydrogen such as ammonia or hydrazine, there is a possibility that it will be occluded in the p-type GaN layer again.

【0018】以上のようにして得られた発光素子は、通
電すると、図3の矢印Aで示すp型電極5の周縁部分で
電流が多く流れる。それは、p型電極5を形成した下部
のp型GaN層4Aの抵抗が大きく、形成されない部分
の抵抗が小さいからである。従って、矢印Aで示すp型
電極5の周縁部に集中して電流が流れ、この部分が高い
発光出力で発光する。
When the light emitting device obtained as described above is energized, a large amount of current flows in the peripheral portion of the p-type electrode 5 shown by the arrow A in FIG. This is because the lower p-type GaN layer 4A on which the p-type electrode 5 is formed has a large resistance, and the portion not formed has a small resistance. Therefore, a current flows concentratedly on the peripheral portion of the p-type electrode 5 indicated by the arrow A, and this portion emits light with a high light emission output.

【0019】最後にウエハーを1×0.8mm角のチッ
プ状にカットして発光ダイオードに組み込んで発光させ
ると順方向電流20mAにおいて、順方向電圧5Vで4
30nmの発光を示し、発光出力は10μWであった。
Finally, when the wafer was cut into 1 × 0.8 mm square chips and incorporated in a light emitting diode to emit light, a forward current of 20 mA was applied, and a forward voltage of 5 V was applied.
It emitted light of 30 nm and had a light emission output of 10 μW.

【0020】図5は異なる構造のp型窒化ガリウム系化
合物半導体の発光素子を示している。この発光素子も、
MOCVD装置を用いて、サファイア基板1のC面にG
aNバッファ層を200オングストロームの膜厚で成長
させている。GaNバッファ層2の上に、Siをドープ
したn型GaN層3を4μmの膜厚で成長させ、さらに
n型GaN層3の上に、p型またはn型のInGaN層
9を100オングストロームの膜厚で成長させ、このI
nGaN層9の上にMgをドープしたp型GaN層4A
を設け、n型GaN層3とp型GaN層4Aの上にn型
電極6とp型電極5とを形成している。
FIG. 5 shows a p-type gallium nitride-based compound semiconductor light emitting device having a different structure. This light emitting element also
Using a MOCVD device, G
The aN buffer layer is grown to a film thickness of 200 Å. A Si-doped n-type GaN layer 3 having a thickness of 4 μm is grown on the GaN buffer layer 2, and a p-type or n-type InGaN layer 9 having a thickness of 100 Å is further formed on the n-type GaN layer 3. This thick I
Mg-doped p-type GaN layer 4A on the nGaN layer 9
And the n-type electrode 6 and the p-type electrode 5 are formed on the n-type GaN layer 3 and the p-type GaN layer 4A.

【0021】この構造の発光素子においても、p型電極
5が形成された部分のp型GaN層4Aの抵抗を、形成
されない部分よりも大きくしている。この構造の発光素
子はp型電極5とn型電極6とに通電すると、InGa
N層9が発光し、p型電極周縁近傍のInGaN層9の
強い発光をサファイア基板側から観測できる。同じくこ
の発光素子を発光ダイオードとしたところ、順方向電圧
20mAにおいて、順方向電圧5Vで420nmの発光
を示し、発光出力は300μWであった。
Also in the light emitting device having this structure, the resistance of the p-type GaN layer 4A in the portion where the p-type electrode 5 is formed is made higher than that in the portion where it is not formed. In the light emitting device having this structure, when the p-type electrode 5 and the n-type electrode 6 are energized, InGa
The N layer 9 emits light, and strong emission of the InGaN layer 9 near the periphery of the p-type electrode can be observed from the sapphire substrate side. Similarly, when this light emitting element was used as a light emitting diode, it emitted light of 420 nm at a forward voltage of 5 V at a forward voltage of 20 mA and an emission output of 300 μW.

【0022】図3と図5に示す発光素子は、p型GaN
層4Aの上に、図6に示すようにストライプ状のp型電
極5を設けている。p型電極5は図7ないし図9に示す
ように形成することもできる。図7に示すp型電極5は
碁盤格子状に、図8に示すp型電極5は点状に、図9に
示すp型電極5は同心円の線状に形成されている。つま
り、p型電極5の形状は特に問うものではなく、その周
縁の長さが長ければ長いほど、発光面積が大きくなり、
発光効率を増大させることができる。
The light emitting device shown in FIGS. 3 and 5 is a p-type GaN.
Striped p-type electrodes 5 are provided on the layer 4A as shown in FIG. The p-type electrode 5 can also be formed as shown in FIGS. The p-type electrode 5 shown in FIG. 7 is formed in a grid pattern, the p-type electrode 5 shown in FIG. 8 is formed in a dot shape, and the p-type electrode 5 shown in FIG. 9 is formed in a concentric linear shape. That is, the shape of the p-type electrode 5 is not particularly limited, and the longer the peripheral edge, the larger the light emitting area,
Luminous efficiency can be increased.

【0023】[0023]

【発明の効果】本発明の窒化ガリウム系化合物半導体発
光素子は、p型窒化ガリウム系化合物半導体層に形成し
たp型電極の周縁近傍を、他の部分よりも高い出力で発
光させることによって、従来品を卓越する発光出力とす
ることができる。ちなみに本発明の実施例に係る図3に
示す発光素子を使用した発光ダイオードは、順方向電圧
4V、順方向電流20mAにおいて、発光出力は10μ
Wとなった。さらに図5に示す本発明の実施例に係るダ
ブルへテロ構造の発光素子を使用した発光ダイオード
は、同条件において発光出力が300μWと飛躍的に向
上した。なお、図1に示す従来のMIS構造の発光素子
を使用した発光ダイオードは順方向電圧15V、順方向
電流10mAにおいて、発光出力は1μWでしかなく、
また順方向電流を20mA流すと熱破壊して発光しなく
なった。これは、i型GaN層の抵抗率が106Ω・cm
以上と極めて高いために、電流を増加させるとジュール
熱が急激に増加して発光素子の温度が高くなるからであ
る。
The gallium nitride-based compound semiconductor light-emitting device of the present invention has a conventional structure in which the vicinity of the periphery of the p-type electrode formed in the p-type gallium nitride-based compound semiconductor layer is made to emit light at a higher output than other portions. The product can have an outstanding light emission output. Incidentally, the light emitting diode using the light emitting device shown in FIG. 3 according to the embodiment of the present invention has a light emission output of 10 μm at a forward voltage of 4 V and a forward current of 20 mA.
It became W. Further, in the light emitting diode using the light emitting element having the double hetero structure according to the embodiment of the present invention shown in FIG. 5, the light emission output was dramatically improved to 300 μW under the same conditions. The light emitting diode using the conventional MIS structure light emitting element shown in FIG. 1 has a light emission output of only 1 μW at a forward voltage of 15 V and a forward current of 10 mA.
When a forward current of 20 mA was applied, it was thermally destroyed and no light was emitted. This is because the resistivity of the i-type GaN layer is 106 Ω · cm.
This is because, since it is extremely high as described above, the Joule heat rapidly increases and the temperature of the light emitting element rises when the current is increased.

【0024】以上説明したように、本発明の発光素子
は、p型電極の周縁部を強く発光させるので、例えば、
細い線状のp型電極を長く設けることにより、あるい
は、点状のp型電極を多く設けるとによって、p型層の
低抵抗部分を長くして発光出力を増大させることができ
る。また、p型電極の周縁近傍で発光させるので、点状
のp型電極として光を局部に集中することができ、ま
た、線状のp型電極とすることによって線状に発光部分
を集中することも可能である。
As described above, the light emitting device of the present invention strongly emits light at the peripheral portion of the p-type electrode.
By providing long thin linear p-type electrodes or by providing a lot of dot-like p-type electrodes, it is possible to lengthen the low resistance portion of the p-type layer and increase the light emission output. Further, since light is emitted near the periphery of the p-type electrode, light can be concentrated locally as a dot-shaped p-type electrode, and by using a linear p-type electrode, the light-emitting portion is concentrated linearly. It is also possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の発光素子の一例を示す断面図。FIG. 1 is a cross-sectional view showing an example of a conventional light emitting element.

【図2】 図1に示す発光素子の平面図。FIG. 2 is a plan view of the light emitting device shown in FIG.

【図3】 本発明の一実施例を示す発光素子の断面図。FIG. 3 is a sectional view of a light emitting device showing an embodiment of the present invention.

【図4】 図3に示すp型電極の上に導電性材料をオー
バーコートした状態を示す断面図。
4 is a cross-sectional view showing a state in which a conductive material is overcoated on the p-type electrode shown in FIG.

【図5】 本発明の他の実施例に係る発光素子の断面
図。
FIG. 5 is a cross-sectional view of a light emitting device according to another embodiment of the present invention.

【図6】 p型電極の形状の他の具体例を示す平面図。FIG. 6 is a plan view showing another specific example of the shape of the p-type electrode.

【図7】 p型電極の形状の他の具体例を示す平面図。FIG. 7 is a plan view showing another specific example of the shape of the p-type electrode.

【図8】 p型電極の形状の他の具体例を示す平面図。FIG. 8 is a plan view showing another specific example of the shape of the p-type electrode.

【図9】 p型電極の形状の他の具体例を示す平面図。FIG. 9 is a plan view showing another specific example of the shape of the p-type electrode.

【符号の説明】[Explanation of symbols]

1・・・・・サファイア基板 2・・・・・バッ
ファ層 3・・・・・n型GaN層 4・・・・・i型
GaN層 4A・・・・p型GaN層 5・・・・・p型電極 6・・・・・n型
電極 8・・・・・導電性材料 9・・・・・In
GaN層
DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2 ... Buffer layer 3 ... n-type GaN layer 4 ... i-type GaN layer 4A ... p-type GaN layer 5 ... -P-type electrode 6 ... n-type electrode 8 ... conductive material 9 ... In
GaN layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の上に、少なくともn型窒化ガリウ
ム系化合物半導体層と、p型ドーパントをドープして抵
抗率を1000Ω・cm以下に調整したp型窒化ガリウ
ム系化合物半導体層とを有し、前記n型窒化ガリウム系
化合物半導体層と前記p型ドーパントをドープしたp型
窒化ガリウム系化合物半導体層とには、それぞれ、アニ
ーリング処理して電気的に接続されたn型電極およびp
型電極が形成されており、n型電極とp型電極とに通電
することにより、前記p型電極の周縁近傍を他の部分よ
りも強く発光させるように構成したことを特徴とする窒
化ガリウム系化合物半導体発光素子。
1. A substrate having at least an n-type gallium nitride compound semiconductor layer and a p-type gallium nitride compound semiconductor layer having a resistivity adjusted to 1000 Ω · cm or less by doping with a p-type dopant. The n-type gallium nitride-based compound semiconductor layer and the p-type gallium nitride-based compound semiconductor layer doped with the p-type dopant are each annealed to be electrically connected to the n-type electrode and p.
A gallium nitride system characterized in that a type electrode is formed, and when the n-type electrode and the p-type electrode are energized, the vicinity of the peripheral edge of the p-type electrode is made to emit light more strongly than other portions. Compound semiconductor light emitting device.
JP4598393A 1993-02-10 1993-02-10 Gallium nitride compound semiconductor light emitting device Expired - Fee Related JPH0783136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4598393A JPH0783136B2 (en) 1993-02-10 1993-02-10 Gallium nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4598393A JPH0783136B2 (en) 1993-02-10 1993-02-10 Gallium nitride compound semiconductor light emitting device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP26785796A Division JP2868081B2 (en) 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device
JP26785696A Division JP3223810B2 (en) 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06237012A true JPH06237012A (en) 1994-08-23
JPH0783136B2 JPH0783136B2 (en) 1995-09-06

Family

ID=12734413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4598393A Expired - Fee Related JPH0783136B2 (en) 1993-02-10 1993-02-10 Gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0783136B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622858A3 (en) * 1993-04-28 1995-05-17 Nichia Kagaku Kogyo Kk Gallium nitride-based III-V group compound semiconductor device and method of producing the same.
JPH0851235A (en) * 1994-08-09 1996-02-20 Rohm Co Ltd Manufacture of semiconductor light emitting element
WO2001073858A1 (en) * 2000-03-31 2001-10-04 Toyoda Gosei Co., Ltd. Group-iii nitride compound semiconductor device
WO2001091194A1 (en) * 2000-05-23 2001-11-29 Osram Opto Semiconductors Gmbh Optoelectronic component and a method for producing the same
US6730939B2 (en) 2000-02-15 2004-05-04 Osram Opto Semiconductors Gmbh Radiation emitting semiconductor device
US6835958B2 (en) 2002-02-06 2004-12-28 Toyoda Gosei Co., Ltd. Light-emitting device
JP2005210051A (en) * 2004-01-19 2005-08-04 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting diode for flip chip
US7205578B2 (en) 2000-02-15 2007-04-17 Osram Gmbh Semiconductor component which emits radiation, and method for producing the same
JP2007123764A (en) * 2005-10-31 2007-05-17 Stanley Electric Co Ltd Light emitting device and its manufacturing method
US7436045B2 (en) 2004-03-04 2008-10-14 Showa Denko K.K. Gallium nitride-based semiconductor device
US7453091B2 (en) 2004-03-04 2008-11-18 Showa Denko K.K. Gallium nitride-based semiconductor device
US7635875B2 (en) 2001-07-24 2009-12-22 Nichia Corporation Semiconductor light emitting device
US7683386B2 (en) 2003-08-19 2010-03-23 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth
US8653545B2 (en) 2008-12-24 2014-02-18 Lg Innotek Co., Ltd. Semiconductor light emitting device
US20140054544A1 (en) * 2012-08-27 2014-02-27 Lg Innotek Co., Ltd. Light emitting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPWO2016031966A1 (en) * 2014-08-29 2017-06-08 国立大学法人京都大学 Two-dimensional photonic crystal surface emitting laser
CN108400171A (en) * 2018-03-07 2018-08-14 西安电子科技大学 Low resistance state gallium-nitride-based devices and preparation method thereof based on thermal annealing doping process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332963A (en) * 1986-07-25 1988-02-12 Toyoda Gosei Co Ltd Electrode for semiconductor element and manufacture thereof
JPH04321280A (en) * 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode
JPH04361572A (en) * 1991-06-10 1992-12-15 Toshiba Corp Semiconductor light emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332963A (en) * 1986-07-25 1988-02-12 Toyoda Gosei Co Ltd Electrode for semiconductor element and manufacture thereof
JPH04321280A (en) * 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode
JPH04361572A (en) * 1991-06-10 1992-12-15 Toshiba Corp Semiconductor light emitting element

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375383B2 (en) 1993-04-28 2008-05-20 Nichia Corporation Gallium nitride based III-V group compound semiconductor device and method of producing the same
US5652434A (en) * 1993-04-28 1997-07-29 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor
US5767581A (en) * 1993-04-28 1998-06-16 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor
US5877558A (en) * 1993-04-28 1999-03-02 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor
US6093965A (en) * 1993-04-28 2000-07-25 Nichia Chemical Industries Ltd. Gallium nitride-based III-V group compound semiconductor
US6204512B1 (en) * 1993-04-28 2001-03-20 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor device and method of producing the same
US6998690B2 (en) 1993-04-28 2006-02-14 Nichia Corporation Gallium nitride based III-V group compound semiconductor device and method of producing the same
US7205220B2 (en) 1993-04-28 2007-04-17 Nichia Corporation Gallium nitride based III-V group compound semiconductor device and method of producing the same
US6507041B2 (en) 1993-04-28 2003-01-14 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor
US6610995B2 (en) 1993-04-28 2003-08-26 Nichia Corporation Gallium nitride-based III-V group compound semiconductor
EP0622858A3 (en) * 1993-04-28 1995-05-17 Nichia Kagaku Kogyo Kk Gallium nitride-based III-V group compound semiconductor device and method of producing the same.
JPH0851235A (en) * 1994-08-09 1996-02-20 Rohm Co Ltd Manufacture of semiconductor light emitting element
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6730939B2 (en) 2000-02-15 2004-05-04 Osram Opto Semiconductors Gmbh Radiation emitting semiconductor device
US7205578B2 (en) 2000-02-15 2007-04-17 Osram Gmbh Semiconductor component which emits radiation, and method for producing the same
US7195942B2 (en) 2000-02-15 2007-03-27 Osram Gmbh Radiation emitting semiconductor device
US6777805B2 (en) 2000-03-31 2004-08-17 Toyoda Gosei Co., Ltd. Group-III nitride compound semiconductor device
WO2001073858A1 (en) * 2000-03-31 2001-10-04 Toyoda Gosei Co., Ltd. Group-iii nitride compound semiconductor device
US7042089B2 (en) 2000-03-31 2006-05-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device
JP2003534667A (en) * 2000-05-23 2003-11-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Component for optoelectronics and method of manufacturing the same
WO2001091194A1 (en) * 2000-05-23 2001-11-29 Osram Opto Semiconductors Gmbh Optoelectronic component and a method for producing the same
US10396242B2 (en) 2001-07-24 2019-08-27 Nichia Corporation Semiconductor light emitting device
US8344403B2 (en) 2001-07-24 2013-01-01 Nichia Corporation Semiconductor light emitting device
US9865773B2 (en) 2001-07-24 2018-01-09 Nichia Corporation Semiconductor light emitting device
US7635875B2 (en) 2001-07-24 2009-12-22 Nichia Corporation Semiconductor light emitting device
US9368681B2 (en) 2001-07-24 2016-06-14 Nichia Corporation Semiconductor light emitting device
US7745245B2 (en) 2001-07-24 2010-06-29 Nichia Corporation Semiconductor light emitting device
US7804101B2 (en) 2001-07-24 2010-09-28 Nichia Corporation Semiconductor light-emitting device
US10593833B2 (en) 2001-07-24 2020-03-17 Nichia Corporation Semiconductor light emitting device
US8148744B2 (en) 2001-07-24 2012-04-03 Nichia Corporation Semiconductor light emitting device
US8227280B2 (en) 2001-07-24 2012-07-24 Nichia Corporation Semiconductor light emitting device
US8299486B2 (en) 2001-07-24 2012-10-30 Nichia Corporation Semiconductor light emitting device
US8344402B2 (en) 2001-07-24 2013-01-01 Nichia Corporation Semiconductor light emitting device
US6835958B2 (en) 2002-02-06 2004-12-28 Toyoda Gosei Co., Ltd. Light-emitting device
US7683386B2 (en) 2003-08-19 2010-03-23 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth
US8119534B2 (en) 2003-08-19 2012-02-21 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth
JP2005210051A (en) * 2004-01-19 2005-08-04 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting diode for flip chip
US7453091B2 (en) 2004-03-04 2008-11-18 Showa Denko K.K. Gallium nitride-based semiconductor device
US7436045B2 (en) 2004-03-04 2008-10-14 Showa Denko K.K. Gallium nitride-based semiconductor device
JP2007123764A (en) * 2005-10-31 2007-05-17 Stanley Electric Co Ltd Light emitting device and its manufacturing method
US8653545B2 (en) 2008-12-24 2014-02-18 Lg Innotek Co., Ltd. Semiconductor light emitting device
US8928015B2 (en) 2008-12-24 2015-01-06 Lg Innotek Co., Ltd. Semiconductor light emitting device
US20140054544A1 (en) * 2012-08-27 2014-02-27 Lg Innotek Co., Ltd. Light emitting device
EP2704218A1 (en) * 2012-08-27 2014-03-05 LG Innotek Co., Ltd. Semiconductor light emitting device with a nitride semiconductor contact layer
JPWO2016031966A1 (en) * 2014-08-29 2017-06-08 国立大学法人京都大学 Two-dimensional photonic crystal surface emitting laser
CN108400171A (en) * 2018-03-07 2018-08-14 西安电子科技大学 Low resistance state gallium-nitride-based devices and preparation method thereof based on thermal annealing doping process

Also Published As

Publication number Publication date
JPH0783136B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JP5009841B2 (en) Light emitting device having current blocking structure and method for manufacturing light emitting device having current blocking structure
EP1941555B1 (en) SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH ELECTRODE FOR N-POLAR InGaAlN SURFACE
JP2828187B2 (en) Gallium nitride based compound semiconductor light emitting device
US20180012929A1 (en) Light-emitting device and manufacturing method thereof
JP3505374B2 (en) Light emitting components
US6853663B2 (en) Efficiency GaN-based light emitting devices
JPH06237012A (en) Semiconductor light emitting element of gallium nitride compound
JP2006245524A (en) Nitride semiconductor light emitting element with vertical structure
KR101565122B1 (en) Single Chip Type Semiconductor Light Emitting Device with Thermoconductive Substrate
US20060261358A1 (en) Flip chip light emitting diode and method of manufacturing the same
WO2007015612A1 (en) Nitride light emitting device and manufacturing method thereof
JPH1065215A (en) Iii nitride semiconductor light-emitting device
US9948062B2 (en) Solid-state lighting structure with light modulation control
US20030209723A1 (en) Gallium nitride-based compound semiconductor device
JP2000077713A (en) Semiconductor light-emitting element
JP2836685B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor
KR20100122998A (en) Light emitting device and method for fabricating the same
US20070108519A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP2003524901A (en) Semiconductor structural element for emitting electromagnetic radiation and method of manufacturing the same
JP2868081B2 (en) Gallium nitride based compound semiconductor light emitting device
KR100743471B1 (en) Manufacturnig of iii-nitride semiconductor light emitting device
JP3934730B2 (en) Semiconductor light emitting device
JP2006024913A (en) Translucent positive electrode for compound semiconductor light-emitting device of gallium nitride series, and the light-emitting device
JP3223810B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3633018B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees